Servo Amplifier
βi Series
Descriptions Manual, GFZ-65322EN/02
August 2004
Warnings, Cautions, and Notes  
as Used in this Publication

**Warning**

Warning notices are used in this publication to emphasize that hazardous voltages, currents, temperatures, or other conditions that could cause personal injury exist in this equipment or may be associated with its use.

In situations where inattention could cause either personal injury or damage to equipment, a Warning notice is used.

**Caution**

Caution notices are used where equipment might be damaged if care is not taken.

**Note**

Notes merely call attention to information that is especially significant to understanding and operating the equipment.

This document is based on information available at the time of its publication. While efforts have been made to be accurate, the information contained herein does not purport to cover all details or variations in hardware or software, nor to provide for every possible contingency in connection with installation, operation, or maintenance. Features may be described herein which are not present in all hardware and software systems. GE Fanuc Automation assumes no obligation of notice to holders of this document with respect to changes subsequently made.

GE Fanuc Automation makes no representation or warranty, expressed, implied, or statutory with respect to, and assumes no responsibility for the accuracy, completeness, sufficiency, or usefulness of the information contained herein. No warranties of merchantability or fitness for purpose shall apply.

The following are trademarks of GE Fanuc Automation, Inc.

- Alarm Master
- CIMPPLICITY
- CIMPPLICITY 90-ADS
- CIMSTAR
- Field Control
- GEnet
- Genius
- Helpmate
- Logicmaster
- Modelmaster
- Motion Mate
- PACSystems
- Proficy
- ProLoop
- PROMACRO
- PowerMotion
- PowerTRAC
- Series 90
- Series Five
- Series One
- Series Six
- Series Three
- VersaMax
- VersaPoint
- VersaPro
- VuMaster
- Workmaster

©Copyright 2005 GE Fanuc Automation North America, Inc.  
All Rights Reserved
This "Safety Precautions" section describes the precautions which must be observed to ensure safety when using FANUC servo amplifiers (including spindle amplifiers). Users of any servo amplifier model are requested to read the "Safety Precautions" carefully before first using the amplifier. Users should also read the relevant description in this manual to become fully familiar with the functions of the servo amplifier.

The users are basically forbidden to do any behavior or action not mentioned in the "Safety Precautions." They are invited to ask FANUC previously about what behavior or action is prohibited.

Contents

1.1 DEFINITION OF WARNING, CAUTION, AND NOTE ........s-2
1.2 WARNINGS AND CAUTIONS RELATING TO MOUNTING .................................................................s-3
  1.2.1 Warning........................................................................s-3
  1.2.2 Caution..........................................................................s-5
  1.2.3 Note...............................................................................s-7
1.3 WARNINGS AND CAUTIONS RELATING TO A PILOT RUN ..............................................................s-8
  1.3.1 Warning.........................................................................s-8
  1.3.2 Caution ........................................................................s-9
1.4 WARNINGS AND CAUTIONS RELATING TO MAINTENANCE ..............................................................s-10
  1.4.1 Warning.......................................................................s-10
  1.4.2 Caution ........................................................................s-12
  1.4.3 Note .............................................................................s-13
1.1 DEFINITION OF WARNING, CAUTION, AND NOTE

This manual includes safety precautions for protecting the user and preventing damage to the machine. Precautions are classified into Warning and Caution according to their bearing on safety. Also, supplementary information is described as a Note. Read the Warning, Caution, and Note thoroughly before attempting to use the machine.

⚠️ WARNING
Applied when there is a danger of the user being injured or when there is a danger of both the user being injured and the equipment being damaged if the approved procedure is not observed.

⚠️ CAUTION
Applied when there is a danger of the equipment being damaged, if the approved procedure is not observed.

NOTE
The Note is used to indicate supplementary information other than Warning and Caution.

- Read this manual carefully, and store it in a safe place.
1.2 WARNINGS AND CAUTIONS RELATING TO MOUNTING

1.2.1 Warning

⚠️ WARNING

- **Check the specification code of the amplifier.**
  Check that the delivered amplifier is as originally ordered.

- **Mount a ground fault interrupter.**
  To guard against fire and electric shock, fit the factory power supply or machine with a ground fault interrupter (designed for use with an inverter).

- **Securely ground the amplifier.**
  Securely connect the ground terminal and metal frame of the amplifier and motor to a common ground plate of the power magnetic cabinet.

- **Be aware of the weight of the amplifier and other components.**
  Servo amplifiers and AC reactors are heavy. When transporting them or mounting them in the cabinet, therefore, be careful not to injured yourself or damage the equipment. Be particularly carefull not to jam your fingers between the cabinet and amplifier.

- **Never ground or short-circuit either the power supply lines or power lines.**
  Protect the lines from any stress such as bending. Handle the ends appropriately.

- **Ensure that the power supply lines, power lines, and signal lines are securely connected.**
  A loose screw, loose connection, or the like will cause a motor malfunction or overheating, or a ground fault. Be extremely careful with power supply lines, motor power lines, and DC link connections through which a large amount of current passes, because a loose screw (or poor contact in a connector or poor connection between a connector terminal and a cable) may cause a fire.

- **Insulate all exposed parts that are charged.**

- **Never touch the regenerative discharge resistor or radiator directly.**
  The surface of the radiator and regenerative discharge resistor become extremely hot. Never touch them directly. An appropriate structure should also be considered.
WARNING

- Close the amplifier cover after completing the wiring. Leaving the cover open presents a danger of electric shock.

- Do not disassemble the amplifier.

- Ensure that the cables used for the power supply lines and power lines are of the appropriate diameter and temperature ratings.

- Do not apply an excessively large force to plastic parts. If a plastic section breaks, it may cause internal damage, thus interfering with normal operation. The edge of a broken section is likely to be sharp and, therefore, presents a risk of injury.
1.2.2 Caution

⚠️ CAUTION

- **Do not step or sit on the amplifier.**
  Also, do not stack unpacked amplifiers on top of each other.

- **Use the amplifier in an appropriate environment.**
  See the allowable ambient temperatures and other requirements, given in the this manual.

- **Protect the amplifier from corrosive or conductive mist or drops of water.**
  Use a filter if necessary.

- **Protect the amplifier from impact.**
  Do not place anything on the amplifier.

- **Do not block the air inlet to the radiator.**
  A deposit of coolant, oil mist, or chips on the air inlet will result in a reduction in the cooling efficiency. In some cases, the required efficiency cannot be achieved. The deposit may also lead to a reduction in the useful life of the semiconductors. Especially, when outside air is drawn in, mount filters on both the air inlet and outlet. These filters must be replaced regularly. So, an easy-to-replace type of filter should be used.

- **Connect the power supply lines and power lines to the appropriate terminals and connectors.**

- **Connect the signal lines to the appropriate connectors.**

- **Before connecting the power supply wiring, check the supply voltage.**
  Check that the supply voltage is within the range specified in this manual, then connect the power supply lines.

- **Ensure that the combination of motor and amplifier is appropriate.**

- **Ensure that valid parameters are specified.**
  Specifying an invalid parameter for the combination of motor and amplifier may not only prevent normal operation of the motor but also result in damage to the amplifier.

- **Ensure that the amplifier and peripheral equipment are securely connected.**
  Check that the magnetic contactor, circuit breaker, and other devices mounted outside the amplifier are securely connected to each other and that those devices are securely connected to the amplifier.
**CAUTION**

- **Check that the amplifier is securely mounted in the power magnetic cabinet.**
  If any clearance is left between the power magnetic cabinet and the surface on which the amplifier is mounted, dust entering the gap may build up and prevent the normal operation of the amplifier.

- **Apply appropriate countermeasures against noise.**
  Adequate countermeasures against noise are required to maintain normal operation of the amplifier. For example, signal lines must be routed away from power supply lines and power lines.
1.2.3 Note

NOTE

- Keep the nameplate clearly visible.

- Keep the legend on the nameplate clearly visible.

- After unpacking the amplifier, carefully check for any damage.

- Mount the amplifier in a location where it can be easily accessed periodic inspection and daily maintenance.

- Leave sufficient space around the machine to enable maintenance to be performed easily. Do not place any heavy objects such that they would interfere with the opening of the doors.

- Keep the parameter table and spare parts at hand. Also, keep the specifications at hand. These items must be stored in a location where they can be retrieved immediately.

- Provide adequate shielding. A cable to be shielded must be securely connected to the ground plate, using a cable clamp or the like.
1.3 WARNINGS AND CAUTIONS RELATING TO A PILOT RUN

1.3.1 Warning

⚠️ WARNING

- Before turning on the power, check that the cables connected to the power magnetic cabinet and amplifier, as well as the power lines and power supply lines, are securely connected. Also, check that no lines are slack.

- Before turning on the power, ensure that the power magnetic cabinet is securely grounded.

- Before turning on the power, check that the door of the power magnetic cabinet and all other doors are closed. Ensure that the door of the power magnetic cabinet containing the amplifier, and all other doors, are securely closed. During operation, all doors must be closed and locked.

- Apply extreme caution if the door of the power magnetic cabinet or another door must be opened. Only a person trained in the maintenance of the corresponding machine or equipment should open the door, and only after shutting off the power supply to the power magnetic cabinet (by opening both the input circuit breaker of the power magnetic cabinet and the factory switch used to supply power to the cabinet). If the machine must be operated with the door open to enable adjustment or for some other purpose, the operator must keep his or her hands and tools well away from any dangerous voltages. Such work must be done only by a person trained in the maintenance of the machine or equipment.

- When operating the machine for the first time, check that the machine operates as instructed. To check whether the machine operates as instructed, first specify a small value for the motor, then increase the value gradually. If the motor operates abnormally, perform an emergency stop immediately.

- After turning on the power, check the operation of the emergency stop circuit. Press the emergency stop button to check that the motor stops immediately, and that the power being supplied to the amplifier is shut off by the magnetic contactor.

- Before opening a door or protective cover of a machine to enable adjustment of the machine, first place the machine in the emergency stop state and check that the motor has stopped.
1.3.2  Caution

⚠ CAUTION

- **Note whether an alarm status relative to the amplifier is displayed at power-up or during operation.**
  If an alarm is displayed, take appropriate action as explained in the maintenance manual. If the work to be done requires that the door of the power magnetic cabinet be left open, the work must be carried out by a person trained in the maintenance of the machine or equipment. Note that if some alarms are forcibly reset to enable operation to continue, the amplifier may be damaged. Take appropriate action according to the contents of the alarm.

- **Before operating the motor for the first time, mount and adjust the position and speed sensors.**
  Following the instructions given in the maintenance manual, adjust the position and speed sensors for the spindle so that an appropriate waveform is obtained. If the sensors are not properly adjusted, the motor may not rotate normally or the spindle may fail to stop as desired.

- **If the motor makes any abnormal noise or vibration while operating, stop it immediately.**
  Note that if operation is continued in spite of there being some abnormal noise or vibration, the amplifier may be damaged. Take appropriate corrective action, then resume operation.

- **Observe the ambient temperature and output rating requirements.**
  The continuous output rating or continuous operation period of some amplifiers may fall as the ambient temperature increases. If the amplifier is used continuously with an excessive load applied, the amplifier may be damaged.
1.4 Warnings and Cautions Relating to Maintenance

1.4.1 Warning

⚠️ WARNING

- Read the maintenance manual carefully and ensure that you are totally familiar with its contents.
  The maintenance manual describes daily maintenance and the procedures to be followed in the event of an alarm being issued. The operator must be familiar with these descriptions.

- Notes on replacing a fuse or PC board
  1) Before starting the replacement work, ensure that the circuit breaker protecting the power magnetic cabinet is open.
  2) Check that the red LED that indicates that charging is in progress is not lit.
     The position of the charging LED on each model of amplifier is given in this manual. While the LED is lit, hazardous voltages are present inside the unit, and thus there is a danger of electric shock.
  3) Some PC board components become extremely hot. Be careful not to touch these components.
  4) Ensure that a fuse having an appropriate rating is used.
  5) Check the specification code of a PC board to be replaced.
     If a modification drawing number is indicated, contact FANUC before replacing the PC board.
     Also, before and after replacing a PC board, check its pin settings.
  6) After replacing the fuse, ensure that the screws are firmly tightened. For a socket-type fuse, ensure that the fuse is inserted correctly.
  7) After replacing the PC board, ensure that it is securely connected.
  8) Ensure that all power lines, power supply lines, and connectors are securely connected.

- Take care not to lose any screws.
  When removing the case or PC board, take care not to lose any screws. If a screw is lost inside the unit and the power is turned on, the machine may be damaged.
**WARNING**

- **Notes on replacing the battery of the absolute Pulsecoder**
  Replace the battery only while the power is on. If the battery is replaced while the power is turned off, the stored absolute positioning data will be lost. Some βi series servo amplifier modules have batteries in their servo amplifiers. To replace the battery of any of those models, observe the following procedure: Open the door of the power magnetic cabinet; Leave the control power of the power supply module on; Place the machine in the emergency stop state so that the power being input to the amplifier is shut off; Then, replace the battery. Replacement work should be done only by a person who is trained in the related maintenance and safety requirements. The power magnetic cabinet in which the servo amplifier is mounted has a high-voltage section. This section presents a severe risk of electric shock.

- **Check the alarm number.**
  If the machine stops upon an alarm being issued, check the alarm number. Some alarms indicate that a component must be replaced. If the power is reconnected without first replacing the failed component, another component may be damaged, making it difficult to locate the original cause of the alarm.

- **Before resetting an alarm, ensure that the original cause of the alarm has been removed.**

- **Contact FANUC whenever a question relating to maintenance arises.**

- **Notes on removing the amplifier**
  Before removing the amplifier, first ensure that the power is shut off. Be careful not to jam your fingers between the power magnetic cabinet and amplifier.
1.4.2 Caution

⚠️ CAUTION

- **Ensure that all required components are mounted.**
  When replacing a component or PC board, check that all components, including the snubber capacitor, are correctly mounted. If the snubber capacitor is not mounted, for example, the IPM will be damaged.

- **Tighten all screws firmly.**

- **Check the specification code of the fuse, PC board, and other components.**
  When replacing a fuse or PC board, first check the specification code of the fuse or PC board, then mount it in the correct position. The machine will not operate normally if a fuse or PC board having other than the correct specification code is mounted, or if a fuse or PC board is mounted in the wrong position.

- **Mount the correct cover.**
  The cover on the front of the amplifier carries a label indicating a specification code. When mounting a previously removed front cover, take care to mount it on the unit from which it was removed.

- **Notes on cleaning the heat sink and fan**
  1) A dirty heat sink or fan results in reduced semiconductor cooling efficiency, which degrades reliability. Periodic cleaning is necessary.
  2) Using compressed air for cleaning scatters the dust. A deposit of conductive dust on the amplifier or peripheral equipment will result in a failure.
  3) To clean the heat sink, do so only after turning the power off and ensuring that the heat sink has cooled to room temperature. The heat sink becomes extremely hot, such that touching it during operation or immediately after power-off is likely to cause a burn. Be extremely careful when touching the heat sink.

- **Unless otherwise specified, do not insert or remove any connector while the power is turned on. Otherwise, the amplifier may fail.**
1.4.3 Note

NOTE

- **Ensure that the battery connector is correctly inserted.**
  
  If the power is shut off while the battery connector is not connected correctly, the absolute position data for the machine will be lost.

- **Store the manuals in a safe place.**
  
  The manuals should be stored in a location where they can be accessed immediately it so required during maintenance work.

- **Notes on contacting FANUC**
  
  Inform FANUC of the details of an alarm and the specification code of the amplifier so that any components required for maintenance can be quickly secured, and any other necessary action can be taken without delay.
# TABLE OF CONTENTS

SAFETY PRECAUTIONS ........................................................................................................s-1

I. SVM

1 OVERVIEW ..........................................................................................................................3

2 CONFIGURATION ...............................................................................................................4
  2.1 SVM1-4i AND SVM1-20i .............................................................................................5
  2.2 SVM1-40i AND SVM1-80i .........................................................................................6

2 CONFIGURATION ...............................................................................................................4
  2.1 SVM1-4i AND SVM1-20i .............................................................................................5
  2.2 SVM1-40i AND SVM1-80i .........................................................................................6

3 SPECIFICATIONS .............................................................................................................7
  3.1 SPECIFICATIONS ........................................................................................................8
  3.2 APPLICABLE MOTORS .............................................................................................8
  3.3 SELECTING CIRCUIT BREAKER, MAGNETIC CONTACTOR, AND AC LINE FILTER .........................................................................................................................9
    3.3.1 Selecting Circuit Breaker ......................................................................................9
    3.3.2 Selecting Magnetic Contactor .............................................................................10
    3.3.3 AC Line Filter .....................................................................................................10
  3.4 COOLING FAN MOTORS .........................................................................................11
    3.4.1 Models Requiring Cooling Fan motors ................................................................11
    3.4.2 Installing a Separate Cooling Fan motor .............................................................11
  3.5 DERATING ..................................................................................................................12
  3.6 SEPARATED REGENERATIVE DISCHARGE RESISTOR ......................................13
    3.6.1 When No Separated Regenerative Discharge Resistor Is Needed .......................13
    3.6.2 When a Separated Regenerative Discharge Resistor Is Needed .............................15
    3.6.3 When Amplifier Models SVM-40i and SVM-80i Are Used ....................................17

4 ORDERING INFORMATION ............................................................................................22

5 POWER SUPPLY ............................................................................................................23
  5.1 INPUT POWER SUPPLY ...........................................................................................24
    5.1.1 Three-phase Input Power Supply for Motor Power ..............................................24
    5.1.2 Single-phase Input Power Supply for Motor Power ............................................24
    5.1.3 Single-phase Input for Control Power .................................................................24
  5.2 POWER TRANSFORMER FOR EXPORTS ...............................................................28
# TABLE OF CONTENTS

5.2.1 Specification ........................................................................................................... 28
5.2.2 How to Select a Transformer .................................................................................. 29

6 INSTALLATION CONDITIONS AND NOTES ......................................................... 30
6.1 ENVIRONMENTAL CONDITIONS ........................................................................... 31
6.2 SELECTING A GROUND-FAULT CIRCUIT INTERRUPTER ....................................... 32
6.3 NOISE PROTECTION .................................................................................................. 33
    6.3.1 Separation of Signal Lines ............................................................................... 33
    6.3.2 Grounding ......................................................................................................... 34
    6.3.3 Noise Suppressor ............................................................................................... 35
    6.3.4 Cable Clamp and Shield Processing ................................................................... 36
6.4 INSTALLING LIGHTNING SURGE ABSORBERS .......................................................... 39

7 PROTECTIVE GROUNDING ....................................................................................... 42
7.1 SVM1-4i and SVM1-20i (FSSB Interface) .................................................................. 43
7.2 SVM1-40i and SVM1-80i (FSSB Interface) ................................................................. 44

8 EXTERNAL DIMENSIONS / PANEL CUT-OUT DRAWINGS / MAINTENANCE AREA .......................................................................................................................... 45
8.1 EXTERNAL DIMENSIONS ......................................................................................... 46
    8.1.1 External Dimensions of SVM1-4i and SVM1-20i ............................................... 46
    8.1.2 External Dimensions of SVM1-40i and SVM1-80i .............................................. 47
    8.1.3 External Dimensions of Fan Unit (A06B-6134-K003) ...................................... 48
    8.1.4 External Dimensions of Fan Unit (A06B-6134-K002) ...................................... 49
    8.1.5 Discharge Resistor ............................................................................................ 50
    8.1.6 AC Line Filter .................................................................................................... 53
    8.1.7 Transformer for Exports ................................................................................... 55
    8.1.8 Battery Case ..................................................................................................... 55
    8.1.9 Lightning Surge Absorbers .............................................................................. 56
8.2 PANEL CUT-OUT DRAWINGS .................................................................................. 58
    8.2.1 SVM1-4i and SVM1-20i .................................................................................... 58
    8.2.2 SVM1-40i and SVM1-80i ................................................................................ 59
    8.2.3 Discharge Resistor ............................................................................................ 60
8.3 MAINTENANCE AREA ............................................................................................... 62
    8.3.1 Maintenance Area for the SVM1-4i and SVM1-20i ......................................... 62
    8.3.2 Maintenance Area for the SVM1-40i and SVM1-80i ...................................... 63

9 TOTAL CONNECTION DIAGRAM ................................................................................ 65
9.1 CONNECTION DIAGRAM ........................................................................................ 66
    9.1.1 SVM1-4i and SVM1-20i .................................................................................. 66
9.1.2 SVM1-40i and SVM1-80i......................................................................................68
9.2 CONNECTOR LOCATION ..................................................................................70
  9.2.1 SVM1-4i and SVM1-20i...............................................................................70
  9.2.2 SVM1-40i and SVM1-80i...............................................................................71
  9.2.3 Connection Tools .......................................................................................72
  9.2.4 Details of Cable K1 ......................................................................................73
    9.2.4.1 Servo motor αi, αis series, Servo motor βis series
          (β0.4/5000is to β22/2000is)........................................................................73
    9.2.4.2 Servo motor βis series (β0.2/5000is, β0.3/5000is)...............................75
  9.2.5 Details of Cable K2 ......................................................................................77
    9.2.5.1 Details of connectors ...........................................................................77
    9.2.5.2 Selecting cables (general) .......................................................................80
    9.2.5.3 Details of input cables ...........................................................................81
  9.2.6 Details of Cable K3 ......................................................................................82
    9.2.6.1 Details of connectors ...........................................................................82
    9.2.6.2 Details of cables (general) ......................................................................83
    9.2.6.3 Power cable for servo motor .................................................................84
  9.2.7 Details of Cables K4 and K5 .........................................................................85
    9.2.7.1 SVM1-4i and SVM1-20i.........................................................................85
    9.2.7.2 SVM1-40i and SVM1-80i.......................................................................87
  9.2.8 Details of Cable K6 ......................................................................................89
  9.2.9 Details of Cable K7 ......................................................................................90
  9.2.10 Details of Cable K8 ....................................................................................91
  9.2.11 Details of Cable K9 ....................................................................................93
  9.2.12 Details of Cable K10 ..................................................................................94
  9.2.13 Details of Cable K11 ..................................................................................96
  9.3 HANDLING OF EXTERNAL MAGNETIC CONTACTORS .........................97
10 HEAT DISSIPATION .........................................................................................98

II. SVPM

1 OVERVIEW .........................................................................................................101
2 CONFIGURATION ..............................................................................................102
3 SPECIFICATIONS ..............................................................................................103
  3.1 SPECIFICATIONS ..........................................................................................104
  3.2 COOLING FAN MOTOR..................................................................................106
  3.3 HOW TO OBTAIN A POWER SUPPLY CAPACITY .....................................106
  3.4 APPLICABLE MOTORS ...............................................................................107
  3.5 CIRCUIT BREAKER, MAGNETIC CONTACTOR, AND AC REACTOR ....108
## TABLE OF CONTENTS

3.5.1 AC Line Filter and Magnetic Contactor ...............................................................108
3.5.2 AC Reactor ...........................................................................................................109
3.6 SPINDLE AXIS TYPES (#A AND #C) AND APPLICABLE SENSORS ...... 110
3.7 DERATING ................................................................................................ 111

4 ORDERING INFORMATION ...........................................................................112

5 POWER SUPPLY ...............................................................................................113
5.1 INPUT POWER SUPPLY ................................................................................114
5.1.1 Three-phase Input Power Supply for Motor Power .............................................114
5.1.2 Single-phase Input for Control Power ............................................................115
5.2 POWER TRANSFORMER FOR EXPORTS .............................................. 116

6 INSTALLATION CONDITIONS AND NOTES ...........................................119
6.1 ENVIRONMENTAL CONDITIONS ............................................................ 120
6.2 Selecting a Ground-Fault Circuit Interrupter .............................................. 120
6.3 NOISE PROTECTION ............................................................................... 120
6.4 INSTALLING LIGHTNING SURGE ABSORBERS .................................... 121

7 PROTECTIVE GROUNDING ..........................................................................123

8 EXTERNAL DIMENSIONS / PANEL CUT-OUT DRAWINGS / MAINTENANCE AREA .......................................................................124
8.1 EXTERNAL DIMENSIONS ........................................................................ 125
8.1.1 External Dimensions of SVPM ............................................................................125
8.1.2 External Dimensions of Fan Unit (A06B-6134-K001) ........................................125
8.1.3 AC Reactor Unit ...............................................................................................126
8.1.4 Power Transformer ..........................................................................................127
8.1.5 Circuit Breaker ...............................................................................................130
8.1.6 Magnetic Contactors .....................................................................................131
8.1.7 Lightning Surge Protector ................................................................................133
8.2 PANEL CUT-OUT DRAWINGS .....................................................................134
8.3 MAINTENANCE AREA ...............................................................................136
8.4 DUCT .........................................................................................................138

9 TOTAL CONNECTION DIAGRAM .....................................................................140
9.1 CONNECTION DIAGRAM ........................................................................ 140
9.2 CONNECTOR LOCATION .............................................................................141
9.3 DETAILED DESCRIPTIONS OF CONNECTIONS ......................................142
9.3.1 Common .......................................................................................................142
9.3.1.1 Details of cable K1 .......................................................................................142
9.3.1.2 Details of cable K6 ................................................................. 144
9.3.1.3 Details of cable K7 ................................................................. 145
9.3.1.4 Details of cable K69 .............................................................. 146
9.3.1.5 Details of cable K70 .............................................................. 146
9.3.1.6 Details of cable K21 .............................................................. 148
9.3.1.7 Details of cable K22 .............................................................. 150
9.3.1.8 Details of cable K27 .............................................................. 152
9.3.1.9 Details of cable K28 .............................................................. 153

9.3.2 Spindle Motor ........................................................................... 155
9.3.2.1 Details of cable K10 .............................................................. 155
9.3.2.2 Details of cable K12 .............................................................. 156
9.3.2.3 Details of cable K14 .............................................................. 158
9.3.2.4 Details of cable K16 .............................................................. 160
9.3.2.5 Details of cable K17 .............................................................. 162
9.3.2.6 Details of cable K33 .............................................................. 164
9.3.2.7 Details of cable K71 .............................................................. 169
9.3.2.8 Details of cable K79 .............................................................. 172

9.4 DETAILS OF CONNECTORS .......................................................... 173
9.4.1 20-Pin Half-Pitch Connectors .................................................. 173
9.4.2 Tyco Electronics AMP D-5000 Series Connector ..................... 174

10 HEAT DISSIPATION ....................................................................... 176

11 POWER CABLE FOR SERVO MOTOR AND AMPLIFIER .......... 179
11.1 SELECTING A POWER CABLE .................................................... 180
11.2 SAMPLE POWER CABLES SELECTED FOR SERVO MOTORS
(REFERENCE) ...................................................................................... 182
11.3 SAMPLE POWER CABLES SELECTED FOR SPINDLE MOTORS
(REFERENCE) ...................................................................................... 182

III. I/O Link

1 OVERVIEW ..................................................................................... 185

2 CONFIGURATION .......................................................................... 186
2.1 SVM1-4i AND SVM1-20i .......................................................... 187
2.2 SVM1-40i AND SVM1-80i ........................................................ 188

3 SPECIFICATIONS ........................................................................... 189
3.1 SPECIFICATIONS ....................................................................... 190
3.2 APPLICABLE MOTORS .............................................................. 191
3.3 SELECTING CIRCUIT BREAKER, MAGNETIC CONTACTOR, AND
AC LINE FILTER .................................................................................. 191
# TABLE OF CONTENTS

<table>
<thead>
<tr>
<th>Section</th>
<th>Title</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>3.3.1</td>
<td>Selecting Circuit Breaker</td>
<td>191</td>
</tr>
<tr>
<td>3.3.2</td>
<td>Selecting Magnetic Contactor</td>
<td>191</td>
</tr>
<tr>
<td>3.3.3</td>
<td>Selecting AC Line Filter</td>
<td>191</td>
</tr>
<tr>
<td>3.4</td>
<td>COOLING FAM MOTORS</td>
<td>192</td>
</tr>
<tr>
<td>3.4.1</td>
<td>Installing the Cooling Fan Motor in the SVM1-4i and SVM1-20i</td>
<td>192</td>
</tr>
<tr>
<td>3.4.2</td>
<td>SVM1-80i</td>
<td>192</td>
</tr>
<tr>
<td>3.5</td>
<td>DERATING</td>
<td>193</td>
</tr>
<tr>
<td>3.6</td>
<td>SEPARATED REGENERATIVE DISCHARGE RESISTOR</td>
<td>193</td>
</tr>
<tr>
<td>4</td>
<td>ORDERING INFORMATION</td>
<td>194</td>
</tr>
<tr>
<td>5</td>
<td>POWER SUPPLY</td>
<td>195</td>
</tr>
<tr>
<td>5.1</td>
<td>INPUT POWER SUPPLY</td>
<td>196</td>
</tr>
<tr>
<td>5.1.1</td>
<td>Three-phase Input Power Supply for Motor Power</td>
<td>196</td>
</tr>
<tr>
<td>5.1.2</td>
<td>Single-phase Input Power Supply for Motor Power</td>
<td>196</td>
</tr>
<tr>
<td>5.1.3</td>
<td>Control Power</td>
<td>196</td>
</tr>
<tr>
<td>5.2</td>
<td>POWER TRANSFORMER FOR EXPORTS</td>
<td>196</td>
</tr>
<tr>
<td>6</td>
<td>INSTALLATION CONDITIONS AND NOTES</td>
<td>197</td>
</tr>
<tr>
<td>7</td>
<td>GROUNDING</td>
<td>198</td>
</tr>
<tr>
<td>7.1</td>
<td>SVM1-4i AND SVM1-20i</td>
<td>199</td>
</tr>
<tr>
<td>7.2</td>
<td>SVM1-40i and SVM1-80i</td>
<td>200</td>
</tr>
<tr>
<td>8</td>
<td>EXTERNAL DIMENSIONS / PANEL CUT-OUT DRAWINGS / MAINTENANCE AREA</td>
<td>201</td>
</tr>
<tr>
<td>8.1</td>
<td>EXTERNAL DIMENSIONS</td>
<td>202</td>
</tr>
<tr>
<td>8.1.1</td>
<td>SVM1-4i and SVM1-20i</td>
<td>202</td>
</tr>
<tr>
<td>8.1.2</td>
<td>SVM1-40i and SVM1-80i</td>
<td>203</td>
</tr>
<tr>
<td>8.1.3</td>
<td>Fan Unit (A06B-6134-K002)</td>
<td>204</td>
</tr>
<tr>
<td>8.1.4</td>
<td>Separated Regenerative Discharge Resistor</td>
<td>204</td>
</tr>
<tr>
<td>8.1.5</td>
<td>AC Line Filter</td>
<td>204</td>
</tr>
<tr>
<td>8.1.6</td>
<td>Transformer for Exports</td>
<td>204</td>
</tr>
<tr>
<td>8.1.7</td>
<td>Battery Case (for Size D Alkaline Battery)</td>
<td>204</td>
</tr>
<tr>
<td>8.1.8</td>
<td>Lightning Surge Absorbers</td>
<td>204</td>
</tr>
<tr>
<td>8.2</td>
<td>PANEL CUT-OUT DRAWINGS</td>
<td>204</td>
</tr>
<tr>
<td>8.3</td>
<td>MAINTENANCE AREA</td>
<td>205</td>
</tr>
<tr>
<td>8.3.1</td>
<td>Maintenance Area for the SVM1-4i and SVM1-20i</td>
<td>205</td>
</tr>
<tr>
<td>8.3.2</td>
<td>Maintenance Area for the SVM1-40i</td>
<td>205</td>
</tr>
</tbody>
</table>
# TOTAL CONNECTION DIAGRAM

## 9.1 CONNECTION DIAGRAM

- SVM1-4i and SVM1-20i ................................................................. 207
- SVM1-40i and SVM1-80i ............................................................... 209
- SVM1-4i and SVM1-20i ................................................................. 211
- SVM1-40i and SVM1-80i ............................................................... 213

## 9.2 CONNECTOR LOCATION

- SVM1-4i and SVM1-20i ................................................................. 215
- SVM1-40i and SVM1-80i ............................................................... 216
- Connection Tools ........................................................................ 217
- Details of Cable K1 ...................................................................... 217
  - Servo motor αi, αis series, Servo motor βis series
    - (β0.4/5000is to β22/2000is) ............................................................... 217
  - Servo motor βis series (β0.2/5000is, β0.3/5000is) ................................. 218
- Details of Cable K2 ...................................................................... 219
- Details of Cable K3 ...................................................................... 219
- Details of Cables K4 and K5 ......................................................... 219
- Details of Cable K6 ...................................................................... 219
- Details of Cable K7 ...................................................................... 220
  - Connection of external magnetic contactor when βi SVM FSSB interface is used together ...................................................... 221
- Details of Cable K8 ...................................................................... 222
- Details of Cable K9 ...................................................................... 222
- Details of Cable K10 ................................................................. 222
- Details of Cable K11 ...................................................................... 222
- Details of Cable K20 (Connection of FANUC I/O Link) ................... 223
  - Overview .................................................................................. 223
  - Connection of FANUC I/O Link by electric cable ......................... 224
  - Connection of FANUC I/O Link by optical fiber cable ................... 225
- Details of Cable K21 (Internal DI Connection) .............................. 226
  - Signals ..................................................................................... 226
  - *+OT, *-OT, and *RILK(*DEC) .................................................. 227
  - Skip signal interface .................................................................. 228
- Connection to External Pulse Generator ..................................... 229
  - Connection when differential type A/B phase pulse generator is used ............................................................... 230
  - Connection when FANUC's manual pulse generator is used ..... 231
- Connection to Servo Check Board .............................................. 238
10 HEAT DISSIPATION ............................................................................................... 239

APPENDIX

A CONNECTING THE REACTOR AND LINE FILETER ....................................... 243
   A.1 OVERVIEW .................................................................................................... 244
   A.2 CONNECTION EXAMPLES ......................................................................... 245
I. SVM
The βi SVM FSSB interface has the following features:

1. Because a power supply is incorporated, a compact system can be built for 1- or 2-axis machining.
2. One-axis AC servo system with excellent cost performance
3. The FSSB interface, which is the standard interface of FANUC, is supported.
4. This unit has a small installation area and volume.
5. The unit is designed in compliance with the following safety standards:
   - EN50178
   - UL508C
   - CSA C22.2
   - EN61000-6-2
   - EN55011
6. This one-axis AC servo amplifier is suitable for the servo motor βi series, which is suitable for feed axes of machining tools and for applications of their peripheral equipment and industrial machines, and the servo motor αi series, which is suitable for feed axes.
2 CONFIGURATION
2.1 SVM1-4i AND SVM1-20i

- 5 -

CAUTION
1. A circuit breaker, magnetic contactor, and AC line filter are always required.
2. Use the stabilized 24VDC power supply for the amplifier. 24VDC power supply for the amplifier and 24VDC power supply for the motor brake cannot be shared.
3. The cabling of CX29 and CX30 of the second and subsequent amplifiers may be omitted. For details, see "TOTAL CONNECTION DIAGRAM".
CAUTION
1 A circuit breaker, magnetic contactor, and AC line filter are always required.
2 Use the stabilized 24VDC power supply for the amplifier. 24VDC power supply for the amplifier and 24VDC power supply for the motor brake cannot be shared.
3 The cabling of CX29 and CX30 of the second and subsequent amplifiers may be omitted. For details, see "TOTAL CONNECTION DIAGRAM".

40-A type, 80-A type

SVM1-40i AND SVM1-80i
3 SPECIFICATIONS
### 3.1 SPECIFICATIONS

<table>
<thead>
<tr>
<th>Item</th>
<th>SVM-4i</th>
<th>SVM-20i</th>
<th>SVM1-40i</th>
<th>SVM1-80i</th>
</tr>
</thead>
<tbody>
<tr>
<td>Interface</td>
<td>FSSB</td>
<td>FSSB</td>
<td>FSSB</td>
<td>FSSB</td>
</tr>
<tr>
<td>Unit drawing No.</td>
<td>A06B-6130-H001</td>
<td>A06B-6130-H002</td>
<td>A06B-6130-H003</td>
<td>A06B-6130-H004</td>
</tr>
<tr>
<td>Power PC board drawing No.</td>
<td>A20B-2101-0090</td>
<td>A20B-2101-0091</td>
<td>A16B-3200-0512</td>
<td>A16B-3200-0513</td>
</tr>
<tr>
<td>Control PC board drawing No.</td>
<td>A20B-2101-0050</td>
<td>A20B-2101-0051</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Main power supply 3-phase input</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Input voltage</td>
<td>200-240 VAC (+10%,-15%)</td>
<td>50 / 60 Hz</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Input current (50Hz)</td>
<td>0.5 Arms</td>
<td>8.0 Arms</td>
<td>14.0 Arms</td>
<td>19.0 Arms</td>
</tr>
<tr>
<td>Power supply rating</td>
<td>0.2 kVA</td>
<td>2.8 kVA</td>
<td>4.7 kVA</td>
<td>6.5 kVA</td>
</tr>
<tr>
<td>Main power supply Single-phase input</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Input voltage</td>
<td>220-240 VAC (+10%,-15%)</td>
<td>50/60 Hz</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Input current (50Hz)</td>
<td>1.1 Arms</td>
<td>8.0 Arms</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Power supply rating</td>
<td>0.3 kVA</td>
<td>1.9 kVA</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Control power supply</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Input voltage</td>
<td>24 VDC (+10%,-10%)</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Input current</td>
<td>0.9 Arms</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Rated output current</td>
<td>0.9 Arms</td>
<td>6.8 Arms</td>
<td>13 Arms</td>
<td>18.5 Arms</td>
</tr>
<tr>
<td>Servo HRV control</td>
<td>HRV2, HRV3</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Dynamic brake circuit</td>
<td>Included</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Output frequency range</td>
<td>0-334Hz</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Protection function</td>
<td></td>
<td></td>
<td>- High Current</td>
<td>IPM Abnormal</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>- High Voltage of DC Link</td>
<td>Low Voltage of DC Link</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>- Overheat of Discharge Resistor</td>
<td>Low Voltage of Control Power Supply</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>- FSSB Communication Error</td>
<td>Locked Fan Motor</td>
</tr>
<tr>
<td>Ambient temperature range</td>
<td>0°C to +55°C</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Weight</td>
<td>1.2kg</td>
<td>3.9kg</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

#### Remarks
- Separated regenerative resistor
  (30 Ω, 20W/100W)
- Built-in regenerative resistor
  (16 Ω, 50 W, no-wind condition)
- Separate AC line filter
  (16 Ω, 130 W, wind velocity of 2m/s)
- Separated regenerative resistor
  (16 Ω, 200 W to 1200W)
- Separate AC line filter
- Separate battery

### 3.2 APPLICABLE MOTORS

<table>
<thead>
<tr>
<th>Motor</th>
<th>SVM1-4i</th>
<th>SVM1-20i</th>
<th>SVM1-40i</th>
<th>SVM1-80i</th>
</tr>
</thead>
<tbody>
<tr>
<td>α/μ</td>
<td>0 0 0 0 0 0 0 0 0 0</td>
<td>0 0 0 0 0 0 0 0 0 0</td>
<td>0 0 0 0 0 0 0 0 0 0</td>
<td>0 0 0 0 0 0 0 0 0 0</td>
</tr>
<tr>
<td>β/μ</td>
<td>0 0 0 0 0 0 0 0 0 0</td>
<td>0 0 0 0 0 0 0 0 0 0</td>
<td>0 0 0 0 0 0 0 0 0 0</td>
<td>0 0 0 0 0 0 0 0 0 0</td>
</tr>
<tr>
<td>SVM1-4i</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>SVM1-20i</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>SVM1-40i</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>SVM1-80i</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>
3.3 SELECTING CIRCUIT BREAKER, MAGNETIC CONTACTOR, AND AC LINE FILTER

3.3.1 Selecting Circuit Breaker

Select a circuit breaker based on the continuous current ratings of the individual motors listed below. When connecting more than one amplifier, determine the rating of the circuit breaker based on the sum of the continuous current ratings of the motors. When the motor accelerates or decelerates rapidly, current about three times as high as the continuous current rating may flow for approximately three seconds. So, select a circuit breaker that does not trip under such current flow conditions.

⚠️ WARNING
Because of a possibility of cable burning, consider protection co-ordination of the cables between the circuit breaker output and the input of each amplifier and the selected circuit breaker.

<table>
<thead>
<tr>
<th>Servo motor</th>
<th>Continuous current rating with 3-phase input [Arms] (Reference)</th>
<th>Power supply rating with 3-phase input [kVA] (Reference)</th>
<th>Continuous current rating with single-phase input [Arms] (Reference)</th>
<th>Power supply rating with single-phase input [kVA] (Reference)</th>
</tr>
</thead>
<tbody>
<tr>
<td>β0.2/5000i/s</td>
<td>0.2</td>
<td>0.08</td>
<td>0.5</td>
<td>0.12</td>
</tr>
<tr>
<td>β0.3/5000i/s</td>
<td>0.5</td>
<td>0.15</td>
<td>1.1</td>
<td>0.25</td>
</tr>
<tr>
<td>β0.4/5000i/s</td>
<td>0.6</td>
<td>0.20</td>
<td>1.4</td>
<td>0.32</td>
</tr>
<tr>
<td>β0.5/5000i/s</td>
<td>0.9</td>
<td>0.31</td>
<td>2.2</td>
<td>0.49</td>
</tr>
<tr>
<td>β1/5000i/s</td>
<td>1.8</td>
<td>0.62</td>
<td>4.3</td>
<td>1.0</td>
</tr>
<tr>
<td>β2/4000i/s</td>
<td>2.2</td>
<td>0.77</td>
<td>5.4</td>
<td>1.2</td>
</tr>
<tr>
<td>β4/4000i/s</td>
<td>3.3</td>
<td>1.2</td>
<td>8.1</td>
<td>1.9</td>
</tr>
<tr>
<td>β8/3000i/s</td>
<td>5.4</td>
<td>1.9</td>
<td>9.7</td>
<td>2.2</td>
</tr>
<tr>
<td>β12/3000i/s</td>
<td>8.0</td>
<td>2.8</td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td>β22/2000i/s</td>
<td>11.1</td>
<td>3.9</td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td>α1/5000i/</td>
<td>2.2</td>
<td>0.77</td>
<td>5.4</td>
<td>1.2</td>
</tr>
<tr>
<td>α2/5000i/</td>
<td>3.3</td>
<td>1.2</td>
<td>8.1</td>
<td>1.9</td>
</tr>
<tr>
<td>α4/4000i/</td>
<td>6.2</td>
<td>2.2</td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td>α8/3000i/</td>
<td>7.1</td>
<td>2.5</td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td>α12/3000i/</td>
<td>13.4</td>
<td>4.6</td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td>α22/3000i/</td>
<td>17.8</td>
<td>6.2</td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td>α2/5000i/</td>
<td>3.3</td>
<td>1.2</td>
<td>8.1</td>
<td>1.9</td>
</tr>
<tr>
<td>α4/5000i/</td>
<td>4.5</td>
<td>1.5</td>
<td>9.7</td>
<td>2.2</td>
</tr>
<tr>
<td>α8/4000i/</td>
<td>11.1</td>
<td>3.9</td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td>α12/4000i/</td>
<td>12.0</td>
<td>4.2</td>
<td>-</td>
<td>-</td>
</tr>
</tbody>
</table>
### 3.3.2 Selecting Magnetic Contactor

Select a magnetic contactor according to the table, "Input current for continuous output rating". When connecting more than one amplifier, make a selection based on the sum of the continuous current ratings of the motors.

<table>
<thead>
<tr>
<th>Manufacturer's specification (Fuji Electric)</th>
<th>Rated current</th>
</tr>
</thead>
<tbody>
<tr>
<td>SC-5-1</td>
<td>19A</td>
</tr>
<tr>
<td>SC-N1</td>
<td>26A</td>
</tr>
</tbody>
</table>

⚠️ **WARNING**

For details, refer to the brochure supplied by Fuji Electric Co., Ltd.

### 3.3.3 AC Line Filter

Select an AC line filter according to the table, "Input current for continuous output rating". When connecting more than one amplifier, make a selection based on the sum of the continuous current ratings of the motors.

To reduce the influence of high frequency noise on the power supply, be sure to use an AC line filter or EMC noise filter. The LF series manufactured by TOKIN is available as the EMC noise filter.

<table>
<thead>
<tr>
<th>AC line filter</th>
<th>Continuous current rating</th>
<th>Continuous output rating</th>
<th>Heat dissipation</th>
</tr>
</thead>
<tbody>
<tr>
<td>A81L-0001-0083#3C</td>
<td>24A</td>
<td>5.4kW or less</td>
<td>20W</td>
</tr>
<tr>
<td>A81L-0001-0101#C</td>
<td>44A</td>
<td>10.5kW or less</td>
<td>70W</td>
</tr>
<tr>
<td>A81L-0001-0102</td>
<td>100A</td>
<td>23kW or more</td>
<td>50W</td>
</tr>
</tbody>
</table>

⚠️ **WARNING**

The AC line filter is different from the AC reactor. Neither substitution between them nor use of one of them for both purposes is allowed.
3.4 COOLING FAM MOTORS

3.4.1 Models Requiring Cooling Fan motors

The combinations listed below require cooling fan motors.

<table>
<thead>
<tr>
<th>Ordering number</th>
<th>Amplifier</th>
<th>Combined motor</th>
</tr>
</thead>
<tbody>
<tr>
<td>A06B-6134-K002</td>
<td>SVM1-80i</td>
<td>General 80-A class motors</td>
</tr>
<tr>
<td></td>
<td>SVM1-20i</td>
<td>α4/5000is&lt;br&gt;β8/3000is</td>
</tr>
<tr>
<td></td>
<td>Running on 3-phase&lt;br&gt;200-240 VAC power</td>
<td></td>
</tr>
<tr>
<td>A06B-6134-K003</td>
<td>SVM1-20i</td>
<td>α2/5000is&lt;br&gt;α2/5000is&lt;br&gt;α4/5000is&lt;br&gt;β4/4000is&lt;br&gt;β8/3000is</td>
</tr>
<tr>
<td></td>
<td>Running on 1-phase&lt;br&gt;220-240 VAC power</td>
<td></td>
</tr>
</tbody>
</table>

3.4.2 Installing a Separate Cooling Fan motor

When using one of the above combinations that require a cooling fan motor, install an optionally available fan motor in the order (1), (2), and (3) as illustrated below.
3.5 DERATING

Consider derating as shown below, according to ambient temperatures.

SVM1-20i
Output derating for single-phase input

SVM1-40i
Output derating for 3-phase input

SVM1-80i
Output derating for 3-phase input
3.6 SEPARATED REGENERATIVE DISCHARGE RESISTOR

3.6.1 When No Separated Regenerative Discharge Resistor Is Needed

No separated regenerative discharge resistor is needed if the energy regenerated per regeneration cycle is not higher than the amount [J] of energy listed below.

Note in mind that an incorrect connection can damage the amplifier.

<table>
<thead>
<tr>
<th>Amplifier model</th>
<th>Permissible regenerative energy amount</th>
</tr>
</thead>
<tbody>
<tr>
<td>SVM-4i</td>
<td>16 [J]</td>
</tr>
<tr>
<td>SVM-20i</td>
<td>16 [J]</td>
</tr>
</tbody>
</table>

How to calculate the amount of energy regenerated per regeneration cycle
- For horizontal movement

(a) SI unit system

\[ P = (5.48 \times 10^{-3} \cdot (Jm + JL) \cdot Vm^2 - 5.23 \times 10^{-2} \cdot \tau a \cdot Vm \cdot TL) [J] \]  

\[ Jm: \text{ Rotor inertia of the motor [kg}\cdot\text{m}^2] \]
\[ JL: \text{ Motor-shaft-converted inertia of the load [kg}\cdot\text{m}^2] \]
\[ Vm: \text{ Motor speed at rapid traverse [min}^{-1}] \]
\[ \tau a: \text{ Rapid traverse acceleration/deceleration time [sec]} \]
\[ TL: \text{ Machine frictional torque (motor-converted value) [N}\cdot\text{m}] \]

(b) CGS unit system

\[ P = (5.37 \times 10^{-4} \cdot (Jm + JL) \cdot Vm^2 - 5.13 \times 10^{-3} \cdot \tau a \cdot Vm \cdot TL) [J] \]  

\[ Jm: \text{ Rotor inertia of the motor [kgf}\cdot\text{cm}\cdot\text{sec}^2] \]
\[ JL: \text{ Motor-shaft-converted inertia of the load [kgf}\cdot\text{cm}\cdot\text{sec}^2] \]
\[ Vm: \text{ Motor speed at rapid traverse [min}^{-1}] \]
\[ \tau a: \text{ Rapid traverse acceleration/deceleration time [sec]} \]
\[ TL: \text{ Machine frictional torque (motor-converted value) [kg}\cdot\text{cm}] \]
- For vertical movement

(a) SI unit system

\[ Q = 1.047 \times 10^{-1} \cdot Th \cdot Vm \cdot ta \ [J] \]  
(Expression 2)

- \( Th \): Upward torque that the motor applies at the time of downward rapid traverse [N\( \cdot \)m]
- \( Vm \): Motor speed at rapid traverse [min\(^{-1}\)]
- \( ta \): Rapid traverse acceleration/deceleration time [sec]

(b) CGS unit system

\[ Q = 1.026 \times 10^{-2} \cdot Th \cdot Vm \cdot ta \ [J] \]  
(Expression 2)

- \( Th \): Upward torque that the motor applies at the time of downward rapid traverse [kg\( \cdot \)cm]
- \( Vm \): Motor speed at rapid traverse [min\(^{-1}\)]
- \( ta \): Rapid traverse acceleration/deceleration time [sec]

If the motor load moves up and down, the sum of expressions 1 and 2 gives the amount of energy regenerated per regeneration cycle.

\[ R = P + Q \ [J] \]  
(Expression 3)
3.6.2 When a Separated Regenerative Discharge Resistor Is Needed

If the amount of energy regenerated per regeneration cycle exceeds the maximum amount of energy that a servo amplifier can handle, a DC link overvoltage alarm occurs. In this case, a separated regenerative discharge resistor is needed.

**Note in mind that an incorrect connection can damage the amplifier.**

### Selecting a regenerative discharge resistor

First obtain how much regenerative energy occurs.

**- For horizontal movement**

Servo motor (for horizontal movement)

Amount of regenerative discharge (power [W]) when rapid traverse acceleration/deceleration is performed once every \( F \) sec

(a) SI unit system

\[
W_1 = \frac{1}{F} \cdot (5.48 \times 10^{-3} \cdot (J_m + J_L) \cdot V_m^2 - 5.23 \times 10^{-2} \cdot ta \cdot V_m \cdot TL) \text{ [W]} \quad \text{(Expression 4)}
\]

\( F \): Frequency of rapid traverse acceleration/deceleration [sec/number of times]

Unless otherwise specified, rapid traverse acceleration/deceleration is assumed to be performed about once every 5 seconds.

\( J_m \): Rotor inertia of the motor [kg \cdot m^2]

\( J_L \): Motor-shaft-converted inertia of the load [kg \cdot m^2]

\( V_m \): Motor speed at rapid traverse [min^{-1}]

\( ta \): Rapid traverse acceleration/deceleration time [sec]

\( TL \): Machine frictional torque (motor-converted value) [N \cdot m]

(b) CGS unit system

\[
W_1 = \frac{1}{F} \cdot (5.37 \times 10^{-4} \cdot (J_m + J_L) \cdot V_m^2 - 5.13 \times 10^{-3} \cdot ta \cdot V_m \cdot TL) \text{ [W]} \quad \text{(Expression 4)}
\]

\( F \): Frequency of rapid traverse acceleration/deceleration [sec/number of times]

Unless otherwise specified, rapid traverse acceleration/deceleration is assumed to be performed about once every 5 seconds.

\( J_m \): Rotor inertia of the motor [kgf \cdot cm \cdot sec^2]

\( J_L \): Motor-shaft-converted inertia of the load [kgf \cdot cm \cdot sec^2]

\( V_m \): Motor speed at rapid traverse [min^{-1}]

\( ta \): Rapid traverse acceleration/deceleration time [sec]

\( TL \): Machine frictional torque (motor-converted value) [kgf \cdot cm]

From Table 3.6.2, select a separated regenerative discharge unit having a greater regenerative discharge capacity than the value obtained from (Expression 4).
- For vertical movement

The amount of regenerative discharge (power [W]) when the operation duty for downward rapid traverse is D(%) is given by the following equations:

(a) SI unit system

\[ w_2 = 1.047 \times 10^{-1} \cdot Th \cdot Vm \times \frac{D}{100} [W] \]  

(Expression 5)

Here, \( Th \) is the upward torque that the motor applies at the time of downward rapid traverse [N\cdot m], \( Vm \) is the motor speed at rapid traverse [min\(^{-1}\)], and \( D \) is the operation duty [%] for downward rapid traverse.

D is set to 50% maximum. Usually, D is less than 50%.

(b) CGS unit system

\[ w_2 = 1.026 \times 10^{-2} \cdot Th \cdot Vm \times \frac{D}{100} [W] \]  

(Expression 5)

Here, \( Th \) is the upward torque that the motor applies at the time of downward rapid traverse [kg\cdot cm], \( Vm \) is the motor speed at rapid traverse [min\(^{-1}\)], and \( D \) is the operation duty [%] for downward rapid traverse.

D is set to 50% maximum. Usually, D is less than 50%.

If the motor load moves up and down, the sum of expressions 4 and 5 gives the amount of energy regenerated per regeneration cycle.

\[ w = w_1 + w_2 [W] \]  

(Expression 6)

From Table 3.6.2, select a separated regenerative discharge resistor whose regenerative discharge capacity is larger than the regenerative energy obtained in expression 6.

<table>
<thead>
<tr>
<th>Separated regenerative discharge resistor</th>
<th>Regenerative discharge capacity</th>
<th>Condition</th>
</tr>
</thead>
<tbody>
<tr>
<td>A06B-6130-H401 (30 Ω)</td>
<td>20 W</td>
<td>Wind speed of 0 m/s</td>
</tr>
<tr>
<td>(Caution)</td>
<td></td>
<td></td>
</tr>
<tr>
<td>A06B-6130-H402 (30 Ω)</td>
<td>100 W</td>
<td></td>
</tr>
</tbody>
</table>

⚠️ **CAUTION**

Do not use a regenerative resistor cable longer than 1 m. Otherwise, it is likely that the regenerative circuit in the amplifier may malfunction or the amplifier may be damaged.

**NOTE**

If the permissible value of a separated regenerative discharge resistor is exceeded during use, the unit overheats, resulting in the built-in thermostat operating to issue an overheat alarm.
3.6.3 When Amplifier Models SVM-40i and SVM-80i Are Used

If the amount of regenerative discharge from a servo motor exceeds the regenerative discharge capacity of the regenerative discharge resistor incorporated in the corresponding servo amplifier, a separated regenerative discharge resistor is needed.

If the motor regenerative discharge amount \( R \) obtained in Subsection 3.6.2 exceeds the corresponding value listed in Table 3.6.3 (a), “Regenerative discharge capacity of the regenerative discharge resistor incorporated in servo amplifiers,” use a separated regenerative discharge resistor.

Table 3.6.3 (a) Regenerative discharge capacity of the regenerative discharge resistor incorporated in servo amplifiers

<table>
<thead>
<tr>
<th>Servo amplifier</th>
<th>Capacity</th>
</tr>
</thead>
<tbody>
<tr>
<td>A06B-6130-H003</td>
<td>50 W</td>
</tr>
<tr>
<td>A06B-6130-H004</td>
<td>130 W</td>
</tr>
</tbody>
</table>

The following table lists the separated regenerative discharge resistors that are available. Select a separated regenerative discharge resistor whose discharge capacity satisfies your requirement.

Table 3.6.3(b) Regenerative discharge capacity of regenerative discharge resistors installed separately from servo amplifiers

<table>
<thead>
<tr>
<th>Separated regenerative discharge resistor</th>
<th>Wind speed of 0 m/s</th>
<th>Wind speed of 2 m/s</th>
<th>Wind speed of 4 m/s</th>
</tr>
</thead>
<tbody>
<tr>
<td>A06B-6089-H500</td>
<td>( R = 200 ) W</td>
<td>( R = 400 ) W</td>
<td>( R = 600 ) W</td>
</tr>
<tr>
<td>A06B-6089-H713</td>
<td>Incorporates a cooling fan motor.</td>
<td>( R = 800 ) W</td>
<td></td>
</tr>
<tr>
<td>A06B-6089-H714</td>
<td>Incorporates a cooling fan motor.</td>
<td>( R = 1200 ) W</td>
<td></td>
</tr>
</tbody>
</table>
Set-up switch (for changing the DC alarm level)

Switch setting (for the SVM1-40i and SVM1-80i)
The SVM1-40i and SVM1-80i each have four switches on their front panel for protecting regenerative resistors. Be sure to set these switches to the positions that match the resistors used.

⚠️ CAUTION
An incorrect switch setting may damage the regenerative resistor.

These switches are numbered 1 to 4. The one on top is No. 1, the one below it is No. 2, and so on. When the lever of a switch is at the left, the switch is on. When it is at the right, the switch is off.

(1) Setting of switches 3 and 4
The setting of switches 3 and 4 varies depending on what regenerative discharge resistor is used.
⇒ If a switch is incorrectly set up, it is impossible to detect a regenerative overheat alarm normally.

<table>
<thead>
<tr>
<th>Switch 3</th>
<th>Switch 4</th>
<th>Regenerative discharge resistor</th>
</tr>
</thead>
<tbody>
<tr>
<td>ON</td>
<td>ON</td>
<td>Incorporated in the amplifier</td>
</tr>
<tr>
<td>OFF</td>
<td>ON</td>
<td>Separate unit A06B-6089-H500</td>
</tr>
<tr>
<td>OFF</td>
<td>OFF</td>
<td>Separate unit A06B-6089-H713, A06B-6089-H714</td>
</tr>
</tbody>
</table>

(2) Setting of switches 1 and 2
Neither switch 1 nor 2 is used. Leave them off.
Cautions for selecting a regenerative discharge resistor

⚠️ WARNING
1. Regenerative discharge resistors may become very hot (100 to 200 °C). Be careful not to touch them.
2. Before touching a regenerative discharge resistor, for example, for maintenance purposes, turn off all power to the amplifier, wait for at least 30 minutes, and make sure that the DC link charge indicator LED (CAUTION CHARGE) is off and the regenerative resistor is sufficiently cold.
3. When mounting a regenerative resistor, keep it sufficiently far from any flammable.

(1) Related ordering numbers

<table>
<thead>
<tr>
<th>Ordering number of regenerative discharge resistor</th>
<th>Resistance</th>
<th>Capacity</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>0 m/s</td>
<td>2 m/s</td>
</tr>
<tr>
<td>A06B-6130-H401</td>
<td>30 Ω</td>
<td>20 W</td>
</tr>
<tr>
<td>A06B-6130-H402</td>
<td>30 Ω</td>
<td>100 W</td>
</tr>
<tr>
<td>A06B-6089-H500</td>
<td>16 Ω</td>
<td>200 W</td>
</tr>
<tr>
<td>A06B-6089-H713</td>
<td>16 Ω</td>
<td>Incorporates a cooling fan motor. 800 W</td>
</tr>
<tr>
<td>A06B-6089-H714</td>
<td>16 Ω</td>
<td>Incorporates a cooling fan motor. 1200 W</td>
</tr>
</tbody>
</table>

Remarks
- For 4/20 A
- For 4/20 A
- For 4/20 A

(2) Mounting requirements

(a) Cautions in mounting
- A06B-6130-H401
- A06B-6130-H402
- A06B-6089-H500
- A06B-6089-H713
- A06B-6089-H714
- Install these models in a completely sealed cabinet.
- Place the pin side and resistor side (heat generating section) of these models, respectively, in a completely sealed cabinet and an exhaust air duct.
- Use accompanying gaskets.
- Make arrangements so that the pin side and resistor side (heat generating section) can be kept from coolant, oil mist, and cuttings.
- When taking in fresh air to the resistor (heat generating section), use an air filter at the air inlet. Also seal the cable inlets, cable outlets and doors securely.

(b) Ambient temperature
- 0 to 55 °C (at operation)
- -20 to 60 °C (at keeping and transportation)
(c) Humidity
- Normally 90 % RH or below, and condensation-free
(d) Vibration
- In operation: Below 0.5 G
(e) Mounting direction:
- Mount the unit securely while referring to the mounting diagram given below.
WARNING
1. Regenerative discharge resistors may become very hot (100 to 200 °C). Be careful not to touch them.
2. Before touching a regenerative discharge resistor, for example, for maintenance purposes, turn off all power to the amplifier, wait for at least 30 minutes, and make sure that the DC link charge indicator LED (CAUTION CHARGE) is off and the regenerative resistor is sufficiently cold.
3. When mounting a regenerative resistor, keep it sufficiently far from any flammable.
4. The minimum clearance between the regenerative resistor and the wall should be 10 mm.
**WARNING**

1. Regenerative discharge resistors may become very hot (100 to 200 °C). Be careful not to touch them.
2. Before touching a regenerative discharge resistor, for example, maintenance purposes, turn off all power to the amplifier, wait for at least 30 minutes, and make sure that the DC link charge indicator LED (CAUTION CHARGE) is off and the regenerative discharge resistor has been cooled down enough.
3. When mounting a regenerative resistor, keep it sufficiently far from any flammable.
4. The minimum clearance between the regenerative resistor and the wall should be 10 mm.
Refer to the order list (B-65321EN).
5

POWER SUPPLY
5.1 INPUT POWER SUPPLY

5.1.1 Three-phase Input Power Supply for Motor Power

- Nominal rated voltage: 200 to 240 VAC
- Allowable voltage fluctuation: -15% to +10%
- Frequency: 50/60 Hz
- Allowable frequency fluctuation: ±2 Hz
- Power supply impedance: Voltage fluctuation caused by load (at maximum output) not to exceed 7%
- Power supply unbalance: Within ±5% of the rated voltage

**NOTE**
The allowable voltage fluctuation is a change observed for several minutes. It is not a continuous change.

5.1.2 Single-phase Input Power Supply for Motor Power

In European countries, power sources are 380 to 415 VAC and neutral-grounded. To use the βi series amplifiers in these European countries, it is necessary to install a power transformer at the input or supply single-phase power.
To use the motors with single-phase power, observe the following:
Only the SVM1-20i and lower models can support single-phase input.
The other models use the three-phase input power supply specifications only.

(1) Power supply specification
- Nominal voltage rating: 220 to 240 VAC
- Allowable voltage fluctuation: -15% to +10%
- Frequency: 50/60 Hz
- Allowable frequency fluctuation: ±2 Hz
- Voltage fluctuation at acceleration/deceleration: 7% or less

**NOTE**
The allowable voltage fluctuation is a change observed for several minutes. It is not a continuous change.

5.1.3 Single-phase Input for Control Power

Be sure to use a stabilized power supply as the 24-V power supply for amplifiers. The 24-V power supply for motor brakes cannot be shared.
- Nominal rated voltage: 24VDC
- Allowable voltage fluctuation: ±10% (including momentary variations)
- Power supply ratings
4. POWER SUPPLY

- External 24-VDC power supply specifications

Recommended external 24-VDC power supply (stabilized power supply) specifications (UL1950 must be satisfied.)

**Output voltage**
+24V ±10% (21.6V to 26.4V)
(Including ripple voltage and noise. See the figure below.)

**Output current**
The continuous load current must be at least the current consumption of the CNC and other units.
(at a highest temperature in the power magnetics cabinet where the power supply is installed)

**Load variation (including surge current)**
The above output voltage range must not be exceeded by load variation.

**AC input hold time at momentary disconnection**
10mS (for -100%)
20mS (for -50%)

**Permissible time of momentary 24-VDC disconnection**
0.5mS (less than 21.6 V)
A brief change in load Momentary disconnection (-100%) 10mS
Momentary disconnection (-50%) 20mS

AC input voltage
26.4V
Output voltage
21.6V
Output current
0A

Figure Example of ripple voltage and noise due to switching power supply
26.4V
21.6V

To be within range

Ripple voltage
Noise

Timing chart
- Circuit configuration

The circuit configuration shown in <1> and <2> below are not permitted.

**Prohibited**

<1> Circuit examples in which the output voltage cannot be held at the time of momentary disconnection (the voltage level lowers below 21.6 V)

![Diagram](image1.png)

**NOTE**
A rectifier circuit performs full-wave rectification by using diodes.

<2> Circuit examples in which the output voltage specification (21.6 V to 26.4 V) is exceeded by abrupt change in load

![Diagram](image2.png)

In case of <2>, prepare an additional stabilized power supply dedicated to a unit whose load changes abruptly, so that the $\beta_i$ SVM and $\beta_i$ SVPM are not affected.
5.2 POWER TRANSFORMER FOR EXPORTS

Use power transformer for an export when this servo amplifier unit is used at a site where the line voltage is other than 200 to 240 VAC.

5.2.1 Specification

<table>
<thead>
<tr>
<th>Ordering drawing number</th>
<th>A80L-0022-0005</th>
<th>A80L-0024-0006</th>
<th>A80L-0026-0003</th>
<th>A80L-0028-0001</th>
</tr>
</thead>
<tbody>
<tr>
<td>FANUC drawing number</td>
<td>A80L-0022-0005</td>
<td>A80L-0024-0006</td>
<td>A80L-0026-0003</td>
<td>A80L-0028-0001</td>
</tr>
<tr>
<td>Rated capacity</td>
<td>2.2kVA</td>
<td>3.5kVA</td>
<td>5kVA</td>
<td>7.5kVA</td>
</tr>
<tr>
<td>Rated primary voltage</td>
<td>200/220/230/240VAC (Δ connection)</td>
<td>380/415/460/480/550VAC (Y connection)</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>±15%, 50/60Hz±2Hz; 3φ</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Rated secondary voltage</td>
<td>210VAC</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Rated secondary current</td>
<td>6.1A</td>
<td>9.6A</td>
<td>13.7A</td>
<td>20.6A</td>
</tr>
<tr>
<td>Voltage regulation at the secondary</td>
<td>2%</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Voltage deviation at the secondary</td>
<td>±3%</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Connection</td>
<td>Δ-Δ connection or Y-Δ connection</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Insulation</td>
<td>Class B (maximum allowable temperature : 130°C)</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Ambient temperature</td>
<td>-20 to 55°C</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Allowable temperature rise</td>
<td>135deg</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Relative humidity</td>
<td>Max. 95%RH</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Type</td>
<td>Dry type, natural air cooling type</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Dielectric withstand voltage</td>
<td>2300VAC, for 1 minute</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Weight</td>
<td>Max. 21kg</td>
<td>Max. 27kg</td>
<td>Max. 36kg</td>
<td>Max. 42kg</td>
</tr>
<tr>
<td>Outline drawing</td>
<td>Fig. 8.1.3</td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Connection diagram
5.2.2 How to Select a Transformer

Select a transformer according to the load condition and the model of the motor for which the transformer is used. Each transformer has secondary winding taps for three amplifiers so that it can be connected to two or three amplifiers. When connecting more than one amplifier, make a selection based on the sum of the continuous current ratings of the individual motors.
6 | INSTALLATION CONDITIONS AND NOTES
6.1 ENVIRONMENTAL CONDITIONS

Install a βi setting servo amplifier in a completely closed cabinet so that the environment conditions indicated below can be satisfied.

(1) Ambient Temperature
   Ambient temperature
   0 to 55°C (operating)
   -20 to 60°C (storage and transportation)
   Ambient temperature of the accommodation cabinet 0 to 45°C

(2) Humidity
   Usually, 95% RH or lower (no condensation)

(3) Vibration
   No more than 0.5G during operation

(4) Atmosphere
   Ensure that the electronic circuits are not exposed to corrosive and conductive mist and waterdrops. (Note)

(5) Notes on installation
   When installing an amplifier, consider the following:
   (a) Ensure that the heat sink is not exposed to coolant, oil mist, cuttings, and so forth. Otherwise, the cooling efficiency can degrade, resulting in a failure to satisfy the characteristics of the amplifier. Moreover, the life of semiconductors can be adversely affected.
      To introduce the open air for the heat sink, use an air filter at the inlet.
      Ensure that the cable inlet and outlet, door, and so forth are sealed.

   (b) Ensure that dust, coolant, and so forth do not penetrate through the exhaust vent. Moreover, ensure that the flow of cooling wind is not interrupted.

   (c) Ensure that the servo amplifier β series can be inspected, removed, and reinstalled easily in maintenance.

NOTE

The electronic circuits must be installed in an environment of contamination level 2 defined in IEC60664-1.

In order to satisfy contamination level 2 in a severe environment for using machine tools, the servo amplifier β series must be installed in a cabinet that satisfy IP54.

If the cabinet does not have a structure for preventing materials that adversely affect amplifiers from getting into the cabinet, normal operation and safety may fail. So, special care should be taken.
6.2 SELECTING A GROUND-FAULT CIRCUIT INTERRUPTER

Because the servo amplifier βi series uses the PWM inverter system by transistors to drive a motor, high frequency leakage current flows via the motor winding, power cable, and amplifier floating capacity to ground. This may cause the ground-fault circuit interrupter or ground-fault protective relay installed on the power supply side to malfunction.

Therefore, when using a circuit breaker with a ground-fault circuit interrupter, select an appropriate one having an inoperative current value not smaller than the sum of the calculation results (a) and (b) to prevent malfunctioning due to leakage current.

(a) Selection criterion per amplifier
   Selection criterion:  2 mA per amplifier(*1)

(b) Selection criterion per motor
   Selection criterion:  1 mA per motor(*1)

The following example shows how to use selection criteria <1> and <2>:

Example:
When the system contains four βi SVM1 units
\[ 2 \text{ mA} \times 4 \text{ units (amplifiers)} + 1 \text{ mA} \times 4 \text{ (motors)} = 12 \text{ mA} \]
→ Select a circuit breaker with an inoperative current of 12 mA or more(*2).
   (A general ground-fault circuit interrupt applicable to this example has a rated sensitivity current of 30 mA, and an inoperative current of 15 mA.)

NOTE
1 The above selection criteria are provided in order to select a circuit breaker with a ground-fault circuit interrupter, and do not express accurate leakage current values.
2 Depending on the frequency characteristic of the ground-fault circuit interrupter, the circuit breaker may malfunction. So, use a ground-fault circuit interrupter usable for inverter circuits.
3 The above selection criteria are values in the commercial frequency band. Some instruments measuring leakage current may detect a high frequency band and read larger values.

WARNING
Install a ground-fault circuit breaker.
To prevent fire and electric shock to a person, be sure to install a ground-fault circuit breaker (for inverter circuits).
6.3 NOISE PROTECTION

6.3.1 Separation of Signal Lines

If a power cable and signal cable run close to each other, noise can be induced. So, ensure that a power cable is separated from a signal cable. When a power cable and signal line cannot be separated from each other for a reason, minimize the distance by which the two cables run in parallel. When conduits are used, run a power cable through one conduit, and run a signal cable through another conduit.

<table>
<thead>
<tr>
<th>Group</th>
<th>Signal</th>
<th>Action</th>
</tr>
</thead>
<tbody>
<tr>
<td>A</td>
<td>Amplifier input power line</td>
<td>Separate these cables from those of group B by bundling them separately (Note 1) or by means of electromagnetic shielding (Note 2).</td>
</tr>
<tr>
<td></td>
<td>Motor power line</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Magnetic contactor drive coil (Note 3)</td>
<td></td>
</tr>
<tr>
<td>B</td>
<td>Cable connecting the control unit and servo amplifier</td>
<td>Separate these cables from those of group A by bundling them separately (Note 1) or by means of electromagnetic shielding (Note 2). In addition, shielding must be provided.</td>
</tr>
<tr>
<td></td>
<td>Sensor cable</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Position coder cable</td>
<td></td>
</tr>
</tbody>
</table>

**NOTE**
1. The bundle of group A cables must be separated from the bundle of group B cables by at least 10 cm.
2. Electromagnetic shielding involves shielding groups from each other by means of a grounded metal (steel) plate.
3. Attach a noise suppressor such as a spark killer to the magnetic contactor drive coil.

---

**Diagram**

The diagram shows the separation of signal lines and the use of shielding plates and conduits to minimize noise induction. The cable types and actions are indicated in the table above.

---

- 33 -
6.3.2 **Grounding**

A CNC machine tool has three separate ground systems:

1. **Signal ground (SG) system**
   The signal ground (SG) system provides the reference potential (0V) for the electrical signal system.

2. **Frame ground (FG) system**
   The frame ground (FG) system is provided to ensure safety and to shield external and internal noise. For example, the equipment frames, unit cases, panels, and interface cables connecting devices are all shielded.

3. **System ground system**
   The system ground system is designed to connect each unit and the inter-unit frame ground system to ground.

**WARNING**

[Warning on ground system wiring]

1. The ground resistance of the system ground must not exceed 100 Ω (class-3 ground).
2. System ground connection cables must have a sufficiently large cross-sectional area to enable them to safely carry the current that will arise in the event of a mishap such as a short-circuit. (In general, a cross-sectional area no less than that of the AC power line must be provided.)
3. The system ground connection cable shall be integrated with the AC power line, such that power cannot be supplied if the ground wire is disconnected.
6.3.3 Noise Suppressor

The AC/DC solenoid and relay are used in the power magnetics cabinet.
A high pulse voltage is caused by coil inductance when these devices are turned on or off.
This pulse voltage induced through the cable causes the electronic circuits to be disturbed. In general, to reduce this pulse voltage, a spark killer is used in AC circuits, while a diode is used in DC circuits.

Spark killer

- Use a spark killer consisting of a resistor and capacitor in series. This type of spark killer is called a CR spark killer. (Use it under AC)
  (A varistor is useful in clamping the peak voltage of the pulse voltage, but cannot suppress the sudden rise of the pulse voltage. FANUC therefore recommends a CR spark killer.)

- The reference capacitance and resistance of the spark killer shall conform to the following based on the current (I(A)) and DC resistance of the stationary coil:
  
  Resistance (R) : Equivalent DC resistance of the coil
  Capacitance (C) : $I^2/10$ to $I^2/20$ ($\mu$F)
  $I$ : Current at stationary state of the coil (A)

  

  ![Equivalent circuit of the spark killer](image)

  ![Mount the noise eliminator near a motor or a relay coil.](image)

  **CAUTION**
  Use a CR-type noise eliminator. Varistor-type noise eliminators clamp the peak pulse voltage but cannot suppress a sharp rising edge.

Diode

Diode (used for direct-current circuits)

  ![Use a diode which can withstand a voltage up to two times the applied voltage and a current up to two times the applied current.](image)
6.3.4 Cable Clamp and Shield Processing

- Shield terminal processing
  Process the terminal of the shield cover of a signal line according to Chapter 10, "DETAILS OF CABLE CONNECTION".

- Shield clamping
  The amplifier cables that require shielding should be clamped by the method shown below. This cable clamp treatment is for both cable support and proper grounding of the shield. To insure stable CNC system operation, follow this cable clamp method. Partially peel out the sheath and expose the shield. Push and clamp by the plate metal fittings for clamp at the part.

- Installation of a ground plate
  The user is to prepare a ground plate and install it according to Fig. 6.3.4(b) to (e).

![Cable clamp diagram](image)

Fig. 6.3.4(a) Cable clamp (1)
Prepare ground plate like the following figure.
For the ground plate, use a metal plate of 2 mm or thicker, which surface is plated with nickel.

(Reference) Outer drawings of metal fittings for clamp.

Ordering specification for metal fittings for clamp
A02B-0214-K001 (2 pieces)
6.4 INSTALLING LIGHTNING SURGE ABSORBERS

At the power input of the power magnetics cabinet, install a surge absorber between the power lines and between each power line and a ground to protect the unit from a voltage surge caused by lightning. How to install the surge absorber is shown below.

(1) Surge absorber for three-phase input
When using an integrated lightning surge absorber between the power lines and between each power line and a ground

![Diagram of integrated lightning surge absorber]

When using separate lightning surge absorbers between the power lines and between each power line and a ground

![Diagram of separate lightning surge absorbers]
(2) Surge absorber for single-phase input

When using an integrated lightning surge absorber between the power lines and between each power line and a ground:

- Circuit breaker 1
- Magnetic contactor
- AC line filter
- Circuit breaker 2
- Ground-fault circuit interrupter for power magnetics cabinet
- Lightning surge absorber between power lines and between each line and ground (R.C.M-601BUZ-4)
- Stabilized power supply (24 VDC)
- To other units
- Control power input

Main circuit power input

When using separate lightning surge absorbers between the power lines and between each power line and a ground:

- Circuit breaker 2
- Ground-fault circuit interrupter for power magnetics cabinet
- Lightning surge absorber between power lines (R.A.V-781BYZ-2)
- Stabilized power supply (24 VDC)
- To other units
- Control power input

Main circuit power input
(3) Surge absorber for three-phase input

**WARNING**

1. Make the wires shown with thick line in the above diagram as short as possible in order to increase the effect of the lightning surge absorber.

   Wire Cross section: At least 2mm²

   Length: Keep the total wire length (a+b) to within 2m, where a = length of wire used to connect lightning surge absorber (1) b = length of wire used to connect lightning surge absorber (2)

2. When performing a dielectric strength test by applying an overvoltage (such as 1000 or 1500 VAC) to a power line, remove lightning surge absorber (2) so that it will not operate.

3. The circuit protector (5A) is intended to protect the lines if a lightning surge absorber is damaged due to a surge that is higher than the maximum allowable voltage of the surge absorber.

4. Usually, no current flows through the lightning surge absorbers. So the circuit protector (5A) may be used also for other sections (such as power supply module control power and spindle motor fan power).

The following table lists commercially available lightning surge absorbers.

### Table 6.4(a) Lightning surge absorbers (not complying with the relevant standards)

<table>
<thead>
<tr>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>&lt;1&gt; R·A·V-781BYZ-2</td>
<td>783</td>
<td>1000</td>
<td>12000</td>
<td>300</td>
<td></td>
</tr>
<tr>
<td>&lt;2&gt; R·A·V-781BXZ-2A</td>
<td>783</td>
<td>1000</td>
<td>12000</td>
<td>300</td>
<td></td>
</tr>
</tbody>
</table>

### Table 6.4(b) Lightning surge absorbers (complying with the relevant standards)

<table>
<thead>
<tr>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>&lt;1&gt; R·A·V-781BYZ-2</td>
<td>783</td>
<td>1000</td>
<td>12000</td>
<td>300</td>
<td></td>
</tr>
<tr>
<td>&lt;2&gt; R·A·V-781BXZ-4</td>
<td>783</td>
<td>1000</td>
<td>12000</td>
<td>300</td>
<td></td>
</tr>
</tbody>
</table>
7. PROTECTIVE GROUNDING

7

PROTECTIVE GROUNDING
7.1 SVM1-4i and SVM1-20i (FSSB Interface)

- To be as short as possible
- Connected to cabinet
- To other ground plates
- Distribution panel in cabinet
- Ground plate
- External distribution panel
- Class-3 ground or higher
7.2 SVM1-40i and SVM1-80i (FSSB Interface)

- Clamp shield
- External shielded cable
- To be as short as possible
- Ground plate
- To system ground
- Inlet
8

EXTERNAL DIMENSIONS / PANEL CUT-OUT DRAWINGS / MAINTENANCE AREA
8.1 EXTERNAL DIMENSIONS

8.1.1 External Dimensions of SVM1-4i and SVM1-20i

Amplifier alone

Weight: 1.2kg

Amplifier with a regenerative resistor, fan motor, and battery attached

Weight: 1.3kg
8.1.2 External Dimensions of SVM1-40i and SVM1-80i

Weight: 3.9kg
8.1.3 External Dimensions of Fan Unit (A06B-6134-K003)
8.1.4 External Dimensions of Fan Unit (A06B-6134-K002)
8.1.5  Discharge Resistor

A06B-6130-H401

Weight:  0.07 kg

A06B-6130-H402

Weight:  0.5 kg
A06B-6089-H713 to H714

(Pay attention to high temperature)

Drawing No.          Weight
A06B-6066-H711      5Kg
A06B-6066-H712      6Kg
A06B-6066-H713      5Kg
A06B-6066-H714      6Kg
8.1.6 AC Line Filter

A81L-0001-0083#3C

A81L-0001-0101#C
### 8.1.7 Transformer for Exports

<table>
<thead>
<tr>
<th>Drawing No.</th>
<th>A80L-0022-0005</th>
<th>A80L-0024-0006</th>
<th>A80L-0026-0003</th>
<th>A80L-0028-0001</th>
</tr>
</thead>
<tbody>
<tr>
<td>Type (name)</td>
<td>SAE</td>
<td>SBE</td>
<td>SCE</td>
<td>SDE</td>
</tr>
<tr>
<td>Weight</td>
<td>21 kg</td>
<td>27 kg</td>
<td>36 kg</td>
<td>42 kg</td>
</tr>
<tr>
<td>hl* (transformer height)</td>
<td>217 mm max</td>
<td>217 mm max</td>
<td>247 mm max</td>
<td>247 mm max</td>
</tr>
</tbody>
</table>

### 8.1.8 Battery Case

- A3 (negative polarity)
- A3 (positive polarity)
- Countersinking for 4-M4
- Positive polarity indication

[Diagram of Transformer for Exports]

[Diagram of Battery Case]
### 8.1.9 Lightning Surge Absorbers

(a) A06B-6077-K142

<table>
<thead>
<tr>
<th>Specification</th>
<th>Rated voltage</th>
<th>Clamp voltage</th>
<th>Withstanding surge current</th>
<th>Withstanding surge voltage</th>
</tr>
</thead>
<tbody>
<tr>
<td>RAV-781BYZ-2</td>
<td>250 VAC</td>
<td>783 VDC ±10%(V1.0)</td>
<td>2500A(8/20μS)</td>
<td>20kV(1.2/50μS)</td>
</tr>
</tbody>
</table>

(1) Between power lines: RAV-781BYZ-2

(2) Between each power line and ground: RAV-781BXZ-4

<table>
<thead>
<tr>
<th>Specification</th>
<th>Rated voltage</th>
<th>AC discharge start voltage</th>
<th>Withstanding surge current</th>
<th>Maximum surge discharge start voltage</th>
</tr>
</thead>
<tbody>
<tr>
<td>RAV-781BXZ-4</td>
<td>430 VAC between lines, 250 VAC between each line and ground</td>
<td>700 VAC ±20%(Ua)</td>
<td>2500A(8/20μS)</td>
<td>2.0kV(1.2/50μS)</td>
</tr>
</tbody>
</table>
(b) A06B-6077-K144

<table>
<thead>
<tr>
<th>Specification</th>
<th>Rated voltage</th>
<th>AC discharge start voltage</th>
<th>Clamp voltage</th>
<th>Withstanding surge current</th>
<th>Withstanding surge voltage</th>
<th>Maximum surge discharge start voltage</th>
</tr>
</thead>
<tbody>
<tr>
<td>R.C.M-601BUZ-4</td>
<td>250 VAC</td>
<td>560 VAC ±20%(Ua)</td>
<td>2000V ±10%(V1.0)</td>
<td>2500A (8/20µS)</td>
<td>20kV (1.2/50µS)</td>
<td>2kV (1.2/50µS)</td>
</tr>
</tbody>
</table>
8.2 PANEL CUT-OUT DRAWINGS

8.2.1 SVM1-4\textsuperscript{i} and SVM1-20\textsuperscript{i}
NOTE

Attach the accompanying gasket around the panel cut-out to prevent oil and dust from getting into it. Reinforce the right and left sides of the panel cut-out in the power magnetics cabinet by using fittings such as angles to maintain satisfactory contact between the power magnetics cabinet and the amplifier.
8.2.3 Discharge Resistor

A06B-6089-H500

CAUTION
Attach the packing (acrylonitrile-butadiene rubber, NBR (soft type)) to prevent oil and dust from getting into the resistor.
A06B-6089-H713 to H714

Panel cut-out

Panel cut-out

Packing (supplied)

CAUTION
Attach the packing (acrylonitrile-butadiene rubber, NBR (soft type)) to prevent oil and dust from getting into the resistor.
8.3 MAINTENANCE AREA

8.3.1 Maintenance Area for the SVM1-4i and SVM1-20i
8.3.2 Maintenance Area for the SVM1-40\textit{i} and SVM1-80\textit{i}

When no cooling fan AC motor (A06B-6134-K002) is used to cool the heat sink
When the cooling fan AC motor (A06B-6134-K002) is used to cool the heat sink
9

TOTAL CONNECTION DIAGRAM
9.1 CONNECTION DIAGRAM

9.1.1 SVM1-4i and SVM1-20i

CAUTION
1. Always install the circuit breakers, magnetic contactor, and AC line filter.
2. Use the stabilized 24VDC power supply for the amplifier. 24VDC power supply for the amplifier and 24VDC power supply for the motor brake cannot be shared.
3. The cabling of CX29 and CX30 of the second and subsequent amplifiers may be omitted. For details, see "TOTAL CONNECTION DIAGRAM".
4. Leave JX5 open.
NOTE
1 Always install the circuit breakers, magnetic contactor, and AC line filter.
2 To protect the equipment from lightning surge voltages, install a lightning surge absorber across each pair of power lines and across each power line and the grounding line at the power inlet of the power magnetics cabinet.

WARNING
Defects, such as a loose screw and an incorrectly inserted connector, can lead to a motor malfunction, excessive heat generation, and a ground fault. Exercise adequate care in installing servo amplifiers.
A loose screw (or, if a connector is used, a loose connector contact or an incorrect connector pin-to-cable connection) on high-current carrying power supply wires or motor power wires can lead to fire. Exercise adequate care in wiring.
9.1.2 SVM1-40i and SVM1-80i

CAUTION
1. Always install the circuit breakers, magnetic contactor, and AC line filter.
2. Use the stabilized 24VDC power supply for the amplifier. 24VDC power supply for the amplifier and 24VDC power supply for the motor brake cannot be shared.
3. The cabling of CX29 and CX30 of the second and subsequent amplifiers may be omitted. For details, see “TOTAL CONNECTION DIAGRAM”.
4. Leave JX5 open.

NOTE
1. Always install the circuit breakers, magnetic contactor, and AC line filter.
2. To protect the equipment from lightning surge voltages, install a lightning surge absorber across each pair of power lines and across each power line and the grounding line at the power inlet of the power magnetics cabinet.
WARNING

Defects, such as a loose screw and an incorrectly inserted connector, can lead to a motor malfunction, excessive heat generation, and a ground fault. Exercise adequate care in installing servo amplifiers.

A loose screw (or, if a connector is used, a loose connector contact or an incorrect connector pin-to-cable connection) on high-current carrying power supply wires or motor power wires can lead to fire. Exercise adequate care in wiring.
9.2 CONNECTOR LOCATION

9.2.1 SVM1-4i and SVM1-20i

<table>
<thead>
<tr>
<th>No.</th>
<th>Name</th>
<th>Remarks</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>DC link charge</td>
<td>LED</td>
</tr>
<tr>
<td>2</td>
<td>CZ7-1, CZ7-2</td>
<td>Main power input connector</td>
</tr>
<tr>
<td>3</td>
<td>CZ7-3</td>
<td>Discharge register connector</td>
</tr>
<tr>
<td>4</td>
<td>CZ7-4, CZ7-5, CZ7-6</td>
<td>Motor power connector</td>
</tr>
<tr>
<td>5</td>
<td>CX29</td>
<td>Connector for main power MCC control signal</td>
</tr>
<tr>
<td>6</td>
<td>CX30</td>
<td>ESP signal connection connector</td>
</tr>
<tr>
<td>7</td>
<td>CXA20</td>
<td>Regenerative resistor connector (for alarms)</td>
</tr>
<tr>
<td>8</td>
<td>CXA19B</td>
<td>24VDC power input</td>
</tr>
<tr>
<td>9</td>
<td>CXA19A</td>
<td>24VDC power input</td>
</tr>
<tr>
<td>10</td>
<td>COP10B</td>
<td>Servo FSSB I/F</td>
</tr>
<tr>
<td>11</td>
<td>COP10A</td>
<td>Servo FSSB I/F</td>
</tr>
<tr>
<td>12</td>
<td>ALM</td>
<td>Servo alarm status display LED</td>
</tr>
<tr>
<td>13</td>
<td>JX5</td>
<td>Connector for testing(*1)</td>
</tr>
<tr>
<td>14</td>
<td>LINK</td>
<td>FSSB communication status display LED</td>
</tr>
<tr>
<td>15</td>
<td>JF1</td>
<td>Pulsecoder</td>
</tr>
<tr>
<td>16</td>
<td>POWER</td>
<td>Control power status display LED</td>
</tr>
<tr>
<td>17</td>
<td>CX5X</td>
<td>Absolute Pulsecoder battery</td>
</tr>
<tr>
<td>18</td>
<td></td>
<td>Tapped hole for grounding the flange</td>
</tr>
</tbody>
</table>

NOTE

*1 Connect nothing to JX5, and leave it open.
### 9.2.2 SVM1-40i and SVM1-80i

<table>
<thead>
<tr>
<th>No.</th>
<th>Name</th>
<th>Remarks</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>DC link charge LED</td>
<td></td>
</tr>
<tr>
<td>2</td>
<td>CX29 Connector</td>
<td>for main power MCC control signal</td>
</tr>
<tr>
<td>3</td>
<td>CX30</td>
<td>ESP signal connection connector</td>
</tr>
<tr>
<td>4</td>
<td>CXA20</td>
<td>Regenerative resistor connector (for alarms)</td>
</tr>
<tr>
<td>5</td>
<td>SW Setting switch</td>
<td>(DC alarm level)</td>
</tr>
<tr>
<td>6</td>
<td>CZ4 Main power</td>
<td>input connector</td>
</tr>
<tr>
<td>7</td>
<td>CZ5 Motor power</td>
<td>connector</td>
</tr>
<tr>
<td>8</td>
<td>CZ6 Discharge</td>
<td>register connector</td>
</tr>
<tr>
<td>9</td>
<td>CXA19B 24VDC power</td>
<td>input</td>
</tr>
<tr>
<td>10</td>
<td>CXA19A 24VDC power</td>
<td>input</td>
</tr>
<tr>
<td>11</td>
<td>COP10B Servo FSSB</td>
<td>I/F</td>
</tr>
<tr>
<td>12</td>
<td>COP10A Servo FSSB</td>
<td>I/F</td>
</tr>
<tr>
<td>13</td>
<td>ALM Servo alarm</td>
<td>status display LED</td>
</tr>
<tr>
<td>14</td>
<td>JX5 Connector for</td>
<td>testing(*1)</td>
</tr>
<tr>
<td>15</td>
<td>LINK FSSB</td>
<td>communication status display LED</td>
</tr>
<tr>
<td>16</td>
<td>JF1 Pulsecoder</td>
<td></td>
</tr>
<tr>
<td>17</td>
<td>POWER Control</td>
<td>power status display LED</td>
</tr>
<tr>
<td>18</td>
<td>CX5X Absolute</td>
<td>Pulsecoder battery</td>
</tr>
<tr>
<td>19</td>
<td>Tapped hole</td>
<td>for grounding the flange</td>
</tr>
</tbody>
</table>

**NOTE**

*1 Connect nothing to JX5, and leave it open.
## 9.2.3 Connection Tools

The ordering specification drawing numbers of connection tools for connectors when the tools are purchased from FANUC are listed below. You may also purchase these tools directly from the manufacturer.

Connectors manufactured by Tyco Electronics AMP

### D-2000 series

<table>
<thead>
<tr>
<th>Type</th>
<th>Ordering specification drawing No.</th>
<th>Manufacturer part No.</th>
<th>Use</th>
</tr>
</thead>
<tbody>
<tr>
<td>Option</td>
<td>A06B-6110-K220#D2M</td>
<td>91595-1</td>
<td>M size</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>Contact crimping tool</td>
</tr>
<tr>
<td>Option</td>
<td>A06B-6110-K220#D2R</td>
<td>1276716-1</td>
<td>Contact extractor</td>
</tr>
</tbody>
</table>

### D-3000 series

<table>
<thead>
<tr>
<th>Type</th>
<th>Ordering specification drawing No.</th>
<th>Manufacturer part No.</th>
<th>Use</th>
</tr>
</thead>
<tbody>
<tr>
<td>Option</td>
<td>A06B-6110-K220#D3L</td>
<td>91558-1</td>
<td>L size</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>Contact crimping tool</td>
</tr>
<tr>
<td>Option</td>
<td>A06B-6110-K220#D3R</td>
<td>234168-1</td>
<td>Contact extractor</td>
</tr>
</tbody>
</table>

### D-5000 series

<table>
<thead>
<tr>
<th>Type</th>
<th>Ordering specification drawing No.</th>
<th>Manufacturer part No.</th>
<th>Use</th>
</tr>
</thead>
<tbody>
<tr>
<td>Option</td>
<td>A06B-6110-K220#D5SS</td>
<td>91596-1</td>
<td>SS size</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>Contact crimping tool</td>
</tr>
<tr>
<td>Option</td>
<td>A06B-6110-K220#D5S</td>
<td>234170-1</td>
<td>S size</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>Contact crimping tool</td>
</tr>
<tr>
<td>Option</td>
<td>A06B-6110-K220#D5M</td>
<td>234171-1</td>
<td>M size</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>Contact crimping tool</td>
</tr>
<tr>
<td>Option</td>
<td>A06B-6110-K220#D5L</td>
<td>1366044-1</td>
<td>L size</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>Contact crimping tool</td>
</tr>
<tr>
<td>Option</td>
<td>A06B-6110-K220#D5R</td>
<td>409158-1</td>
<td>Contact extractor</td>
</tr>
</tbody>
</table>
9.2.4 Details of Cable K1

9.2.4.1 Servo motor $\alpha_i$, $\alpha_is$ series, Servo motor $\beta_is$ series ($\beta0.4/5000is$ to $\beta22/2000is$)

Using cable conductor

<table>
<thead>
<tr>
<th>Cable length</th>
<th>28 m or less</th>
<th>50 m or less</th>
</tr>
</thead>
<tbody>
<tr>
<td>5V, 0V, 6V</td>
<td>0.3mm² $\times$ 5 Wire construction 12/0.18 or 60/0.08 Insulation outer diameter $\phi$1.5 or less</td>
<td>0.5mm² $\times$ 5 Wire construction 20/0.18 or 104/0.08 Insulation outer diameter $\phi$1.5 or less</td>
</tr>
<tr>
<td>RD, $^{*}\text{RD}$</td>
<td>0.18mm² or more Twisted-pair wire</td>
<td>0.18mm² or more Twisted-pair wire</td>
</tr>
<tr>
<td>Drain wire</td>
<td>0.15mm² or more</td>
<td>0.15mm² or more</td>
</tr>
</tbody>
</table>

**NOTE**

The ground plate to which the shield is connected must be placed as close as possible to the servo amplifier so that distance between the ground plate and the servo amplifier becomes shortest.

* This applies also to the $\alpha_Mi$ and $\alpha_Ci$ series servo motors.
NOTE

1. In case that the cable is prepared by MTB, total resistance of 5V and 0V must be less than 2Ω.

2. Pulsecoder side connector can accept maximum 0.5mm² (wire construction 20/0.18 or 104/0.08, insulation outer diameter $\phi$1.5 or less) wire and sheath diameter is $\phi$5.7 to $\phi$8.0. In case of using thicker wire or cable, take measures described below.

3. In case of incremental Pulsecoder, 6V is not necessary to be connected.

- Crimp tool specification
  A06B-6114-K201/JN1S : For 0.3 mm²
  A06B-6114-K201/JN1L : For 0.18 mm² or 0.5 mm²

- Connector kit specification
  A06B-6114-K204/S : Straight plug (including a contact)
  A06B-6114-K204/E : Elbow plug (including a contact)

- Recommended cable
  A66L-0001-0460 : Flexible cable 28 m or less long
  A66L-0001-0462 : Flexible cable 50 m or less long
  A66L-0001-0481 : Fixed cable 28m or less long
  A66L-0001-0491 : Fixed cable 50m or less long
9.2.4.2 Servo motor β{i}s series (β0.2/5000{i}s, β0.3/5000{i}s)

Using cable conductor

<table>
<thead>
<tr>
<th>Cable length</th>
<th>20 m or less</th>
</tr>
</thead>
<tbody>
<tr>
<td>5V, 0V, 6V</td>
<td>0.5 mm² (AWG21) × 5</td>
</tr>
<tr>
<td></td>
<td>Wire construction 20/0.18</td>
</tr>
<tr>
<td></td>
<td>Insulation outer diameter φ0.88 to φ1.5</td>
</tr>
</tbody>
</table>

| SD, *SD, REQ, *REQ | 0.18mm²(AWG25) or more |
|                    | Twisted-pair wire |
|                    | Wire construction 7/0.18 |
|                    | Insulation outer diameter φ0.88 to φ1.5 |

| Drain wire      | 0.15mm² or more |

| Recommended wire | 0.5mm² × 5 + 0.18mm² × two-pair |
|                 | (For a fixed cable) |
| Recommended wire | Hitachi Cable, Ltd. : UL20276-SB (0) |
| Recommended wire | 5X21AWG+2PX25AWG |

| Recommended wire | 0.5mm² × 5 + 0.18mm² × two-pair |
| Recommended wire | (For a flexible cable) |
| Recommended wire | Hitachi Cable, Ltd. : UL20276-SB (FLEX) |
| Recommended wire | 5X20AWG+2PX25AWG |
1. The ground plate to which the shield is connected must be placed as close as possible to the servo amplifier so that distance between the ground plate and the servo amplifier becomes shortest.

2. In case that the cable is prepared by the user, the total resistance (round trip) of 5 V and 0 V must be less than 0.8 Ω.

3. The maximum applicable wire diameter of the cable connector on the motor side is 0.5 mm² (when crimping tool 1463475-1 is used) or 0.85 mm² (when crimping tool 1276654-1 is used). In case of using thicker wire or cable, take measures described below.

4. In case of incremental Pulsecoder, 6 V is not necessary to be connected.
9.2.5 Details of Cable K2

The following items related to servo amplifier input cables are explained below in the stated order.

(1) Details of connectors
(2) Selecting input cables (general)
(3) Details of input cables

9.2.5.1 Details of connectors

(a) SVM1-4i, SVM1-20i

Three-phase input

Receptacle housing

B1

A1

B2

A2

Single-phase input

Receptacle housing

B1

A1

Leave open

A2

<table>
<thead>
<tr>
<th>Manufacturer-defined model</th>
<th>Specification of the key</th>
<th>Manufacture</th>
</tr>
</thead>
<tbody>
<tr>
<td>175363-3</td>
<td>Incorrect-insertion prevent key</td>
<td>Tyco Electronics AMP</td>
</tr>
</tbody>
</table>
Two receptacle contact types are available, so as to support different conductor diameters. Be sure to select the receptacle contact that matches the servo axis you use.

<table>
<thead>
<tr>
<th>Rectangle contact model number</th>
<th>Conductor size (mm²)</th>
<th>Conductor size AWG</th>
<th>Insulation outer diameter (mm)</th>
<th>Manual tool model number</th>
<th>Manufacture</th>
</tr>
</thead>
<tbody>
<tr>
<td>L size</td>
<td>0.5–1.25</td>
<td>20/18/16</td>
<td>1.8–2.8</td>
<td>91558-1</td>
<td>Tyco Electronics AMP</td>
</tr>
</tbody>
</table>

Connectors (including housings and contacts) and tools can be purchased directly from Tyco Electronics AMP. They can be ordered as options also from FANUC as listed below.

<table>
<thead>
<tr>
<th>Ordering number</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>A06B-6130-K200</td>
<td>Housing : Incorrect-insertion prevent key 175363-3 (1pcs.)</td>
</tr>
<tr>
<td></td>
<td>Incorrect-insertion prevent key 1318095-2 (1pcs.)</td>
</tr>
<tr>
<td></td>
<td>Contact : L size 1-175218-2 (10pcs.)</td>
</tr>
<tr>
<td></td>
<td>Applicable wire diameter: 0.5–1.25mm², AWG20/18/16</td>
</tr>
<tr>
<td></td>
<td>Applicable tool: 91558-1 (not included in this kit)</td>
</tr>
</tbody>
</table>

(b) SVM1-40i, SVM1-80i

Receptacle housing

Use the following receptacle housing.

<table>
<thead>
<tr>
<th>Manufacturer-defined model</th>
<th>Specification of the key</th>
<th>Manufacture</th>
</tr>
</thead>
<tbody>
<tr>
<td>1-917807-2</td>
<td>XX</td>
<td>Tyco Electronics AMP</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Rectangle contact model number</th>
<th>Conductor size (mm²)</th>
<th>Conductor size AWG</th>
<th>Insulation outer diameter (mm)</th>
<th>Manual tool model number</th>
<th>Manufacture</th>
</tr>
</thead>
<tbody>
<tr>
<td>S size</td>
<td>1.25 – 2.20</td>
<td>16/14</td>
<td>3.0–3.8</td>
<td>234170-1</td>
<td>Tyco Electronics AMP</td>
</tr>
<tr>
<td>M size</td>
<td>3.50 – 5.50</td>
<td>12/10</td>
<td>4.0–5.2</td>
<td>234171-1</td>
<td>Tyco Electronics AMP</td>
</tr>
</tbody>
</table>
[Connector and tool ordering information]
Connectors (including housings and contacts) and tools can be purchased directly from Tyco Electronics AMP. They can be ordered as options also from FANUC as listed below.

<table>
<thead>
<tr>
<th>Ordering number</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>A06B-6110-K200#XXS</td>
<td>Housing : XX key 1-917807-2 (1pcs.) Contact : S size 316040-6 (4pcs.) Applicable wire diameter : 1.25-2.20mm², AWG16/14 Applicable tool: 234170-1 (not included in this kit)</td>
</tr>
<tr>
<td>A06B-6110-K200#XXM</td>
<td>Housing : XX key 1-917807-2 (1pcs.) Contact : M size 316041-6 (4pcs.) Applicable wire diameter : 3.50-5.50mm², AWG12/10 Applicable tool : 234171-1 (not included in this kit)</td>
</tr>
</tbody>
</table>

[Crimping tool]

| Ordering number | Description | |
|-----------------|-------------|
| A06B-6110-K220#D5S | Applicable tool : 234170-1 Contact : S size 316040-6 Applicable wire diameter : 1.25-2.2mm², AWG16/14 |
| A06B-6110-K220#D5M | Tool : 234171-1 Contact : M size 316041-6 Applicable wire diameter: 3.50-5.50mm², AWG12/10 |
| A06B-6110-K220#D5R | Extractor : 409158-1 |
9.2.5.2 Selecting cables (general)

Select the cable specification by considering the following conditions for use:
(1) Motor current rating or current needed in use on a real machine
(2) Cable type (heat resistance temperature, etc.)
(3) Environment in which the cable is installed (operating ambient temperature, etc.)
(4) Certification for CE marking (compliance with various safety standards and EMC standard)

Examples of selecting a heavy-duty power cable are shown below. Fully check the cable specifications based on the actual use conditions and use an example below. The cable diameters are determined based on JCS No. 168 D (1980), "Allowable Currents for Power Cables (1)."

Selection example of power line (reference)

[Selection example 1]
- Heavy-duty power cable specification:
  Maximum allowable conductor temperature 60°C
- Environment temperature: 30°C

<table>
<thead>
<tr>
<th>Cable diameter [mm²]</th>
<th>Allowable current value [Arms]</th>
<th>Receptacle contact specification</th>
</tr>
</thead>
<tbody>
<tr>
<td>0.75</td>
<td>Less than 11</td>
<td>L size 1-175218-2</td>
</tr>
<tr>
<td>1.25</td>
<td>Less than 15</td>
<td>L size 1-175218-2, S size 316040-6</td>
</tr>
<tr>
<td>2</td>
<td>Less than 19</td>
<td>S size 316040-6</td>
</tr>
<tr>
<td>3.5</td>
<td>Less than 27</td>
<td>M size 316041-6</td>
</tr>
<tr>
<td>5.5</td>
<td>Less than 35</td>
<td>M size 316041-6</td>
</tr>
</tbody>
</table>

[Selection example 2]
- Heavy-duty power cable specification:
  Maximum allowable conductor temperature 80°C
- Environment temperature: 55°C

<table>
<thead>
<tr>
<th>Cable diameter [mm²]</th>
<th>Allowable current value [Arms]</th>
<th>Receptacle contact specification</th>
</tr>
</thead>
<tbody>
<tr>
<td>0.75</td>
<td>Less than 9.2</td>
<td>L size 1-175218-2</td>
</tr>
<tr>
<td>1.25</td>
<td>Less than 12.7</td>
<td>L size 1-175218-2, S size 316040-6</td>
</tr>
<tr>
<td>2</td>
<td>Less than 16.3</td>
<td>S size 316040-6</td>
</tr>
<tr>
<td>3.5</td>
<td>Less than 23.4</td>
<td>M size 316041-6</td>
</tr>
<tr>
<td>5.5</td>
<td>Less than 31.2</td>
<td>M size 316041-6</td>
</tr>
</tbody>
</table>
9.2.5.3 Details of input cables

Select cables by taking the following conditions for use into account.

[Example combinations of input cables for servo motors running with continuous-rating output (reference only)]

<table>
<thead>
<tr>
<th>Servo motor</th>
<th>Continuous current rating for three-phase input [Arms] (reference only)</th>
<th>Continuous current rating for single-phase input [Arms] (reference only)</th>
<th>[Example 1.] Cable wire diameter [mm²]</th>
<th>[Example 2.] Cable wire diameter [mm²]</th>
</tr>
</thead>
<tbody>
<tr>
<td>β0.2/5000/i</td>
<td>0.2</td>
<td>0.5</td>
<td>0.75 (0.75)</td>
<td>0.75 (0.75)</td>
</tr>
<tr>
<td>β0.3/5000/i</td>
<td>0.5</td>
<td>1.1</td>
<td>0.75 (0.75)</td>
<td>0.75 (0.75)</td>
</tr>
<tr>
<td>β0.4/5000/i</td>
<td>0.7</td>
<td>1.4</td>
<td>0.75 (0.75)</td>
<td>0.75 (0.75)</td>
</tr>
<tr>
<td>β0.5/5000/i</td>
<td>1.1</td>
<td>2.2</td>
<td>0.75 (0.75)</td>
<td>0.75 (0.75)</td>
</tr>
<tr>
<td>β1/5000/i</td>
<td>2.1</td>
<td>4.3</td>
<td>0.75 (0.75)</td>
<td>0.75 (0.75)</td>
</tr>
<tr>
<td>β2/4000/i</td>
<td>2.6</td>
<td>5.4</td>
<td>0.75 (0.75)</td>
<td>0.75 (0.75)</td>
</tr>
<tr>
<td>β4/4000/i</td>
<td>3.9</td>
<td>8.1</td>
<td>0.75 (0.75)</td>
<td>0.75 (0.75)</td>
</tr>
<tr>
<td>β8/3000/i</td>
<td>6.3</td>
<td>9.7</td>
<td>0.75 (0.75)</td>
<td>0.75 (1.25)</td>
</tr>
<tr>
<td>β12/3000/i</td>
<td>9.4</td>
<td>-</td>
<td>0.75</td>
<td>1.25</td>
</tr>
<tr>
<td>β22/2000/i</td>
<td>13.1</td>
<td>-</td>
<td>1.25</td>
<td>2</td>
</tr>
<tr>
<td>α1/5000/i</td>
<td>2.6</td>
<td>5.4</td>
<td>0.75 (0.75)</td>
<td>0.75 (0.75)</td>
</tr>
<tr>
<td>α2/5000/i</td>
<td>3.9</td>
<td>8.1</td>
<td>0.75 (0.75)</td>
<td>0.75 (0.75)</td>
</tr>
<tr>
<td>α4/4000/i</td>
<td>7.3</td>
<td>-</td>
<td>0.75</td>
<td>0.75</td>
</tr>
<tr>
<td>α8/3000/i</td>
<td>8.4</td>
<td>-</td>
<td>0.75</td>
<td>0.75</td>
</tr>
<tr>
<td>α12/3000/i</td>
<td>15.7</td>
<td>-</td>
<td>2</td>
<td>2</td>
</tr>
<tr>
<td>α22/3000/i</td>
<td>21.0</td>
<td>-</td>
<td>3.5</td>
<td>3.5</td>
</tr>
<tr>
<td>α2/5000/i</td>
<td>3.9</td>
<td>8.1</td>
<td>0.75 (0.75)</td>
<td>0.75 (0.75)</td>
</tr>
<tr>
<td>α4/5000/i</td>
<td>5.2</td>
<td>9.7</td>
<td>0.75 (0.75)</td>
<td>0.75 (1.25)</td>
</tr>
<tr>
<td>α8/4000/i</td>
<td>13.1</td>
<td>-</td>
<td>1.25</td>
<td>2</td>
</tr>
<tr>
<td>α12/4000/i</td>
<td>14.2</td>
<td>-</td>
<td>1.25</td>
<td>2</td>
</tr>
</tbody>
</table>
9.2.6 Details of Cable K3

The following items related to servo motor/amplifier power cables are explained below in the stated order.

(1) Details of connectors
(2) Selecting power cables (general)
(3) Power cable for servo motor

9.2.6.1 Details of connectors

The D-3000 and -5000 connector series (manufactured by Tyco Electronics AMP.) are used for power cable connection in the βi series. The specifications of a receptacle housing and contact vary depending on the model for which they are used as stated below.

(a) SVM1-4i, SVM1-20i

![Diagram of connector and receptacle housing]

[Receptacle housing]
Use the following receptacle housing.

<table>
<thead>
<tr>
<th>Manufacturer-defined model</th>
<th>Manufacturer</th>
</tr>
</thead>
<tbody>
<tr>
<td>1318095-2</td>
<td>Tyco Electronics AMP</td>
</tr>
</tbody>
</table>

[Receptacle contact]
Two receptacle contact types are available, so as to support different conductor diameters. Be sure to select the receptacle contact that matches the servo axis you use.

<table>
<thead>
<tr>
<th>Rectangle contact model number</th>
<th>Conductor size (mm²)</th>
<th>Conductor size (AWG)</th>
<th>Insulation outer diameter (mm)</th>
<th>Manual tool model number</th>
<th>Manufacture</th>
</tr>
</thead>
<tbody>
<tr>
<td>L size</td>
<td>1-175218-2</td>
<td>0.5-1.25</td>
<td>20/18/16</td>
<td>1.8-2.8</td>
<td>91558-1</td>
</tr>
</tbody>
</table>

[Connector and tool ordering information]
Connectors (including housings and contacts) and tools can be purchased directly from Tyco Electronics AMP. They can be ordered as options also from FANUC as listed below.

See Subsection 5.2.4 “Details of Cable K2.”
(b) SVM1-40i; SVM1-80i

Use the following receptacle housing.

<table>
<thead>
<tr>
<th>Manufacturer-defined model</th>
<th>Specification of the key</th>
<th>Manufacture</th>
</tr>
</thead>
<tbody>
<tr>
<td>2-917807-2</td>
<td>YY</td>
<td>Tyco Electronics AMP</td>
</tr>
</tbody>
</table>

[Receptacle contact]

<table>
<thead>
<tr>
<th>Rectangle contact model number</th>
<th>Conductor size (mm²)</th>
<th>Conductor size AWG</th>
<th>Insulation outer diameter (mm)</th>
<th>Manual tool model number</th>
<th>Manufacture</th>
</tr>
</thead>
<tbody>
<tr>
<td>S size</td>
<td>316040-6</td>
<td>1.25–2.2</td>
<td>16/14</td>
<td>3.0–3.8</td>
<td>Tyco Electronics AMP</td>
</tr>
<tr>
<td>M size</td>
<td>316041-6</td>
<td>3.5–5.5</td>
<td>12/10</td>
<td>4.0–5.2</td>
<td>Tyco Electronics AMP</td>
</tr>
</tbody>
</table>

[Connector and tool ordering information]

Connectors (including housings and contacts) and tools can be purchased directly from Tyco Electronics AMP. They can be ordered as options also from FANUC as listed below.

<table>
<thead>
<tr>
<th>Ordering number</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>A06B-6110-K202#YYS</td>
<td>Housing : YY key 2-917807-2 (1pcs.) Contact : S size 316040-6 (4pcs.) Applicable wire diameter : 1.25-2.20mm², AWG16/14 Applicable tool : 234170-1 (not included in this kit)</td>
</tr>
<tr>
<td>A06B-6110-K202#YYM</td>
<td>Housing : YY key 2-917807-2 (1pcs.) Contact : M size 316041-6 (4pcs.) Applicable wire diameter : 3.50-5.50mm², AWG12/10 Applicable tool : 234171-1 (not included in this kit)</td>
</tr>
</tbody>
</table>

9.2.6.2 Details of cables (general)

See Subsection 5.2.4 “Details of Cable K2.”
9.2.6.3 Power cable for servo motor

A servo motor power cable assembly consists of:

(a) Power cable
(b) Motor-side connector

(a) Power cable
Examples of combining a servo motor and power cable are described below according to Subsection 5.2.4.2, “Selecting cables (general).”

[Example combination of servo motor and power cable (reference only)]

<table>
<thead>
<tr>
<th>Servo motor</th>
<th>Continuous current rating [Arms] (reference only)</th>
<th>[Example 1.] Cable wire diameter [mm²]</th>
<th>[Example 2.] Cable wire diameter [mm²]</th>
</tr>
</thead>
<tbody>
<tr>
<td>β0.2/5000i/s</td>
<td>0.84</td>
<td>0.75</td>
<td>0.75</td>
</tr>
<tr>
<td>β0.3/5000i/s</td>
<td>0.84</td>
<td>0.75</td>
<td>0.75</td>
</tr>
<tr>
<td>β0.4/5000i/s</td>
<td>3.5</td>
<td>0.75</td>
<td>0.75</td>
</tr>
<tr>
<td>β0.5/5000i/s</td>
<td>3.0</td>
<td>0.75</td>
<td>0.75</td>
</tr>
<tr>
<td>β1/5000i/s</td>
<td>2.7</td>
<td>0.75</td>
<td>0.75</td>
</tr>
<tr>
<td>β2/4000i/s</td>
<td>3.2</td>
<td>0.75</td>
<td>0.75</td>
</tr>
<tr>
<td>β4/4000i/s</td>
<td>4.7</td>
<td>0.75</td>
<td>0.75</td>
</tr>
<tr>
<td>β8/3000i/s</td>
<td>6.0</td>
<td>0.75</td>
<td>0.75</td>
</tr>
<tr>
<td>β12/3000i/s</td>
<td>10.2</td>
<td>0.75</td>
<td>1.25</td>
</tr>
<tr>
<td>β22/2000i/s</td>
<td>11.3</td>
<td>1.25</td>
<td>1.25</td>
</tr>
<tr>
<td>α1/5000i</td>
<td>2.7</td>
<td>0.75</td>
<td>0.75</td>
</tr>
<tr>
<td>α2/5000i</td>
<td>3.5</td>
<td>0.75</td>
<td>0.75</td>
</tr>
<tr>
<td>α4/4000i</td>
<td>7.7</td>
<td>0.75</td>
<td>0.75</td>
</tr>
<tr>
<td>α8/3000i</td>
<td>8.4</td>
<td>0.75</td>
<td>0.75</td>
</tr>
<tr>
<td>α12/3000i</td>
<td>18.1</td>
<td>2</td>
<td>3.5</td>
</tr>
<tr>
<td>α22/3000i</td>
<td>18.4</td>
<td>2</td>
<td>3.5</td>
</tr>
<tr>
<td>α2/5000i/s</td>
<td>3.3</td>
<td>0.75</td>
<td>0.75</td>
</tr>
<tr>
<td>α4/5000i/s</td>
<td>4.6</td>
<td>0.75</td>
<td>0.75</td>
</tr>
<tr>
<td>α8/4000i/s</td>
<td>11.1</td>
<td>1.25</td>
<td>1.25</td>
</tr>
<tr>
<td>α12/4000i</td>
<td>13.4</td>
<td>1.25</td>
<td>2</td>
</tr>
</tbody>
</table>

(b) Motor-side connector
The specifications of a motor-side connector vary depending on the motor model for which it is used.
Refer to “FANUC AC SERVO MOTOR βis series Descriptions” (B-65302EN) for detailed descriptions about motor-side connectors for the βis series servo motors.
Refer to “FANUC AC SERVO MOTOR αis/ai series Descriptions” (B-65262EN) for detailed descriptions about motor-side connectors for the αis/ai series servo motors.
9.2.7 Details of Cables K4 and K5

9.2.7.1 SVM1-4i and SVM1-20i

When a regenerative discharge resistor is used

The following regenerative discharge resistor models are available.

<table>
<thead>
<tr>
<th>Model Description</th>
<th>Details</th>
</tr>
</thead>
<tbody>
<tr>
<td>A06B-6130-H401</td>
<td>The following housing and contact are connected to the resistor.</td>
</tr>
<tr>
<td>A06B-6130-H402</td>
<td>The following housing and contact are connected to the resistor.</td>
</tr>
</tbody>
</table>

For connection tools, see Subsection 9.2.3.
When no regenerative discharge resistor is used

Keep these pins unconnected. (Do not install a jumper between the pins.)

Install a jumper between the pins.

For connection tools, see Subsection 9.2.3.

⚠ CAUTION
Do not connect the DCP and DCC pins to each other.
It is recommended that the housing 1313182-2 be inserted to prevent incorrect insertion.
9.2.7.2 SVM1-40i and SVM1-80i

When a separated regenerative discharge resistor is used

Cable specification:
Two-conductor polyvinyl heavy-duty power cable (JIS C3312),
Conductor size of 3.5 mm²,
Crimp terminal: 5.5-4

Separated regenerative discharge resistor

Cable specification:
Two-conductor polyvinyl heavy-duty power cable (JIS C3312),
Conductor size of 0.75 mm²,
Crimp terminal: 1.25-4

For connection tools, see Subsection 9.2.3.
When a built-in regenerative discharge resistor is used

Install a jumper between the pins.

Cable specification:
Two-conductor polyvinyl heavy-duty power cable (JIS C3312),
Conductor size of 3.5 mm²,
Crimp terminal: 5.5-4

D-5000 series
Housing: 3-917807-2
Contact: 316041-6
Applicable wire range: 3.5 to 5.5 mm²
Manufacture: Tyco Electronics AMP

Cable specification:
Two-conductor polyvinyl heavy-duty power cable (JIS C3312),
Conductor size of 0.75 mm²,
Crimp terminal: 1.25-4

D-2000 series
Housing: 1-1318120-3
Contact: 1318107-1
Applicable wire: 0.3 to 0.85 mm²
Manufacture: Tyco Electronics AMP

For connection tools, see Subsection 9.2.3.
### 9.2.8 Details of Cable K6

<table>
<thead>
<tr>
<th>βi SVM</th>
<th>βi SVM</th>
</tr>
</thead>
<tbody>
<tr>
<td>CXA19B-B1 (24V)</td>
<td>CXA19A-B1 (24V)</td>
</tr>
<tr>
<td>CXA19B-A2 (0V)</td>
<td>CXA19A-A2 (0V)</td>
</tr>
<tr>
<td>CXA19B-B2 (0V)</td>
<td>CXA19A-B2 (0V)</td>
</tr>
<tr>
<td>CXA19B-A3 (ESP)</td>
<td>WARNING</td>
</tr>
<tr>
<td>CXA19B-B3 (BAT)</td>
<td>WARNING</td>
</tr>
</tbody>
</table>

---

**NOTE**

The (B3)BATL is the interface used to connect the batteries for the absolute Pulsecoder. For details, see the description of battery connection.

---

**WARNING**

1. When connecting two or more servo amplifiers, be careful about the way the ESP (A3) is connected, because even when the emergency stop button is pressed, it may fail to stop the motor promptly. For details, see "Details of Cable K8."

2. When using the built-in battery (A06B-6093-K001), never connect the BAT(B3) of the connector CXA19A/CXA19B. Otherwise, a short-circuit will occur between the battery output voltages for different SVMs, possibly resulting in the batteries becoming very hot, which is dangerous.

3. Do not connect more than one battery to the same BAT(B3) line. Otherwise, a short-circuit will occur between the output voltages of different batteries, possibly resulting in the batteries becoming very hot, which is dangerous.
9.2.9 Details of Cable K7

External power supply
(Use an appropriate power supply for the coil voltage
the customer uses.)

D-2000 series
Housing: 3-1318130-3
Contact: 1318107-1
Applicable wire: 0.3 to 0.85 mm²
Manufacture: Tyco Electronics AMP

For connection tools, see Subsection 9.2.3.

Internal contact capacity

<table>
<thead>
<tr>
<th>Resistance load (COS φ=1)</th>
<th>Inductive load (COS φ=0.4, L/R=15msec)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Rated load</td>
<td>250VAC, 3A / 24VDC, 5A</td>
</tr>
<tr>
<td></td>
<td>250VAC, 2A / 24VDC, 1A</td>
</tr>
<tr>
<td>Maximum contact capacity</td>
<td>5A</td>
</tr>
<tr>
<td></td>
<td>5A</td>
</tr>
</tbody>
</table>

**NOTE**

1. To protect the internal contact, be sure to insert a spark killer (CR) that matches the magnetic contactor used.
2. When more than one servo amplifier is connected, the cabling of the second and subsequent amplifiers may be omitted.
9.2.10 Details of Cable K8

For connection tools, see Subsection 9.2.3.

(1) When the contact is ON (closed), the servo motor is operational. When the contact is OFF (open), the external magnetic contactor (MCC) is in the off state, and the servo motor does not operate.

(2) When the contact is set to OFF (open) while the motor is turning, the servo motor is stopped by the dynamic brake.

(3) The contact input signal is defined as follows:
   <1> As the external contact capacity, a voltage of at least 30 VDC and a current of at least 100 mA are required.
   <2> When contactless input is used, the significant levels (the voltage across the input pin) are as follows:
   Low level "logic 0": 2 V or less
   High level "logic 1": 20 V or more
When connecting more than one amplifier, leave connector CX30 of every amplifier for the second and subsequent axes open. (Never connect these connectors with a wire, a switch, or the like.) Even when the emergency stop button is pressed, the motors may not stop immediately.
9.2.11 Details of Cable K9

For connection tools, see Subsection 9.2.3.

**NOTE**
1. Because the battery requires periodic maintenance, the above connection method is recommended, where easily available commercial batteries (four size D alkaline batteries) can be used.
2. Servo motors for six axes can be connected to one battery unit.
3. If servo motors for six axes are connected to the battery unit, the service life of the battery unit is about two years for the βi series servo motors or about one year for the β series servo motors. The battery should be replaced periodically.

**WARNING**
Do not connect more than one battery to the same BATL(B3) line. Otherwise, a short-circuit will occur between the output voltages of different batteries, possibly resulting in the batteries becoming very hot, which is dangerous.
9.2.12 Details of Cable K10

(1) Incorporating built-in batteries in each SVM
(For SVM1-4i or SVM1-20i)

- Using the built-in battery (A06B-6093-K001) requires the battery case (A06B-6093-K002).

⚠️ WARNING

1. When using the built-in battery (A06B-6093-K001), never connect the BAT(B3) of the connector CXA19A/CXA19B. Otherwise, a short-circuit will occur between the output voltages of different SVM batteries, possibly resulting in the batteries becoming very hot, which is dangerous.

2. Do not connect more than one battery to the same BAT(B3) line. Otherwise, a short-circuit will occur between the output voltages of different batteries, possibly resulting in the batteries becoming very hot, which is dangerous.
(2) Incorporating built-in batteries in each SVM
(For SVM1-40i or SVM1-80i)

Using the built-in battery (A06B-6093-K001) requires the battery case (A06B-6093-K002).

⚠️ WARNING
1. When using the built-in battery (A06B-6093-K001), never connect the BAT(B3) of the connector CXA19A/CXA19B. Otherwise, a short-circuit will occur between the output voltages of different SVM batteries, possibly resulting in the batteries becoming very hot, which is dangerous.
2. Do not connect more than one battery to the same BAT(B3) line. Otherwise, a short-circuit will occur between the output voltages of different batteries, possibly resulting in the batteries becoming very hot, which is dangerous.
### 9.2.13 Details of Cable K11

**Stabilized power supply (24VDC)**

- **B1**
- **A1**
- **A2**
- **B2**

**D-2000 series**
- Housing: 1-1318119-3
- Contact: 1318107-1
- Applicable wire: 0.3 to 0.85mm²
- Manufacturer: Tyco Electronics AMP

Up to four units can be connected (when AWG#18 cable is used).

Up to eight units can be connected (when AWG#18 cable is used).

**Maximum permissible current of the connector**

| When only one pin is connected | 4 A/pin (when AWG#18 cable is used) |

For connection tools, see Subsection 9.2.3.
9.3 HANDLING OF EXTERNAL MAGNETIC CONTACTORS

This section explains how to handle external magnetic contactors when FSSB interface SVMs and I/O Link interface SVMs are used together.

1. Multiple FSSB interface SVMs can share an external magnetic contactor. Determine the capacity of the magnetic contactor from the sum of the power supply ratings of the SVMs.
2. It is recommended that one external magnetic contactor be prepared for each I/O link interface SVM.
HEAT DISSIPATION

The amount of heat dissipation depends on the SVM model and the current that flows through the servo motor. For the current that flows through a servo motor, reference the continuous rated current of each servo motor. (For the continuous rated current of each servo motor, refer to the servo motor descriptions.) As the current that flows through a servo motor, the root-mean-square value of the current that flows through an actual servo motor on a machine can be used. The amount of heat dissipation indicated below assumes the use of HRV2.

(1) Total amount of heat dissipation
   The total amount of heat dissipation is calculated according to the following expression:
   \[ \text{Total amount of heat dissipation} = a + Ka1 \times b1 \]
   \( a \) : Amount of heat dissipation determined by the SVM model [W]
   \( Ka1 \) : Coefficient determined by the SVM [W/Arms]
   \( b1 \) : Current flowing through the servo motor [Arms]

<table>
<thead>
<tr>
<th>Name</th>
<th>Specification</th>
<th>( a ) [W]</th>
<th>( K ) [W/Arms]</th>
</tr>
</thead>
<tbody>
<tr>
<td>SVM1-4i</td>
<td>H001</td>
<td>20</td>
<td>Ka1: 8.1</td>
</tr>
<tr>
<td>SVM1-20i</td>
<td>H002</td>
<td>20</td>
<td>Ka1: 7.7</td>
</tr>
<tr>
<td>SVM1-40i</td>
<td>H003</td>
<td>20</td>
<td>Ka1: 7.1</td>
</tr>
<tr>
<td>SVM1-80i</td>
<td>H004</td>
<td>20</td>
<td>Ka1: 6.7</td>
</tr>
</tbody>
</table>

(2) Residual amount of heat in the cabinet
   By placing the heat sink section outside the cabinet, the residual amount of heat in the cabinet can be calculated according to the expression below.
   \[ \text{Residual amount of heat in the cabinet} = a + Kb1 \times b1 \]
   \( a \) : Amount of heat dissipation determined by the SVM model [W]
   \( Kb1 \) : Coefficient determined by the SVM [W/Arms]
   \( b1 \) : Current flowing through the servo motor [Arms]

<table>
<thead>
<tr>
<th>Name</th>
<th>Specification</th>
<th>( a ) [W]</th>
<th>( K ) [W/Arms]</th>
</tr>
</thead>
<tbody>
<tr>
<td>SVM1-4i</td>
<td>H001</td>
<td>20</td>
<td>Kb1: 8.1</td>
</tr>
<tr>
<td>SVM1-20i</td>
<td>H102</td>
<td>20</td>
<td>Kb1: 7.7</td>
</tr>
<tr>
<td>SVM1-40i</td>
<td>H003</td>
<td>20</td>
<td>Kb1: 1.4</td>
</tr>
<tr>
<td>SVM1-80i</td>
<td>H004</td>
<td>20</td>
<td>Kb1: 0.7</td>
</tr>
</tbody>
</table>
II. SVPM
The βi series SVPM has the following features:

1. Because a power supply is incorporated, a system with two or three servo axes and one spindle can be built easily.
2. Multi-axis AC servo amplifier with excellent cost performance
3. This unit is designed in compliance with the following safety standards:
   - EN50178
   - UL508C
   - CSA C22.2
   - EN61000-6-2
   - EN55011
4. This multi-axis AC servo amplifier is suitable for the servo motor βi series, which is suitable for feed axes of machining tools, and the spindle motor βi series, which is suitable for a spindle.
Configuration of βi series servo amplifier SVPM
3 SPECIFICATIONS
### 3.1 SPECIFICATIONS

#### Two-axis type (SVPM2)

<table>
<thead>
<tr>
<th>Item</th>
<th>SVPM2-5.5i (TypeA)</th>
<th>SVPM2-5.5i (TypeC)</th>
<th>SVPM2-11i (TypeA)</th>
<th>SVPM2-11i (TypeC)</th>
<th>SVPM2-15i (TypeA)</th>
<th>SVPM2-15i (TypeC)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Unit specification</td>
<td>A06B-6134-H201#A</td>
<td>A06B-6134-H201#C</td>
<td>A06B-6134-H202#A</td>
<td>A06B-6134-H202#C</td>
<td>A06B-6134-H203#A</td>
<td>A06B-6134-H203#C</td>
</tr>
<tr>
<td>Control PC board</td>
<td>A20B-2101-0012</td>
<td>A20B-2101-0012</td>
<td>A20B-2101-0012</td>
<td>A20B-2101-0012</td>
<td>A20B-2101-0012</td>
<td>A20B-2101-0012</td>
</tr>
<tr>
<td>Module PC board</td>
<td>A20B-2902-0670</td>
<td>A20B-2902-0670</td>
<td>A20B-2902-0670</td>
<td>A20B-2902-0670</td>
<td>A20B-2902-0670</td>
<td>A20B-2902-0670</td>
</tr>
<tr>
<td>Main power supply 3-phase input</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Input voltage</td>
<td>208-240VAC (+10%, -15%) 50/60Hz</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Input current (50Hz)</td>
<td>26Arms</td>
<td>48Arms</td>
<td>64Arms</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Power supply rating</td>
<td>9KVA</td>
<td>17KVA</td>
<td>22KVA</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Control power supply</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Input voltage</td>
<td>24VDC±10%</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Input current</td>
<td>1.5Amax.</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Control method</td>
<td>Sine wave PWM control with Transistor Bridge</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Servo HRV control</td>
<td>HRV2, HRV3</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Rated output current of spindle</td>
<td>28Arms</td>
<td>56Arms</td>
<td>64Arms</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Basic output frequency of spindle</td>
<td>60Hz</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Output frequency range of spindle</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Rated output current of servo axis</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>L axis</td>
<td>6.5Arms</td>
<td>6.5Arms</td>
<td>13Arms</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>M axis</td>
<td>6.5Arms</td>
<td>6.5Arms</td>
<td>13Arms</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Maximum output current of servo axis</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>L axis</td>
<td>20A</td>
<td>20A</td>
<td>40A</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>M axis</td>
<td>20A</td>
<td>20A</td>
<td>40A</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Output frequency range of servo axis</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>High Current</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>IPM Abnormal</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>High Voltage of DC Link</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Low Voltage of DC Link</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Low Voltage of Control Power Supply</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Short Time Overload</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>FSSB Communication Error</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Protection function</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Ambient temperature range</td>
<td>0~55 °C</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Weight</td>
<td>14.8kg</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Dimensions</td>
<td>Outside dimensions</td>
<td>265x385x272</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Fix dimensions</td>
<td>265x385x100</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Option</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>AC reactor</td>
<td>A81L-0001-0155</td>
<td>A81L-0001-0156</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>
### Three-axis type (SVPM3)

<table>
<thead>
<tr>
<th>Item</th>
<th>SVPM3-5.5i (TypeA)</th>
<th>SVPM3-5.5i (TypeC)</th>
<th>SVPM3-11i (TypeA)</th>
<th>SVPM3-11i (TypeC)</th>
<th>SVPM3-15i (TypeA)</th>
<th>SVPM3-15i (TypeC)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Unit specification</td>
<td>A06B-6134-H3018A</td>
<td>A06B-6134-H3018C</td>
<td>A06B-6134-H3026A</td>
<td>A06B-6134-H3026C</td>
<td>A06B-6134-H3026A</td>
<td>A06B-6134-H3026C</td>
</tr>
<tr>
<td>Power PC board</td>
<td>A20B-2101-0023</td>
<td>A20B-2101-0024</td>
<td>A20B-2101-0024</td>
<td>A20B-2101-0025</td>
<td>A20B-2101-0024</td>
<td>A20B-2101-0025</td>
</tr>
<tr>
<td>Module PC board</td>
<td>A20B-2902-0670</td>
<td>A20B-2902-0672</td>
<td>A20B-2902-0672</td>
<td>A20B-2902-0672</td>
<td>A20B-2902-0670</td>
<td>A20B-2902-0672</td>
</tr>
<tr>
<td>Power PC board</td>
<td>200-240VAC (+10%,-15%) 50/60Hz</td>
<td>26Arms</td>
<td>49Arms</td>
<td>64Arms</td>
<td>9KVA</td>
<td>17KVA</td>
</tr>
<tr>
<td>Power supply rating</td>
<td>9KVA</td>
<td>17KVA</td>
<td>22KVA</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Control power supply</td>
<td>Input voltage</td>
<td>24VDC ± 10%</td>
<td>1.5Amax.</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Servo HRV control</td>
<td>HRV2, HRV3</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Control method</td>
<td>Sine wave PWM control with Transistor Bridge</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Rated output current of spindle</td>
<td>26Arms</td>
<td>56Arms</td>
<td>64Arms</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Basic output frequency of spindle</td>
<td>50Hz</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Output frequency range of spindle</td>
<td>1Hz-10KHz</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Rated output current of servo axis</td>
<td>L axis</td>
<td>6.5Arms</td>
<td>6.5Arms</td>
<td>13Arms</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>M axis</td>
<td>6.5Arms</td>
<td>6.5Arms</td>
<td>13Arms</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>N axis</td>
<td>13Arms</td>
<td>13Arms</td>
<td>13Arms</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>N axis</td>
<td>40Ap</td>
<td>40Ap</td>
<td>40Ap</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Output frequency range of servo axis</td>
<td>0Hz-334Hz</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Protection function</td>
<td>High Current</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>IPM Abnormal</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>High Voltage of DC Link</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>Low Voltage of DC Link</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>Low Voltage of Control Power Supply</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>Short Time Overload</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>FSSB Communication Error</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Ambient temperature</td>
<td>0-+55 °C</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Weight</td>
<td>14.8kg</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Dimensions</td>
<td>Outside dimensions</td>
<td>260x380x272</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>Fin dimensions</td>
<td>260x380x100</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Option</td>
<td>AC reactor</td>
<td>A81L-0001-0155</td>
<td>A81L-0001-0156</td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>
3.2 COOLING FAN MOTOR

Install a cooling fan motor listed below. Otherwise, make arrangements so that the required air flow can be obtained.

<table>
<thead>
<tr>
<th>Ordering number</th>
<th>Optional fan</th>
<th>Required air flow</th>
</tr>
</thead>
<tbody>
<tr>
<td>SVPM2-5.5i A06B-6134-H201#</td>
<td>SVPM3-5.5i A06B-6134-H301#</td>
<td>A06B-6134-K001 One unit</td>
</tr>
<tr>
<td>SVPM2-11i A06B-6134-H202#</td>
<td>SVPM3-11i A06B-6134-H302#</td>
<td>A06B-6134-K001 One unit</td>
</tr>
<tr>
<td>SVPM2-15i A06B-6134-H203#</td>
<td>SVPM3-15i A06B-6134-H303#</td>
<td>A06B-6134-K001 One unit</td>
</tr>
</tbody>
</table>

3.3 HOW TO OBTAIN A POWER SUPPLY CAPACITY

- Output capacity -
  The output capacity is the sum of the total spindle motor continuous output rating multiplied by a coefficient (1.15) and the servo motor continuous output rating multiplied by a coefficient (0.6).

- Power supply capacity -
  **SVPM*-5.5i**
  Power supply capacity (kVA) = output capacity (kW) × 1.64

  **SVPM*-11i**
  Power supply capacity (kVA) = output capacity (kW) × 1.55

  **SVPM*-15i**
  Power supply capacity (kVA) = output capacity (kW) × 1.47

[How to obtain the input current so units to be installed at the input section can be selected]
Obtain the SVPM input current, using the following expression. Use it as a reference value in selecting a circuit breaker, magnetic contactor, and power cable.
(Margin for selection: 1 to 1.5 times)

\[
SVPM\ input\ current\ (Arms) = \sqrt[3]{\frac{\text{Power supply capacity (kVA)}}{\text{nominal power supply voltage (Vrms)}} \times 1.2} \times 1.2 \ (\text{margin})
\]

(Assume the nominal power supply voltage (Vrms) is usually 200 Vrms.)
### 3.4 APPLICABLE MOTORS

<table>
<thead>
<tr>
<th></th>
<th>Spindle Motor</th>
<th>Servo Motor</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>( i_{\beta} 3/10000 )</td>
<td>( i_{\beta} 6/10000 )</td>
</tr>
<tr>
<td>SVM2-5.5i</td>
<td>O</td>
<td>O</td>
</tr>
<tr>
<td>A06B-6134-H201*</td>
<td></td>
<td></td>
</tr>
<tr>
<td>SVM2-11i</td>
<td>** O O</td>
<td>**</td>
</tr>
<tr>
<td>A06B-6134-H202*</td>
<td></td>
<td></td>
</tr>
<tr>
<td>SVM2-15i</td>
<td>** ** ** O</td>
<td>**</td>
</tr>
<tr>
<td>A06B-6134-H203*</td>
<td></td>
<td></td>
</tr>
<tr>
<td>SVM3-5.5i</td>
<td>O</td>
<td>O</td>
</tr>
<tr>
<td>A06B-6134-H301*</td>
<td></td>
<td></td>
</tr>
<tr>
<td>SVM3-11i</td>
<td>** O O</td>
<td>**</td>
</tr>
<tr>
<td>A06B-6134-H302*</td>
<td></td>
<td></td>
</tr>
<tr>
<td>SVM3-15i</td>
<td>** ** ** O</td>
<td>**</td>
</tr>
<tr>
<td>A06B-6134-H303*</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

** CAUTION **

Combining with this motor requires changing the motor control parameter. An incorrect parameter setting may damage the motor.
3.5 CIRCUIT BREAKER, MAGNETIC CONTACTOR, AND AC REACTOR

3.5.1 AC Line Filter and Magnetic Contactor

The ratings of the circuit breakers and magnetic contactor are determined by the specifications of the power supply module used. The ordering specification drawing numbers and specifications of circuit breakers and magnetic contactors are listed below. When the user prepares circuit breakers and a magnetic contactor, use those that satisfy the specifications listed below.

- Specifications of circuit breakers and magnetic contactors

<table>
<thead>
<tr>
<th>SVPM name</th>
<th>Circuit breaker 1</th>
<th>Circuit breaker 2</th>
<th>Magnetic contactor</th>
</tr>
</thead>
<tbody>
<tr>
<td>SVPM*-5.5i</td>
<td>30A</td>
<td>5A</td>
<td>30A</td>
</tr>
<tr>
<td>(*: 2 or 3)</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>SVPM*-11i</td>
<td>55A</td>
<td>55A</td>
<td></td>
</tr>
<tr>
<td>(*: 2 or 3)</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>SVPM*-15i</td>
<td>70A</td>
<td>70A</td>
<td></td>
</tr>
<tr>
<td>(*: 2 or 3)</td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

NOTE
1. For the locations of the circuit breakers and magnetic contactor, see Section 1.2, "CONFIGURATION".
2. Select the rated voltages of the circuit breakers according to the power supply voltage.

- Recommended products

Manufactured by Fuji Electric Co., Ltd.

<table>
<thead>
<tr>
<th>SVPM name</th>
<th>Circuit breaker 1</th>
<th>Circuit breaker 2</th>
<th>Magnetic contactor</th>
</tr>
</thead>
<tbody>
<tr>
<td>SVPM*-5.5i</td>
<td>EA103B/50</td>
<td>EA33/5</td>
<td>SC- N 1</td>
</tr>
<tr>
<td>(*: 2 or 3)</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>SVPM*-11i</td>
<td>EA103B/60</td>
<td></td>
<td>SC- N 2</td>
</tr>
<tr>
<td>(*: 2 or 3)</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>SVPM*-15i</td>
<td>EA103B/75</td>
<td></td>
<td>SC- N2S</td>
</tr>
<tr>
<td>(*: 2 or 3)</td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

NOTE
For details, refer to the brochure supplied by Fuji Electric Co., Ltd.
Note that the coil voltage specification of the magnetic contactor varies depending on the power supply voltage and frequency used.
- Ordering specification drawing number of circuit breaker 1

<table>
<thead>
<tr>
<th>Type</th>
<th>Applicable model</th>
<th>Ordering specification drawing No.</th>
<th>Circuit breaker specification</th>
<th>Circuit breaker cover specification</th>
</tr>
</thead>
<tbody>
<tr>
<td>Option</td>
<td>SVPM*-5.5i (*: 2 or 3)</td>
<td>A06B-6077-K102</td>
<td>Fuji Electric, EA103B/50</td>
<td>Fuji Electric, BZ-TB20B-3</td>
</tr>
<tr>
<td></td>
<td>SVPM*-11i (*: 2 or 3)</td>
<td>A06B-6077-K103</td>
<td>Fuji Electric, EA103B/60</td>
<td>Fuji Electric, BZ-TB20B-3</td>
</tr>
<tr>
<td></td>
<td>SVPM*-15i (*: 2 or 3)</td>
<td>A06B-6077-K104</td>
<td>Fuji Electric, EA103B/75</td>
<td>Fuji Electric, BZ-TB20B-3</td>
</tr>
</tbody>
</table>

- Ordering specification drawing number of circuit breaker 2

<table>
<thead>
<tr>
<th>Type</th>
<th>Applicable model</th>
<th>Ordering specification drawing No.</th>
<th>Circuit breaker specification</th>
<th>Circuit breaker cover specification</th>
</tr>
</thead>
<tbody>
<tr>
<td>Option</td>
<td>For control power supply (common to all SVPM models)</td>
<td>A06B-6077-K106</td>
<td>Fuji Electric, EA33/5</td>
<td>Fuji Electric, BZ-TB10B-503</td>
</tr>
</tbody>
</table>

- Ordering specification drawing number of magnetic contactor

<table>
<thead>
<tr>
<th>Type</th>
<th>Applicable model</th>
<th>Ordering specification drawing No.</th>
<th>Magnetic contactor specification</th>
<th>Magnetic contactor cover specification</th>
</tr>
</thead>
<tbody>
<tr>
<td>Option</td>
<td>SVPM*-5.5i (*: 2 or 3)</td>
<td>A06B-6077-K122</td>
<td>Fuji Electric, SC-1N</td>
<td>Fuji Electric, SZ-1N/T</td>
</tr>
<tr>
<td></td>
<td>SVPM*-11i (*: 2 or 3)</td>
<td>A06B-6077-K123</td>
<td>Fuji Electric, SC-2N</td>
<td>Fuji Electric, SZ-1N/T</td>
</tr>
<tr>
<td></td>
<td>SVPM*-15i (*: 2 or 3)</td>
<td>A06B-6077-K124</td>
<td>Fuji Electric, SC-2SN</td>
<td>Fuji Electric, SZ-2SN/T</td>
</tr>
</tbody>
</table>

**NOTE**
The coil voltage specification of the magnetic contactor is 200 VAC.

### 3.5.2 AC Reactor

<table>
<thead>
<tr>
<th>Type</th>
<th>Applicable model</th>
<th>Ordering specification drawing No.</th>
</tr>
</thead>
<tbody>
<tr>
<td>Basic</td>
<td>SVPM*-5.5i (*: 2 or 3)</td>
<td>A81L-0001-0155</td>
</tr>
<tr>
<td></td>
<td>SVPM*-11i (*: 2 or 3)</td>
<td>A81L-0001-0156</td>
</tr>
<tr>
<td></td>
<td>SVPM*-15i (*: 2 or 3)</td>
<td>A81L-0001-0156</td>
</tr>
</tbody>
</table>
# 3.6 SPINDLE AXIS TYPES (#A AND #C) AND APPLICABLE SENSORS

Two models (#A and #C) are available for each sensor for spindles. The following table lists combinations of applicable sensors and functions.

<table>
<thead>
<tr>
<th>Spindle system configuration</th>
<th>Configuration</th>
<th>Remarks</th>
</tr>
</thead>
<tbody>
<tr>
<td>Ordering number</td>
<td></td>
<td></td>
</tr>
<tr>
<td>A06B-6134-H***#A, #C</td>
<td>#A (TYPE A)</td>
<td></td>
</tr>
<tr>
<td></td>
<td>#C (TYPE C)</td>
<td></td>
</tr>
<tr>
<td>Sensor on the motor</td>
<td>Mi sensor</td>
<td></td>
</tr>
<tr>
<td></td>
<td>MZ sensor</td>
<td></td>
</tr>
<tr>
<td>Without sensor</td>
<td>α position coder</td>
<td>*3</td>
</tr>
<tr>
<td></td>
<td>External one-rotation</td>
<td>*3</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Function</th>
<th></th>
<th>Remarks</th>
</tr>
</thead>
<tbody>
<tr>
<td>Rigid tapping</td>
<td>*1</td>
<td></td>
</tr>
<tr>
<td>Orientation by a position coder</td>
<td>*2</td>
<td></td>
</tr>
<tr>
<td>Orientation by the external one-rotation signal</td>
<td>*2</td>
<td>*5</td>
</tr>
<tr>
<td>Spindle synchronization</td>
<td>Velocity synchronization</td>
<td>*4</td>
</tr>
<tr>
<td></td>
<td>Phase synchronization</td>
<td>*4</td>
</tr>
<tr>
<td>Threading</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Cs contouring control</td>
<td>*6</td>
<td></td>
</tr>
<tr>
<td></td>
<td>*7</td>
<td></td>
</tr>
</tbody>
</table>

*1 The spindle and motor must be interconnected with a timing belt or gear. No orientation is available to adjust the tapping start position.
*2 The spindle and motor must be interconnected with a timing belt or gear.
*3 The spindle and sensor must be interconnected in one-to-one connection mode.
*4 Two motor amplifiers are required.
*5 Note that the stop position moves by a backlash between the spindle and motor because of the theory of operation.
*6 This function is enabled on the machine that the spindle motor is directly connected to a spindle.
*7 The resolution of position detection is 4096 p/rev.

## Other spindle axis functions

<table>
<thead>
<tr>
<th>Function</th>
<th>#A</th>
<th>#C</th>
<th>Remarks</th>
</tr>
</thead>
<tbody>
<tr>
<td>Analog output of load meter and speedometer</td>
<td>C</td>
<td>Connector JY1</td>
<td></td>
</tr>
<tr>
<td>Analog output of either load meter or speedometer</td>
<td></td>
<td>Connector JY1</td>
<td></td>
</tr>
<tr>
<td>Analog override input</td>
<td>C</td>
<td>Connector JY1</td>
<td></td>
</tr>
</tbody>
</table>
3.7 DERATING

Derating
Consider derating as shown below, according to ambient temperatures.

Target models: All SVPM models
Refer to the order list (B-65321EN).
5

POWER SUPPLY
5.1 INPUT POWER SUPPLY

5.1.1 Three-phase Input Power Supply for Motor Power

- Nominal rated voltage: 200 to 240 VAC
- Allowable voltage fluctuation: -15% to +10%
- Frequency: 50/60 Hz
- Allowable frequency fluctuation: ±2 Hz
- Power supply impedance: Voltage fluctuation caused by load (at maximum output) not to exceed 7%
- Power supply unbalance: Within ±5% of the rated voltage

**NOTE**
The allowable voltage fluctuation is a change observed for several minutes. It is not a continuous change.

(1) If the power supply impedance is high, and the voltage fluctuation exceeds the specification, an SVPM alarm (DC link low voltage alarm or DC link overvoltage alarm) or a motor output drop may result.

Use an appropriate power supply of which input voltage fluctuation during motor acceleration does not exceed 7%.

[Checking the power supply impedance]

\[
\frac{|E_0 - E_1|}{E_0} \times 100(\%) < 7(\%)
\]

E0: Voltage under no load
E1: Voltage at maximum output (power running and regeneration)

(2) Input the power supply to the SVPM control circuit (power supply input of CXA2C) before turning on the CNC or within 500 ms after turning on the CNC.

(3) Because a capacitor for power-factor improvement may affect power supply regeneration, it is recommended that such a capacitor be not installed.

(4) The rated output of the motor is guaranteed on the rated input voltage. When the input voltage changes, the rated output may not be observed even if the change is within the allowable fluctuation range.
5.1.2 Single-phase Input for Control Power

Be sure to use a stabilized power supply as the 24-V power supply for amplifiers. The 24-V power supply for motor brakes cannot be shared.
- Nominal rated voltage: 24VDC
- Allowable voltage fluctuation: ±10% (including momentary variations)
- Power supply ratings: 1.5A (per amplifier)

For the specification and circuit configuration of the external 24-VDC power supply, see "POWER SUPPLY" in Part I, "SVM".
5.2 POWER TRANSFORMER FOR EXPORTS

When a SVPM of the 200V input series is used in an area where the input voltage is not within the range of 200 to 230VAC, a power transformer is required. The ordering drawing numbers and specifications of power transformers manufactured by FANUC are listed below. When other than a FANUC power transformers is to be prepared by the user, it must satisfy the transformer specifications indicated Section 2.1.

<table>
<thead>
<tr>
<th>Ordering number</th>
<th>Name</th>
<th>Remarks</th>
</tr>
</thead>
<tbody>
<tr>
<td>A06B-6052-J001</td>
<td>For SVPM*-5.5i (*:2 or 3)</td>
<td>Primary</td>
</tr>
<tr>
<td>A06B-6044-J006</td>
<td>For SVPM*-11i (*:2 or 3)</td>
<td>380/415/460VAC</td>
</tr>
<tr>
<td>A06B-6044-J007</td>
<td>For SVPM*-15i (*:2 or 3)</td>
<td>200VAC</td>
</tr>
</tbody>
</table>
### Specifications of power transformers manufactured by FANUC

#### Power transformer for SVPM

<table>
<thead>
<tr>
<th>Item</th>
<th>Model</th>
<th>SVPM*-5.5i</th>
<th>SVPM*-11i</th>
<th>SVPM*-15i</th>
</tr>
</thead>
<tbody>
<tr>
<td>Ordering drawing number</td>
<td></td>
<td>A06B-6052-J001</td>
<td>A06B-6044-J006</td>
<td>A06B-6044-J007</td>
</tr>
<tr>
<td>FANUC drawing number</td>
<td></td>
<td>A80L-0001-0496</td>
<td>A80L-0001-0313</td>
<td>A80L-0001-0314</td>
</tr>
<tr>
<td>Rated capacity</td>
<td></td>
<td>10kVA</td>
<td>20kVA</td>
<td>30kVA</td>
</tr>
<tr>
<td>Rated primary voltage</td>
<td></td>
<td>380/415/460VAC</td>
<td>230VAC (The secondary is used as an autotransformer.)</td>
<td>+10% -15%, 50/60±1Hz, 3φ</td>
</tr>
<tr>
<td>Rated primary current</td>
<td></td>
<td>15A (at 380V)</td>
<td>30A (at 380V)</td>
<td>46A (at 380V)</td>
</tr>
<tr>
<td></td>
<td></td>
<td>14A (at 415V)</td>
<td>28A (at 415V)</td>
<td>42A (at 415V)</td>
</tr>
<tr>
<td></td>
<td></td>
<td>13A (at 460V)</td>
<td>25A (at 460V)</td>
<td>38A (at 460V)</td>
</tr>
<tr>
<td>Rated secondary voltage</td>
<td></td>
<td>AC200/220/230V</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Rated secondary current</td>
<td></td>
<td>29A</td>
<td>58A</td>
<td>87A</td>
</tr>
<tr>
<td>Voltage regulation at the secondary</td>
<td></td>
<td>5%</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Voltage deviation at the secondary</td>
<td></td>
<td>±3%</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Connection</td>
<td></td>
<td>Y-Y connection</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Insulation</td>
<td></td>
<td>Class H (maximum allowable temperature : 180°C)</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Ambient temperature</td>
<td></td>
<td>0 to 45°C</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Allowable temperature rise</td>
<td></td>
<td>135deg</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Relative humidity</td>
<td></td>
<td>Max. 95%RH</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Type</td>
<td></td>
<td>Dry type, natural air cooling type</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Dielectric withstand voltage</td>
<td></td>
<td>2000VAC, for 1 minute</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Weight</td>
<td></td>
<td>Max. 61kg</td>
<td>Max. 115kg</td>
<td>Max. 165kg</td>
</tr>
<tr>
<td>Outline drawing</td>
<td></td>
<td>Fig. 8.1.4(a)</td>
<td>Fig. 8.1.4(b)</td>
<td>Fig. 8.1.4(c)</td>
</tr>
</tbody>
</table>

#### Connection diagram

![Connection Diagram](image-url)
- Connecting a power transformer

Power transformers must be set according to the supply voltage used.

(a) Connection points of power transformers for SVPM*-5.5i, SVPM*-11i, and SVPM*-15i

<table>
<thead>
<tr>
<th>Supply voltage</th>
<th>Connection points at the primary</th>
<th>Remarks</th>
</tr>
</thead>
<tbody>
<tr>
<td>380VAC</td>
<td>R - R1, S - S1, T - T1(380-V tap))</td>
<td></td>
</tr>
<tr>
<td>400VAC</td>
<td>R - R1, S - S1, T - T1(380-V tap)</td>
<td></td>
</tr>
<tr>
<td>415VAC</td>
<td>R - R2, S - S2, T - T2(415-V tap)</td>
<td></td>
</tr>
<tr>
<td>440VAC</td>
<td>R - R2, S - S2, T - T2(415-V tap)</td>
<td></td>
</tr>
<tr>
<td>460VAC</td>
<td>R - R3, S - S3, T - T3(460-V tap)</td>
<td></td>
</tr>
<tr>
<td>480VAC</td>
<td>R - R3, S - S3, T - T3(460-V tap)</td>
<td></td>
</tr>
</tbody>
</table>

Voltage regulation (approximately 10V) when the load varies (0% to 100%) with the 380-VAC tap set
With the 415-VAC tap set
With the 460-VAC tap set

CAUTION

1. When installing a transformer in a cabinet, be careful to ensure that the transformer does not thermally affect other equipment. For example, separate the transformer from the other equipment.
2. When installing a transformer outside the cabinet, make sure that the transformer is not directly exposed to cutting chips or coolant.
3. If there is a possibility of the transformer falling, secure the transformer with bolts or similar.
6.1 ENVIRONMENTAL CONDITIONS

See Chapter 6 in Part I “SVM”.

6.2 Selecting a Ground-Fault Circuit Interrupter

See Chapter 6 in Part I “SVM”.

6.3 NOISE PROTECTION

See Chapter 6 in Part I “SVM”.
6.4 INSTALLING LIGHTNING SURGE ABSORBERS

At the power input of the power magnetics cabinet, install a surge absorber between the power lines and between each power line and a ground to protect the unit from a voltage surge caused by lightning. How to install the surge absorber is shown below.

(1) Surge absorber for three-phase input

When using an integrated lightning surge absorber between the power lines and between each power line and a ground:

When using separate lightning surge absorbers between the power lines and between each power line and a ground:
WARNING

1. Make the wires shown with thick line in the above diagram as short as possible in order to increase the effect of the lightning surge absorber. Wire Cross section: At least 2mm²
   Length: Keep the total wire length (a+b) to within 2m, where a = length of wire used to connect lightning surge absorber (1) b = length of wire used to connect lightning surge absorber (2)

2. When performing a dielectric strength test by applying an overvoltage (such as 1000 or 1500 VAC) to a power line, remove lightning surge absorber (2) so that it will not operate.

3. The circuit protector (5A) is intended to protect the lines if a lightning surge absorber is damaged due to a surge that is higher than the maximum allowable voltage of the surge absorber.

4. Usually, no current flows through the lightning surge absorbers. So the circuit protector (5A) may be used also for other sections (such as power supply module control power and spindle motor fan power).

The following table lists commercially available lightning surge absorbers.

<table>
<thead>
<tr>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>&lt;1&gt;</td>
<td>R·A·V·781BYZ-2</td>
<td>783</td>
<td>1000</td>
<td>12000</td>
<td>300</td>
</tr>
<tr>
<td>&lt;2&gt;</td>
<td>R·A·V·781BXZ-2A</td>
<td>783</td>
<td>1000</td>
<td>12000</td>
<td>300</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>&lt;1&gt;</td>
<td>R·A·V·781BYZ-2</td>
<td>783</td>
<td>1000</td>
<td>12000</td>
<td>300</td>
</tr>
<tr>
<td>&lt;2&gt;</td>
<td>R·A·V·781BXZ-4</td>
<td>783</td>
<td>1000</td>
<td>12000</td>
<td>300</td>
</tr>
</tbody>
</table>
7 PROTECTIVE GROUNDING

L-shaped metal plate (TB2 grounding terminal)

Use short cable.

Flange tapped hole

To system ground

Ground plate of cabinet
8 EXTERNAL DIMENSIONS / PANEL CUT-OUT DRAWINGS / MAINTENANCE AREA
8.1 EXTERNAL DIMENSIONS

8.1.1 External Dimensions of SVPM

8.1.2 External Dimensions of Fan Unit (A06B-6134-K001)

NOTE
Use a 2-A fuse or circuit breaker to prevent a motor burnout.
### 8.1.3 AC Reactor Unit

<table>
<thead>
<tr>
<th>Applicable model</th>
<th>A</th>
<th>B</th>
<th>C</th>
<th>D</th>
<th>E</th>
<th>F</th>
<th>G</th>
<th>H</th>
<th>K</th>
<th>M-</th>
</tr>
</thead>
<tbody>
<tr>
<td>For SVPM-5.5i, 11i</td>
<td>135</td>
<td>155</td>
<td>82</td>
<td>50</td>
<td>65</td>
<td>89</td>
<td>48</td>
<td>135</td>
<td>5</td>
<td>M5</td>
</tr>
<tr>
<td>For SVPM-15i</td>
<td>135</td>
<td>155</td>
<td>108</td>
<td>42</td>
<td>95</td>
<td>84</td>
<td>66</td>
<td>135</td>
<td>7.2</td>
<td>M5</td>
</tr>
</tbody>
</table>
8.1.4 Power Transformer

(a) For SVPM-5.5i (A06B-6052-J001)

NOTE
The four side panels are all meshed, while the top is a solid plate.
(b) For SVPM-11i  (A06B-6044-J006)

Outline Drawing of Power Transformer with no Cover

<table>
<thead>
<tr>
<th>Terminal M6</th>
</tr>
</thead>
<tbody>
<tr>
<td>370</td>
</tr>
<tr>
<td>390</td>
</tr>
<tr>
<td>60</td>
</tr>
<tr>
<td>42</td>
</tr>
<tr>
<td>91</td>
</tr>
<tr>
<td>135</td>
</tr>
<tr>
<td>150</td>
</tr>
<tr>
<td>Max 270</td>
</tr>
<tr>
<td>300</td>
</tr>
<tr>
<td>400</td>
</tr>
<tr>
<td>14</td>
</tr>
</tbody>
</table>

Outline Drawing of Power Transformer with Cover

<table>
<thead>
<tr>
<th>Terminal M6</th>
</tr>
</thead>
<tbody>
<tr>
<td>370</td>
</tr>
<tr>
<td>390</td>
</tr>
<tr>
<td>60</td>
</tr>
<tr>
<td>42</td>
</tr>
<tr>
<td>91</td>
</tr>
<tr>
<td>135</td>
</tr>
<tr>
<td>150</td>
</tr>
<tr>
<td>Max 270</td>
</tr>
<tr>
<td>300</td>
</tr>
<tr>
<td>400</td>
</tr>
<tr>
<td>460</td>
</tr>
</tbody>
</table>

**NOTE**
The four side panels are all meshed, while the top is a solid plate.
Outline Drawing of Power Transformer with no Cover

Outline Drawing of Power Transformer with Cover

NOTE
The four side panels are all meshed, while the top is a solid plate.
### 8.1.5 Circuit Breaker

<table>
<thead>
<tr>
<th>Ordering drawing number</th>
<th>A</th>
<th>B</th>
<th>C</th>
<th>D</th>
<th>E</th>
<th>M₁⁻</th>
<th>F</th>
<th>G</th>
<th>H</th>
<th>I</th>
<th>J</th>
<th>K</th>
<th>L</th>
<th>M₂⁻</th>
<th>N</th>
<th>Mounting</th>
</tr>
</thead>
<tbody>
<tr>
<td>A06B-6077-K102 (For SVPM*-5.5i)</td>
<td>75</td>
<td>50</td>
<td>190</td>
<td>115</td>
<td>130</td>
<td>M8</td>
<td>17</td>
<td>80</td>
<td>56</td>
<td>49</td>
<td>φ8</td>
<td>φ5</td>
<td>110</td>
<td>M4</td>
<td>25</td>
<td>2 positions (1)</td>
</tr>
<tr>
<td>A06B-6077-K103 (For SVPM*-11i)</td>
<td></td>
</tr>
<tr>
<td>A06B-6077-K104 (For SVPM*-15i)</td>
<td></td>
</tr>
</tbody>
</table>

Dimensions for mounting holes
### 8.1.6 Magnetic Contactors

(a) A06B-6077-K122, A06B-6077-K123

(Dimensions with cover for protecting live parts)

<table>
<thead>
<tr>
<th>Ordering drawing number</th>
<th>Fuji Electric part number</th>
<th>Operation coil voltage</th>
<th>Auxiliary contact structure</th>
<th>Weight</th>
</tr>
</thead>
<tbody>
<tr>
<td>A06B-6077-K122 (for SVPM*-5.5i)</td>
<td>SC-1N</td>
<td>200V/50Hz</td>
<td>2a2b</td>
<td>0.68Kg</td>
</tr>
<tr>
<td>A06B-6077-K123 (for SVPM*-11i)</td>
<td>SC-2N</td>
<td>200-220V/60Hz</td>
<td>2a2b</td>
<td>0.68Kg</td>
</tr>
</tbody>
</table>
A06B-6077-K124

Dimensions for drilling mounting holes

<table>
<thead>
<tr>
<th>Ordering drawing number</th>
<th>Fuji Electric part number</th>
<th>Operation coil voltage</th>
<th>Auxiliary contact structure</th>
<th>Weight</th>
</tr>
</thead>
<tbody>
<tr>
<td>A06B-6077-K124 (for SVPM*-15i)</td>
<td>SC-2SN</td>
<td>200V/50Hz</td>
<td>2a2b</td>
<td>1.3Kg</td>
</tr>
<tr>
<td></td>
<td>SZ-2SN</td>
<td>200-220V/60Hz</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>
8.1.7 Lightning Surge Protector

(a) A06B-6077-K144

<table>
<thead>
<tr>
<th>Specification</th>
<th>Rated voltage</th>
<th>AC discharge start voltage</th>
<th>Clamp voltage</th>
<th>Surge withstand current</th>
<th>Surge withstand voltage</th>
<th>Maximum surge discharge start voltage</th>
</tr>
</thead>
<tbody>
<tr>
<td>R.C.M-601BUZ-4</td>
<td>250VAC</td>
<td>560VAC ±20%(Ua)</td>
<td>2000V ±10%(V1.0)</td>
<td>2500A (8/20μS)</td>
<td>20kV (1.2/50μS)</td>
<td>2kV (1.2/50μS)</td>
</tr>
</tbody>
</table>
Panel cut-outs that apply when a FANUC fan unit (A06B-6134-K001) is used and when not used are shown below. A fan unit can be placed either on top of or below the servo amplifier.

**NOTE**

1. Attach the accompanying gasket around the panel cut-out to prevent oil and dust from getting into it.
2. Reinforce the right and left sides of the panel cut-out in the power magnetics cabinet by using fittings such as angles to maintain satisfactory contact between the power magnetics cabinet and the amplifier.
3. Placing a FANUC fan unit on top of the servo amplifier requires installing a duct. Refer to the “Example Duct Structure for Using a FANUC Fan Unit (A06B-6134-K001)” for descriptions about the structure of the duct.
4. Placing a FANUC fan unit below the servo amplifier does not require installing a duct. If no FANUC fan unit is used, the user is requested to install a fan motor that can generate an air flow of at least 2 m/s at the heat sink.
(4) When one FANUC fan unit is used (placed below the servo amplifier)

(5) When two FANUC fan units are used (placed below the servo amplifier)
8.3 MAINTENANCE AREA

(1) When no fan unit is used

(NOTE) When a right-angle type cable connector is used (+30 mm when a straight type cable connector is used)
(2) When a fan unit used (placed on top of the servo amplifier)

(3) When a fan unit used (placed below the servo amplifier)

(Note) When a right-angle type cable connector is used (+30 mm when a straight type cable connector is used)
8.4 DUCT

Shown below is an example duct structure where a FANUC fan unit (A06B-6134-K001) is used.

**NOTE**
1. Install a duct having the shape shown below between the fan unit and heat sink to provide a ventilation flue.
2. Weld the duct to the cabinet.
3. If the fan unit is placed below the servo amplifier, no duct is needed.

(1) When one fan unit is used

![Diagram of duct structure for one fan unit](image)

(2) When two fan units are used

![Diagram of duct structure for two fan units](image)
How to mount a fan unit (A06B-6134-K001)

4 screws - M4 × 10

Panel cut-out plane

200VAC IN
Applicable wire 1.25mm²
Applicable crimp terminal 1.25-4
### 9.1 CONNECTION DIAGRAM

**NOTE**

1. Always install the circuit breakers, magnetic contactor, and AC reactor.
2. To protect the equipment from lightning surge voltages, install a lightning surge absorber across each pair of power lines and across each power line and the grounding line at the power inlet of the power magnetics cabinet.
3. Be sure to connect the grounding terminal (G) on TB2 to a substantial ground.

*1 K14 is for the M sensor. For the MZ sensor, K17 is used.*
## 9.2 CONNECTOR LOCATION

<table>
<thead>
<tr>
<th>No.</th>
<th>Name</th>
<th>Remarks</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>STATUS1</td>
<td>Status LED : spindle</td>
</tr>
<tr>
<td>2</td>
<td>STATUS2</td>
<td>Status LED : servo</td>
</tr>
<tr>
<td>3</td>
<td>CX3</td>
<td>Main power MCC control signal</td>
</tr>
<tr>
<td>4</td>
<td>CX4</td>
<td>Emergency stop signal (ESP)</td>
</tr>
<tr>
<td>5</td>
<td>CXA2C</td>
<td>24VDC power input</td>
</tr>
<tr>
<td>6</td>
<td>COP10B</td>
<td>Servo FSSB I/F</td>
</tr>
<tr>
<td>7</td>
<td>CX5X</td>
<td>Absolute Pulsecoder battery</td>
</tr>
<tr>
<td>8</td>
<td>JF1</td>
<td>Pulsecoder : L axis</td>
</tr>
<tr>
<td>9</td>
<td>JF2</td>
<td>Pulsecoder : M axis</td>
</tr>
<tr>
<td>10</td>
<td>JF3</td>
<td>Pulsecoder : N axis</td>
</tr>
<tr>
<td>11</td>
<td>JX6</td>
<td>Power outage backup module</td>
</tr>
<tr>
<td>12</td>
<td>JY1</td>
<td>Load meter, speedometer, analog override</td>
</tr>
<tr>
<td>13</td>
<td>JA7B</td>
<td>Spindle interface input</td>
</tr>
<tr>
<td>14</td>
<td>JA7A</td>
<td>Spindle interface output</td>
</tr>
<tr>
<td>15</td>
<td>JYA2</td>
<td>Spindle sensor M1, M2i</td>
</tr>
<tr>
<td>16</td>
<td>JYA3</td>
<td>α position coder</td>
</tr>
<tr>
<td></td>
<td></td>
<td>External one-rotation signal</td>
</tr>
<tr>
<td>17</td>
<td>JYA4</td>
<td>(Unused)</td>
</tr>
<tr>
<td>18</td>
<td>TB3</td>
<td>DC link terminal block</td>
</tr>
<tr>
<td>19</td>
<td></td>
<td>DC link charge LED (Warning)</td>
</tr>
<tr>
<td>20</td>
<td>TB1</td>
<td>Main power supply connection terminal board</td>
</tr>
<tr>
<td>21</td>
<td>CZ2L</td>
<td>Servo motor power line : L axis</td>
</tr>
<tr>
<td>22</td>
<td>CZ2M</td>
<td>Servo motor power line : M axis</td>
</tr>
<tr>
<td>23</td>
<td>CZ2N</td>
<td>Servo motor power line : N axis</td>
</tr>
<tr>
<td>24</td>
<td>TB2</td>
<td>Spindle motor power line</td>
</tr>
<tr>
<td>25</td>
<td></td>
<td>Tapped hole for grounding the flange</td>
</tr>
</tbody>
</table>

⚠️ **WARNING**

Do not touch any component in the module or any connected cable when LED 19 is on, because it is dangerous.
9.3 DETAILED DESCRIPTIONS OF CONNECTIONS

9.3.1 Common

9.3.1.1 Details of cable K1

Cable K1 is used to supply main power to the SVPM.

(1) Configuration
   (a) For a power supply voltage of 200 to 240 VAC

(b) For a power supply voltage of 400 to 480 VAC (an insulating transformer is needed)
(2) Cable specifications

<table>
<thead>
<tr>
<th>Model</th>
<th>Applicable cable</th>
<th>Terminal screw</th>
<th>Tightening torque</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Heavy-duty power cable (Note 1)</td>
<td>Heat-resistant cable (Note 2)</td>
<td></td>
</tr>
<tr>
<td>SVPM*-5.5i</td>
<td>5.5 mm² or more</td>
<td>5.5 mm² or more</td>
<td>M5 2.0 to 2.5 N·m</td>
</tr>
<tr>
<td>SVPM*-11i</td>
<td>8 mm² or more</td>
<td>8 mm² or more</td>
<td>M5 2.0 to 2.5 N·m</td>
</tr>
<tr>
<td>SVPM*-15i</td>
<td>14 mm² or more</td>
<td>14 mm² or more</td>
<td>M5 2.0 to 2.5 N·m</td>
</tr>
</tbody>
</table>

**NOTE**
1. Four-conductor polyvinyl heavy-duty power cable (JIS C3312) (VCT: heat-resistant 60 °C)
2. Fire-retardant polyflex wire (heat-resistant 105 °C) or equivalent to LMFC manufactured by The Furukawa Electric Co., Ltd.
3. The cross-section area of each cable is determined under the following conditions:
   (1) At SVPM rated output
   (2) Environment temperature of cable: 30°C
   (3) Number of harnesses
      3 (No current flows through the ground wire during normal operation.)

   The required cross-section area of a cable varies depending on the environment and requirements of the user. Select an appropriate cable size.

**WARNING**
1. Defects, such as a loose screw, an incorrectly inserted connector, and a poorly crimped terminal, can lead to a motor malfunction, excessive heat generation, and a ground fault. Exercise adequate care in installing servo amplifiers.
2. A loose screw and a poorly crimped terminal (or, if a connector is used, a loose connector contact or an incorrect connector pin-to-cable connection) on high-current carrying power supply wires or motor power wires can lead to fire. Exercise adequate care in wiring.
9.3.1.2 Details of cable K6

Cable K6 is used to control the magnetic contactor if it is installed outside the unit.

![Diagram of cable K6 connection]

**Connector**
- Manufactured by Tyco Electronics AMP D-3200 series
- Housing: 2-178128-3 (1 pcs.)
- Contact: 1-175218-2 (2 pcs.)
- (FANUC ordering information: A06B-6134-K201)

**Cable**
- Two-conductor polyvinyl heavy-duty power cable (JIS C3312), conductor size of 1.25 mm² (50/0.18), PVC sheath 9.6 mm in diameter

**Internal-contact specification:**

<table>
<thead>
<tr>
<th></th>
<th>Resistive load (\cos\phi=1)</th>
<th>Inductive load (\cos\phi=0.4, L/R=7\text{msec})</th>
</tr>
</thead>
<tbody>
<tr>
<td>Rated load</td>
<td>250VAC, 5A / 30VDC, 5A</td>
<td>250VAC, 2A / 30VDC, 2A</td>
</tr>
<tr>
<td>Maximum contact rating</td>
<td>5A</td>
<td>5A</td>
</tr>
</tbody>
</table>

**NOTE**
Always install a spark killer (CR) that matches the magnetic contactor to protect the internal contacts. The following table lists the recommended capacitances and resistances.

<table>
<thead>
<tr>
<th>Coil voltage</th>
<th>C</th>
<th>R</th>
</tr>
</thead>
<tbody>
<tr>
<td>24 VDC</td>
<td>0.22 µF</td>
<td>22 Ω</td>
</tr>
<tr>
<td>100 to 230 VAC</td>
<td>0.1 µF</td>
<td>220 Ω</td>
</tr>
</tbody>
</table>
9.3.1.3 Details of cable K7

Cable K7 is used to supply an emergency stop signal to the SVPM.

![Diagram of cable K7 connection](image)

<table>
<thead>
<tr>
<th>Connector</th>
<th>Manufactured by Tyco Electronics AMP D-3200 series</th>
</tr>
</thead>
<tbody>
<tr>
<td>Housing</td>
<td>1-178128-3 (1 pcs.)</td>
</tr>
<tr>
<td>Contact</td>
<td>1-175218-2 (2 pcs.)</td>
</tr>
<tr>
<td>(FANUC ordering information: A06B-6134-K201)</td>
<td></td>
</tr>
</tbody>
</table>

| Cable     | Two-conductor polyvinyl heavy-duty power cable (JIS C3312), conductor size of 1.25 mm² (50/0.18), PVC sheath 9.6 mm in diameter |

1. When the contact is ON (closed), the spindle motor and servo motor are enabled. When the contact is OFF (open), the external magnetic contactor (MCC) is in the off state, and the spindle motor and servo motor do not operate.

2. When the contact is set to OFF (open) during motor rotation, the spindle motor decelerates, then stops, and the servo motor is stopped by the dynamic brake.

3. The contact input signal is specified as follows:
   <1> As the external contact capacity, a voltage of at least 30 VDC and a current of at least 100 mA are required.
   <2> Significant levels (with the voltage between input pins) when the contactless signal input mode is used:
       Low level "logic 0": Up to 2 V
       High level "logic 1": At least 20 V

4. When the SVPM main power is turned off for safety in such a case that the machine protection door is open, the contact of the ESP signal (CX4), which is input to the SVPM, must be set to OFF (open) within 200 ms after turn-off of the SVPM main power.
   When the contact of the ESP signal (CX4) remains ON (closed) after the SVPM main power is turned off, a DC link low-voltage alarm occurs in the SVPM.
9.3.1.4 Details of cable K69

Cable K69 is used to supply control power (+24 V) to the SVPM.

![Connection Diagram of Cable K69]

- +24V power supply unit
- 0V
- SVPM
- Contact Manufactured by Tyco Electronics AMP
  - Housing 1-1318119-4 (1 pcs.)
  - Contact 1318107-1 (2 pcs.)
  - (FANUC ordering information: A06B-6134-K201)
- Cable Conductor size: 0.5mm², AWG20
  - Instruction outer diameter: 1.11-1.87 mm

9.3.1.5 Details of cable K70

Cable K70 is used to ground the SVPM.

<table>
<thead>
<tr>
<th>Motor power cable cross-section S (mm²)</th>
<th>Grounding cable cross-section (mm²)</th>
</tr>
</thead>
<tbody>
<tr>
<td>S ≤ 5.5</td>
<td>5.5 or greater</td>
</tr>
<tr>
<td>5.5 &lt; S ≤ 16</td>
<td>S or greater</td>
</tr>
<tr>
<td>16 &lt; S ≤ 35</td>
<td>16 or greater</td>
</tr>
<tr>
<td>35 &lt; S</td>
<td>S/2 or greater</td>
</tr>
</tbody>
</table>

**NOTE**
- The following M5 crimp terminal can be used with a cable having a large conductor diameter.
  - Nichifu Co., Ltd. CB22-5S
  - Overall conductor size range: 16.78 to 22.66 mm²
Ground plate of cabinet
(To be connected to system ground)

L-shaped metal plate (TB2 grounding terminal)

From spindle power line

K70  K70

Use short cable.

NOTE
Securing cables (crimp terminals) to the ground terminal together is not permitted.
As shown in the above figure, attach one cable (crimp terminal) to each screw.
9.3.1.6 Details of cable K21

The cable K21 is a power cable used between the SVPM and motor. The cable is attached to the SVPM through the connector D-5000.

About the receptacle housing of the SVPM-side connector
The SVPM-side connector is a key type. The key is intended to prevent incorrect connection between the axes. Select the receptacle housing that matches the SVPM and its axis that are to be used.

<table>
<thead>
<tr>
<th>Specification of the key</th>
<th>Applicable SVPM</th>
</tr>
</thead>
<tbody>
<tr>
<td>XX</td>
<td>CZ2L</td>
</tr>
<tr>
<td>XY</td>
<td>CZ2M</td>
</tr>
<tr>
<td>YY</td>
<td>CZ2N</td>
</tr>
</tbody>
</table>

About the receptacle contact of the SVPM-side connector
Four types receptacle contacts are prepared for the different line diameter of the cable. Please use the receptacle contact which suits the line diameter of the cable.
• **About the cable specification**
  
  Select the cable specification by considering the following conditions for use.
  
  <1> Motor current rating or current needed in use on a real machine
  
  <2> Cable type (heat resistance temperature, etc.)
  
  <3> Environment in which the cable is installed (operating ambient temperature, etc.)
  
  <4> Need of water proofing (pay attention to the diameter of the applicable cable clamp)
  
  <5> Certification for CE marking (compliance with various safety standards and EMC standard)
  
  <6> Securing insulation space among the cable pins at the time of cabling

• **About the motor-side connector**

  The specification of the motor-side connector varies from one motor model to another.
  
  Refer to "FANUC AC SERVO MOTOR βis series Descriptions (B-65302EN)" for explanations about the specification of the motor-side connector.
9.3.1.7 Details of cable K22

The cable K22 is used to connect the SVPM and Pulsecoder.

**For servo motor β is series (β2/4000 is to β22/2000 is)**

![Cable Diagram]

Using cable conductor

<table>
<thead>
<tr>
<th>Signal name</th>
<th>Cable length : 28m or less</th>
<th>Cable length : 50m or less</th>
</tr>
</thead>
<tbody>
<tr>
<td>5V, 0V, 6V</td>
<td>Wire construction 12/0.18 or 60/0.08 Insulation outer diameter φ0.8 to φ1.5</td>
<td>Wire construction 20/0.18 or 104/0.08 Insulation outer diameter φ0.8 to φ1.5</td>
</tr>
<tr>
<td>RD, *RD</td>
<td>0.18mm² or more Twisted-pair wire Insulation outer diameter φ0.8 to φ1.5</td>
<td>0.18mm² or more Twisted-pair wire Insulation outer diameter φ0.8 to φ1.5</td>
</tr>
<tr>
<td>Drain wire</td>
<td>0.15mm² or more</td>
<td>0.15mm² or more</td>
</tr>
</tbody>
</table>

See Subsection 5.4.1 for explanations about the SVPM-side connector that matches the recommended cable.
NOTE

1. The ground plate to which the shield is connected must be placed as close as possible to the servo amplifier so that distance between the ground plate and the servo amplifier becomes shortest.

2. In case that the cable is prepared by MTB, total resistance of 5V and 0V must be less than 2Ω.

3. Pulsecoder side connector can accept maximum 0.5mm² (wire construction 20/0.18 or 104/0.08, diameter φ1.5 or less) wire and sheath diameter is φ5.7 to φ8.0. In case of using thicker wire or cable, take measures described below.

4. In case of incremental Pulsecoder, 6V is not necessary to be connected.

- Crimp tool specification
  A06B-6114-K201/JN1S : For 0.3 mm²
  A06B-6114-K201/JN1L : For 0.18 mm² or 0.5 mm²

- Connector kit specification
  A06B-6114-K204/S : Straight plug (including a contact)
  A06B-6114-K204/E : Elbow plug (including a contact)

- Recommended cable
  A66L-0001-0460 : Flexible cable 28m or less long
  A66L-0001-0462 : Flexible cable 50m or less long
  A66L-0001-0481 : Fixed cable 28m or less long
  A66L-0001-0491 : Fixed cable 50m or less long
9.3.1.8 Details of cable K27

Cable K27 is an optical fiber cable used in the FSSB interface.

- The cable is run from connector COP10A to connector COP10B in the SVPM.
- Refer to the applicable CNC connection manual for detailed specifications of the optical fiber cable.
9.3.1.9 Details of cable K28

When a battery box is used)

Battery case
A06B-6050-K060

Battery
A06B-6050-K061

SVPM
CX5X (2)

CX5X (1)

Screw terminal : M3
Crimp terminal : 1.25-4

Housing : IL-L2S-S3L-B(N)
Contact : IL-C2-1-00001
Manufacture : Japan Aviation Electronics Industry

Connectors and Wires

- A connector (A06B-6093-K303) is optionally available.
When the built-in battery is used)

- Using the built-in battery (A06B-6073-K001) always requires the battery case (A06B-6114-K501).
9.3.2 Spindle Motor

9.3.2.1 Details of cable K10

To connect the cable to the SVPM, use a crimp terminal selected according to the following table.

<table>
<thead>
<tr>
<th>Amplifier model</th>
<th>Terminal screw</th>
<th>Tightening torque</th>
</tr>
</thead>
<tbody>
<tr>
<td>SVPM2-5.5i to 15i</td>
<td>M5</td>
<td>2.0 to 2.5 N·m</td>
</tr>
<tr>
<td>SVPM3-5.5i to 15i</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

About the cable specification

Select the cable specification by considering the following conditions for use.

<1> Motor current rating or current needed in use on a real machine

<2> Cable type (heat resistance temperature, etc.)

<3> Environment in which the cable is installed (operating ambient temperature, etc.)

<4> Need of water proofing (pay attention to the diameter of the applicable cable clamp)

<5> Certification for CE marking (compliance with various safety standards and EMC standard)

<6> Securing insulation space among the cable pins at the time of cabling
9.3.2.2 Details of cable K12

Cable specification: 0.09 mm² twisted pair with common shielded
Recommended cable (wire only): A66L-0001-0284#10P
See Section 5.4.1 for details of connectors applied to recommended cable.

NOTE
If cable K12 is installed near the likes of a power cable, its shielding wire must be connected to a ground plate. If an SVPM is installed near the CNC, however, it is not necessary to connect the shielding wire to a ground plate.
### Connector pin assignment

**JA7A and JA7B**

| 1 | 2 | 3 | 4 | 5 | 6 | 7 | 8 | 9 | 5V (Note 1) | 10 | 11 | 12 | 13 | 14 | 15 | 16 | 17 | 18 | 19 | 20 | 5V (Note 1) |
|---|---|---|---|---|---|---|---|---|--------------|----|----|----|----|----|----|----|----|----|----|--------------|
| 1 | SIN | 2 | *SIN | 3 | SOUT | 4 | *SOUT | 5 | 0V | 6 | 0V | 7 | 0V | 8 | 0V | 9 | 5V (Note 1) | 10 | | 20 | 5V (Note 1) |

**NOTE**

1. The +5V pin is intended for optical link transmission based on the optical I/O link adapter. Do not use it when a metal cable is being used; otherwise, the +5V line of the CNC will be short-circuited with that of the SVPM.

2. SVPM serial interface connection using an optical fiber cable

   The use of an optical I/O link adapter with the SVPM serial interface extends the maximum allowable length of the optical fiber cable to up to 200 m. Use optical fiber cables in the following cases:
   - When the required cable length is 20 m or longer.
   - When the cable must be extended across multiple cabinets, and the cabinets cannot be connected with a grounding wire 5.5 mm² or larger.
   - The cable may be affected by noise, for example, if the cable is laid near a strong magnetic noise source like a welding machine or in parallel with a power line over a long distance.
9.3.2.3 Details of cable K14

(1) For the motor with Mi sensor

Manufactured by Tyco Electronics AMP
Housing : 178289-6
Contact : 1-175217-2

Cable specification : 6 common shielded cable
(Three 0.18mm² twisted pairs + 0.5mm² wires)
Recommended cable conductor : A66L-0001-0368
See Section 5.4.1 for explanations about the JYA2-side connector that matches the recommended cable.

NOTE
If only one 5V line and only one 0V line are used, use pins 20 and 16 for them, so that, if the connector is attached the wrong way, the sensor can be prevented from being damaged.
Connector pin assignment

**JYA2**

<table>
<thead>
<tr>
<th>JYA2</th>
<th>1</th>
<th>2</th>
<th>3</th>
<th>4</th>
<th>5</th>
<th>6</th>
<th>7</th>
<th>8</th>
<th>9</th>
</tr>
</thead>
<tbody>
<tr>
<td>10</td>
<td>SS</td>
<td>#</td>
<td>#</td>
<td>MB</td>
<td>MA</td>
<td>#</td>
<td>MB</td>
<td>MA</td>
<td>5V</td>
</tr>
<tr>
<td>19</td>
<td>#</td>
<td>#</td>
<td>#</td>
<td>#</td>
<td>#</td>
<td>#</td>
<td>#</td>
<td>0V</td>
<td>0V</td>
</tr>
</tbody>
</table>

**NOTE**

Do not use any pin that is marked #, because they may already be in use for input/output signals for an optional PCB.

Pin arrangement of the connector (manufactured by Tyco Electronics AMP) on the motor side

<table>
<thead>
<tr>
<th>A1</th>
<th>+5V</th>
<th>B1</th>
</tr>
</thead>
<tbody>
<tr>
<td>A2</td>
<td>PA</td>
<td>B2</td>
</tr>
<tr>
<td>A3</td>
<td>PB</td>
<td>B3</td>
</tr>
<tr>
<td>A4</td>
<td></td>
<td>B4</td>
</tr>
<tr>
<td>A5</td>
<td>SS</td>
<td>B5</td>
</tr>
<tr>
<td>A6</td>
<td>THR1</td>
<td>B6</td>
</tr>
</tbody>
</table>
### 9.3.2.4 Details of cable K16

**Cable specification**: 6 common shielded cable

(Three 0.18mm² twisted pairs + 0.5mm² wires)

**Recommended cable conductor**: A66L-0001-0286

See Section 5.4.1 for explanations about the JYA3-side connector that matches the recommended cable.

**NOTE**

If only one 5V line and only one 0V line are used, use pins 20 and 16 for them, so that, if the connector is attached the wrong way, the sensor can be prevented from being damaged.
Connector pin assignment

JYA3

<table>
<thead>
<tr>
<th></th>
<th>10</th>
<th></th>
<th>19</th>
<th></th>
<th>20</th>
</tr>
</thead>
<tbody>
<tr>
<td>9</td>
<td>5V</td>
<td>#</td>
<td>10</td>
<td>5V</td>
<td></td>
</tr>
<tr>
<td>7</td>
<td>PB</td>
<td>*PB</td>
<td>17</td>
<td>#</td>
<td></td>
</tr>
<tr>
<td>6</td>
<td>*PA</td>
<td>15</td>
<td>EXTSC</td>
<td></td>
<td></td>
</tr>
<tr>
<td>4</td>
<td>#</td>
<td>13</td>
<td>SCCOM</td>
<td></td>
<td></td>
</tr>
<tr>
<td>2</td>
<td>*PZ</td>
<td>11</td>
<td>24V</td>
<td></td>
<td></td>
</tr>
<tr>
<td>1</td>
<td>PZ</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

**NOTE**
Do not use any pin that is marked #.

Pin arrangement of the cannon connector on the position coder side

<table>
<thead>
<tr>
<th>A</th>
<th>PA</th>
<th>B</th>
<th>PZ</th>
<th>C</th>
<th>PB</th>
</tr>
</thead>
<tbody>
<tr>
<td>D</td>
<td>E</td>
<td>F</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>G</td>
<td>H</td>
<td>+5V</td>
<td>J</td>
<td></td>
<td></td>
</tr>
<tr>
<td>K</td>
<td>0V</td>
<td>L</td>
<td>M</td>
<td></td>
<td></td>
</tr>
<tr>
<td>N</td>
<td>*PA</td>
<td>P</td>
<td>*PZ</td>
<td>R</td>
<td>*PB</td>
</tr>
<tr>
<td>S</td>
<td>T</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>
9.3.2.5 Details of cable K17

(1) For the motor with MZi sensor

<table>
<thead>
<tr>
<th>SVPM #A</th>
<th>JYA2</th>
<th>Shield</th>
<th>MZi sensorMotor</th>
</tr>
</thead>
<tbody>
<tr>
<td>(1)</td>
<td></td>
<td>MZ</td>
<td>(A4)</td>
</tr>
<tr>
<td>(2)</td>
<td></td>
<td>*MZ</td>
<td>(B4)</td>
</tr>
<tr>
<td>(5)</td>
<td></td>
<td>MA</td>
<td>(A2)</td>
</tr>
<tr>
<td>(6)</td>
<td></td>
<td>*MA</td>
<td>(B2)</td>
</tr>
<tr>
<td>(7)</td>
<td></td>
<td>MB</td>
<td>(A3)</td>
</tr>
<tr>
<td>(8)</td>
<td></td>
<td>*MB</td>
<td>(B3)</td>
</tr>
<tr>
<td>(9)(18)(20)</td>
<td>5V 0.5mm²</td>
<td>5V</td>
<td>(A1)</td>
</tr>
<tr>
<td>(12)(14)(16)</td>
<td>0V 0.5mm²</td>
<td>0V</td>
<td>(B5)</td>
</tr>
<tr>
<td>(13)</td>
<td></td>
<td>THR1</td>
<td>(A6)</td>
</tr>
<tr>
<td>(15)</td>
<td></td>
<td>THR2</td>
<td>(B6)</td>
</tr>
<tr>
<td>(10)</td>
<td></td>
<td>SS</td>
<td>(A5)</td>
</tr>
</tbody>
</table>

20-pin half-pitch connector

Manufactured by tyco Electronics AMP
Housing: 178289-6
Contact: 1-175217-2

Cable specification: 6 common shielded cable
(Four 0.18mm² twisted pairs + 0.5mm² wires)
Recommended cable conductor: A66L-0001-0368
See Section 5.4.1 for explanations about the JYA2-side connector that matches the recommended cable.

**NOTE**
If only one 5V line and only one 0V line are used, use pins 20 and 16 for them, so that, if the connector is attached the wrong way, the sensor can be prevented from being damaged.
## Connector pin assignment

### JYA2

<table>
<thead>
<tr>
<th>9</th>
<th>5V</th>
<th>10</th>
<th>SS</th>
<th>19</th>
<th>#</th>
<th>20</th>
<th>5V</th>
</tr>
</thead>
<tbody>
<tr>
<td>7</td>
<td>MB</td>
<td>8</td>
<td>*MB</td>
<td>17</td>
<td>#</td>
<td>18</td>
<td>5V</td>
</tr>
<tr>
<td>5</td>
<td>MA</td>
<td>6</td>
<td>*MA</td>
<td>15</td>
<td>THR2</td>
<td>16</td>
<td>0V</td>
</tr>
<tr>
<td>3</td>
<td>#</td>
<td>4</td>
<td>#</td>
<td>13</td>
<td>THR1</td>
<td>14</td>
<td>0V</td>
</tr>
<tr>
<td>1</td>
<td>MZ</td>
<td>2</td>
<td>*MZ</td>
<td>11</td>
<td>#</td>
<td>12</td>
<td>0V</td>
</tr>
</tbody>
</table>

### JYA4

<table>
<thead>
<tr>
<th>9</th>
<th>5V</th>
<th>10</th>
<th>SS</th>
<th>19</th>
<th>#</th>
<th>20</th>
<th>5V</th>
</tr>
</thead>
<tbody>
<tr>
<td>7</td>
<td>MB</td>
<td>8</td>
<td>*MB</td>
<td>17</td>
<td>#</td>
<td>18</td>
<td>5V</td>
</tr>
<tr>
<td>5</td>
<td>MA</td>
<td>6</td>
<td>*MA</td>
<td>15</td>
<td>THR2</td>
<td>16</td>
<td>0V</td>
</tr>
<tr>
<td>3</td>
<td>#</td>
<td>4</td>
<td>#</td>
<td>13</td>
<td>THR1</td>
<td>14</td>
<td>0V</td>
</tr>
<tr>
<td>1</td>
<td>MZ</td>
<td>2</td>
<td>*MZ</td>
<td>11</td>
<td>#</td>
<td>12</td>
<td>0V</td>
</tr>
</tbody>
</table>

### NOTE

Do not use any pin that is marked #, because they may already be in use for input/output signals for an optional PCB.

Pin arrangement of the connector (manufactured by Tyco Electronics AMP) on the motor side

<table>
<thead>
<tr>
<th>A1</th>
<th>+5V</th>
<th>B1</th>
</tr>
</thead>
<tbody>
<tr>
<td>A2</td>
<td>VA</td>
<td>B2</td>
</tr>
<tr>
<td>A3</td>
<td>VB</td>
<td>B3</td>
</tr>
<tr>
<td>A4</td>
<td>VZ</td>
<td>B4</td>
</tr>
<tr>
<td>A5</td>
<td>SS</td>
<td>B5</td>
</tr>
<tr>
<td>A6</td>
<td>THR1</td>
<td>B6</td>
</tr>
</tbody>
</table>
9.3.2.6 Details of cable K33

Cable specification: 0.09mm² common shielded cable
Recommended cable conductor: A66L-0001-0284#10P
See Section 5.4.1 for explanations about the JY1-side connector that matches the recommended cable.

NOTE
1 Select such an external resistance such that VR+R1 falls within the range between 2 kΩ and 10 kΩ.
2 No LM output is included in the #C specification. For the SM output, select the load meter or speedometer by parameter setting.
### Connector pin assignment

**JY1**

<table>
<thead>
<tr>
<th>Pin</th>
<th>Assignment</th>
</tr>
</thead>
<tbody>
<tr>
<td>9</td>
<td>#</td>
</tr>
<tr>
<td>7</td>
<td>#</td>
</tr>
<tr>
<td>5</td>
<td>#</td>
</tr>
<tr>
<td>3</td>
<td>#</td>
</tr>
<tr>
<td>1</td>
<td>OVR1</td>
</tr>
<tr>
<td>10</td>
<td>#</td>
</tr>
<tr>
<td>8</td>
<td>#</td>
</tr>
<tr>
<td>6</td>
<td>#</td>
</tr>
<tr>
<td>4</td>
<td>#</td>
</tr>
<tr>
<td>2</td>
<td>OVR2</td>
</tr>
<tr>
<td>19</td>
<td>0M</td>
</tr>
<tr>
<td>17</td>
<td>SM</td>
</tr>
<tr>
<td>15</td>
<td>#</td>
</tr>
<tr>
<td>13</td>
<td>#</td>
</tr>
<tr>
<td>11</td>
<td>#</td>
</tr>
<tr>
<td>20</td>
<td>0V</td>
</tr>
<tr>
<td>18</td>
<td>0M</td>
</tr>
<tr>
<td>16</td>
<td>LM</td>
</tr>
<tr>
<td>14</td>
<td>#</td>
</tr>
</tbody>
</table>

**NOTE**

Pins indicated # are intended to input or output signals used on a spindle check board. Do not connect any other signal line to them.

### Voltage signal for the speedometer (SM)

By externally connecting a tachometer, the speed of the spindle motor can be indicated. The voltage (DC) proportional to the speed (for the #C specification, an estimated speed) is output, regardless of the rotation direction of the motor. At the maximum motor speed, +10 V is output.

The output voltage of the speedometer in the forward direction and reverse direction is calibrated using a parameter. The precision is ±3% Max.

![Graph showing the relationship between motor speed and output voltage](image-url)
Voltage signal for the load meter (LM)

The load meter indicates the percentage of the load to the maximum motor output (load ratio). A voltage of 10 V is output at the maximum output.

- Legend

<table>
<thead>
<tr>
<th>Color</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>White</td>
<td>Continuous rating</td>
</tr>
<tr>
<td>Yellow</td>
<td>Short-time rating</td>
</tr>
<tr>
<td>Red</td>
<td>Rated output exceeded</td>
</tr>
</tbody>
</table>

**NOTE**

1. The vertical axis represents the motor speed. If the spindle-to-motor speed ratio is not 1:1, it is recommended to convert the motor speed to the spindle speed.
2. The precision of load meter voltage depends on the used speed and input voltage. The maximum error is about ±15%.
• β3/10000i

Motor speed [min⁻¹]

Load meter [V] (Max. 10V)

• β6/10000i

Motor speed [min⁻¹]

Load meter [V] (Max. 10V)

• β8/8000i

Motor speed [min⁻¹]

Load meter [V] (Max. 10V)

• β12/7000i

Motor speed [min⁻¹]

Load meter [V] (Max. 10V)
If the motor is often used at a speed of 2000 min$^{-1}$ or higher, a simplified version of the load meter shown below could be used.

- $\beta_{3/10000}i$

- $\beta_{6/10000}i$, $\beta_{12/7000}i$

- $\beta_{8/8000}i$
9.3.2.7 Details of cable K71

20-pin half-pitch connector
20-pin half-pitch connector

Cable specification: 0.09mm² common shielded cable
Recommended cable conductor: A66L-0001-0284#10P
See Section 5.4.1 for explanations about the JYA3-side connector that matches the recommended cable.

**Connector pin assignment**

See Subsection 5.3.3.4 “Details of cable K16.”
External one-rotation signal switch (proximity switch)

Use an external one-rotation signal switch (proximity switch) that satisfies the specifications indicated below.

(a) DC two-wire proximity switch

<table>
<thead>
<tr>
<th>Item</th>
<th>Specification</th>
</tr>
</thead>
<tbody>
<tr>
<td>Supply voltage</td>
<td>24 VDC ±1.5 V (24 VDC is fed from the SVPM.)</td>
</tr>
<tr>
<td>Response frequency</td>
<td>400 Hz or higher</td>
</tr>
<tr>
<td>Load current</td>
<td>16 mA or higher</td>
</tr>
<tr>
<td>Residual voltage</td>
<td>4 V or higher</td>
</tr>
<tr>
<td>Supply (leakage) current</td>
<td>1.5 mA or lower</td>
</tr>
</tbody>
</table>

(b) DC three-wire proximity switch

<table>
<thead>
<tr>
<th>Item</th>
<th>Specification</th>
</tr>
</thead>
<tbody>
<tr>
<td>Supply voltage</td>
<td>24 VDC ±1.5 V (24 VDC is fed from the SVPM.)</td>
</tr>
<tr>
<td>Response frequency</td>
<td>400 Hz or higher</td>
</tr>
<tr>
<td>Load current</td>
<td>16 mA or higher</td>
</tr>
<tr>
<td>Residual voltage</td>
<td>4 V or higher</td>
</tr>
<tr>
<td>Supply current</td>
<td>50 mA or lower</td>
</tr>
</tbody>
</table>

**NOTE**

The location where a proximity switch signal occurs depends on the temperature. So, consider the ambient temperature when selecting a proximity switch.
9.3.2.8 Details of cable K79

Manufactured by tyco Electronics AMP
Housing : 178289-6
Contact : 1-175217-2

Cable specification : 0.18 mm² twisted pair with common shielded
Recommended cable conductor : A66L-0001-0368
See Section 5.4.1 for explanations about the JYA2-side connector that matches the recommended cable.
9.4 DETAILS OF CONNECTORS

9.4.1 20-Pin Half-Pitch Connectors

The following table lists the 20-pin half-pitch connectors used for the \( \beta_i \) series servo amplifier and the recommended cables for these connectors. Use connectors that match the recommended cables specified on the applicable connection diagram in detail.

<table>
<thead>
<tr>
<th>Recommended-cable specification</th>
<th>Applicable connector</th>
<th>Connector model number</th>
<th>Housing model number</th>
<th>Connector + housing</th>
</tr>
</thead>
<tbody>
<tr>
<td>A66L-0001-0284#10P</td>
<td>Crimp type</td>
<td>Hirose Electric Co., Ltd. FI30-20S</td>
<td>Sideways cable slot type FI-20-CVS2</td>
<td>Sideways cable slot type FI30-20S-CVS2</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Honda Tsushin Kogyo Co., Ltd. PCR-E20FA</td>
<td>PCR-V20LA</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Soldering type</td>
<td>Hirose Electric Co., Ltd. FI40B-20S</td>
<td>Sideways cable slot type FI-20-CVS2</td>
<td>Sideways cable slot type FI40B-20S-CVS2</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Honda Tsushin Kogyo Co., Ltd. PCR-E20FS</td>
<td>PCR-V20LA</td>
<td></td>
</tr>
<tr>
<td>A66L-0001-0286</td>
<td>Soldering type</td>
<td>Note that this connector does not have pin No. 11, 13, 15, 17, or 19. Hirose Electric Co., Ltd. FI40B-2015S</td>
<td>Sideways cable slot type FI-2015-CVS</td>
<td>Sideways cable slot type FI40B-2015S-CVS</td>
</tr>
<tr>
<td>A66L-0001-0460</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>A66L-0001-0462</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>A66L-0001-0481</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>A66L-0001-0491</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>A66L-0001-0368</td>
<td>Soldering type</td>
<td>Hirose Electric Co., Ltd. FI40B-20S</td>
<td>Sideways cable slot type FI-20-CVS5</td>
<td>Sideways cable slot type FI40B-20S-CVS5</td>
</tr>
</tbody>
</table>
9.4.2 Tyco Electronics AMP D-5000 Series Connector

The βi series uses the D-5000 series connector (manufactured by Tyco Electronics AMP) for the motor power cable. The connector is provided with three keys that assure it is inserted in the correct direction. In addition, four types of receptacle contacts are available, from which the user can select the suitable one depending on the amount of current to use (size of the conductor). Connectors and tools can be ordered directly from Tyco Electronics AMP. FANUC also furnishes options. For details, see “Order List (B-65321EN)”.

![Connector D-5000 Diagram]

**Receptacle housing**

There are three different key types for the receptacle housing. Be sure to select the receptacle housing of the key type that matches the servo axis you use.

<table>
<thead>
<tr>
<th>Receptacle housing model number</th>
<th>Specification of the key</th>
<th>Applicable servo amplifier</th>
</tr>
</thead>
<tbody>
<tr>
<td>1-917807-2</td>
<td>XX</td>
<td>Servo L-axis</td>
</tr>
<tr>
<td>3-917807-2</td>
<td>XY</td>
<td>Servo M-axis</td>
</tr>
<tr>
<td>2-917807-2</td>
<td>YY</td>
<td>Servo N-axis</td>
</tr>
</tbody>
</table>

(Reference) There is a cable-end connectors which are inserted no matter what key is used. Contact the connector manufacturer (Tyco Electronics AMP) for details.
Receptacle contact

Four receptacle contact types are available, so as to support different conductor diameters. Be sure to select the receptacle contact (silver plating) that matches the servo axis you use.

<table>
<thead>
<tr>
<th>Rectangle contact model number</th>
<th>Conductor size (mm²)</th>
<th>Conductor size AWG</th>
<th>Insulation outer diameter (mm)</th>
<th>Manual tool model number</th>
</tr>
</thead>
<tbody>
<tr>
<td>SS size 1318986-6</td>
<td>0.50 – 1.42</td>
<td>20/18</td>
<td>1.08-3.23</td>
<td>1366656-1</td>
</tr>
<tr>
<td>S size 316040-6</td>
<td>1.23 – 2.27</td>
<td>16/14</td>
<td>3.0-3.8</td>
<td>234170-1</td>
</tr>
<tr>
<td>M size 316041-6</td>
<td>3.08 – 5.50</td>
<td>12/10</td>
<td>4.0-5.2</td>
<td>234171-1</td>
</tr>
<tr>
<td>L size 1318697-6</td>
<td>7.27 – 8.92</td>
<td>8</td>
<td>4.9-7.8</td>
<td>1366044-1</td>
</tr>
</tbody>
</table>
10 HEAT DISSIPATION

The amount of heat generated in an SVPM varies depending on its model, the current flowing through the motor, and the motor output. (Refer to the respective motor description manuals for the current and output of each motor.)

(1) **Total amount of heat dissipation**

The total amount of heat dissipation by the SVPM is calculated according to the following expression:

\[
\text{Total amount of heat dissipation} = a + Ka_1 \times b_1 + Ka_2 \times b_2 + Ka_3 \times b_3 + Ka_4 \times b_4 + Ka_5 \times b_5
\]

- **a** : Amount of heat dissipation determined by the SVPM model [W]
- **Ka_1** to **Ka_5** : Coefficient determined by the SVPM
- **b_1** : Total output of motors connected to the SVPM [kW]
- **b_2** : Current flowing through the spindle motor [Arms]
- **b_3** : Current flowing through the servo motor of L-axis [Arms]
- **b_4** : Current flowing through the servo motor of M-axis [Arms]
- **b_5** : Current flowing through the servo motor of N-axis [Arms]

### SVPM (total amount of heat dissipation)

<table>
<thead>
<tr>
<th>Name</th>
<th>Specification</th>
<th>a [W]</th>
<th>Coefficient</th>
</tr>
</thead>
<tbody>
<tr>
<td>SVPM2-5.5i</td>
<td>H201</td>
<td>22</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>Ka1: 14.3</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>Ka2: 5.8</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>Ka3: 5.0</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>Ka4: 5.0</td>
</tr>
<tr>
<td>SVPM2-11i</td>
<td>H202</td>
<td>22</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>Ka1: 14.3</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>Ka2: 5.4</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>Ka3: 5.0</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>Ka4: 5.0</td>
</tr>
<tr>
<td>SVPM2-15i</td>
<td>H203</td>
<td>22</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>Ka1: 13.1</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>Ka2: 5.5</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>Ka3: 4.6</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>Ka4: 4.6</td>
</tr>
<tr>
<td>SVPM3-5.5i</td>
<td>H301</td>
<td>24</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>Ka1: 14.3</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>Ka2: 5.8</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>Ka3: 5.0</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>Ka4: 5.0</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>Ka5: 4.6</td>
</tr>
<tr>
<td>SVPM3-11i</td>
<td>H302</td>
<td>24</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>Ka1: 14.3</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>Ka2: 5.4</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>Ka3: 5.0</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>Ka4: 5.0</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>Ka5: 4.6</td>
</tr>
</tbody>
</table>
### 10. HEAT DISSIPATION

#### SVPM (total amount of heat dissipation)

<table>
<thead>
<tr>
<th>Name</th>
<th>Specification</th>
<th>( a ) [W]</th>
<th>Coefficient</th>
</tr>
</thead>
<tbody>
<tr>
<td>SVPM3-15i</td>
<td>H303</td>
<td>24</td>
<td></td>
</tr>
</tbody>
</table>

| Ka1 | 13.1 |
| Ka2 | 5.5  |
| Ka3 | 4.6  |
| Ka4 | 4.6  |
| Ka5 | 4.6  |

#### AC reactor

<table>
<thead>
<tr>
<th>Name</th>
<th>Ordering number</th>
<th>Rated output</th>
<th>Total amount of heat dissipation</th>
</tr>
</thead>
<tbody>
<tr>
<td>For SVPM2-5.5i</td>
<td>A81L-0001-0155</td>
<td>5.5 kW</td>
<td>16 W</td>
</tr>
<tr>
<td>For SVPM3-5.5i</td>
<td></td>
<td>11 kW</td>
<td>38 W</td>
</tr>
<tr>
<td>For SVPM2-15i</td>
<td>A81L-0001-0156</td>
<td>15 kW</td>
<td>50 W</td>
</tr>
</tbody>
</table>
(2) Residual amount of heat in the cabinet

By placing the heat sink section of the SVPM outside the cabinet, the residual amount of heat in the cabinet can be calculated according to the expression below.

Residual amount of heat in the cabinet
\[ = a + Ka1 \times b1 + Ka2 \times b2 + Ka3 \times b3 + Ka4 \times b4 + Ka5 \times b5 \]

- **a**: Amount of heat dissipation determined by the SVPM model [W]
- **Ka1 to Ka5**: Coefficient determined by the SVPM
- **b1**: Total output of motors connected to the SVPM [kW]
- **b2**: Current flowing through the spindle motor [Amps]
- **b3**: Current flowing through the servo motor of L-axis [Amps]
- **b4**: Current flowing through the servo motor of M-axis [Amps]
- **b5**: Current flowing through the servo motor of N-axis [Amps]

### SVPM (residual amount of heat in the cabinet)

<table>
<thead>
<tr>
<th>Name</th>
<th>Specification</th>
<th>a [W]</th>
<th>Coefficient</th>
</tr>
</thead>
<tbody>
<tr>
<td>SVPM2-5.5i</td>
<td>H201</td>
<td>22</td>
<td>Ka1: 2.1</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>Ka2: 0.9</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>Ka3: 0.8</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>Ka4: 0.8</td>
</tr>
<tr>
<td>SVPM2-11i</td>
<td>H202</td>
<td>22</td>
<td>Ka1: 2.1</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>Ka2: 0.8</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>Ka3: 0.8</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>Ka4: 0.8</td>
</tr>
<tr>
<td>SVPM2-15i</td>
<td>H203</td>
<td>22</td>
<td>Ka1: 1.3</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>Ka2: 0.6</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>Ka3: 0.5</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>Ka4: 0.5</td>
</tr>
<tr>
<td>SVPM3-5.5i</td>
<td>H301</td>
<td>24</td>
<td>Ka1: 2.1</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>Ka2: 0.9</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>Ka3: 0.8</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>Ka4: 0.8</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>Ka5: 0.7</td>
</tr>
<tr>
<td>SVPM3-11i</td>
<td>H302</td>
<td>24</td>
<td>Ka1: 2.1</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>Ka2: 0.8</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>Ka3: 0.8</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>Ka4: 0.8</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>Ka5: 0.7</td>
</tr>
<tr>
<td>SVPM3-15i</td>
<td>H303</td>
<td>24</td>
<td>Ka1: 1.3</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>Ka2: 0.6</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>Ka3: 0.5</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>Ka4: 0.5</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>Ka5: 0.5</td>
</tr>
</tbody>
</table>
POWER CABLE FOR SERVO MOTOR AND AMPLIFIER
11.1 SELECTING A POWER CABLE

Select the cable specification by considering the following conditions for use:
<1> Motor current rating or current needed in use on a real machine
<2> Cable type (heat resistance temperature, etc.)
<3> Environment in which the cable is installed (operating ambient temperature, etc.)
<4> Need of water proofing (pay attention to the diameter of the applicable cable clamp)
<5> Certification for CE marking (compliance with various safety standards and EMC standard)
<6> Insulation distance between the cable and terminal is secured at the time of wiring.

Examples of selecting a heavy-duty power cable are shown below. Fully check the cable specifications based on the actual use conditions and use an example below.
The cable diameters are determined based on JCS No. 168 D (1980), "Allowable Currents for Power Cables (1)."

**Selection example of power line (reference)**

[Selection example 1]
- Heavy-duty power cable specification:
  Maximum allowable conductor temperature 60 °C
- Environment temperature: 30 °C

<table>
<thead>
<tr>
<th>Cable diameter [mm²]</th>
<th>Allowable current value [Arms]</th>
<th>Receptacle contact specification</th>
</tr>
</thead>
<tbody>
<tr>
<td>0.75</td>
<td>Less than 11</td>
<td>SS size 1318986-6</td>
</tr>
<tr>
<td>1.25</td>
<td>Less than 15</td>
<td>S size 316040-6</td>
</tr>
<tr>
<td>2</td>
<td>Less than 19</td>
<td>S size 316040-6</td>
</tr>
<tr>
<td>3.5</td>
<td>Less than 27</td>
<td>M size 316041-6</td>
</tr>
<tr>
<td>5.5</td>
<td>Less than 35</td>
<td>M size 316041-6</td>
</tr>
<tr>
<td>8</td>
<td>Up to 43</td>
<td>L size 1318697-6</td>
</tr>
</tbody>
</table>

[Selection example 2]
- Heavy-duty power cable specification:
  Maximum allowable conductor temperature 80 °C
- Environment temperature: 55 °C

<table>
<thead>
<tr>
<th>Cable diameter [mm²]</th>
<th>Allowable current value [Arms]</th>
<th>Receptacle contact specification</th>
</tr>
</thead>
<tbody>
<tr>
<td>0.75</td>
<td>Less than 9.2</td>
<td>SS size 1318986-6</td>
</tr>
<tr>
<td>1.25</td>
<td>Less than 12.7</td>
<td>S size 316040-6</td>
</tr>
<tr>
<td>2</td>
<td>Less than 16.3</td>
<td>S size 316040-6</td>
</tr>
<tr>
<td>3.5</td>
<td>Less than 23.4</td>
<td>M size 316041-6</td>
</tr>
<tr>
<td>5.5</td>
<td>Less than 31.2</td>
<td>M size 316041-6</td>
</tr>
<tr>
<td>8</td>
<td>Less than 38.3</td>
<td>L size 1318697-6</td>
</tr>
</tbody>
</table>
[Selection example 3]
- Fire-retardant polyflex wire or equivalent to LMFC manufactured by The Furukawa Electric Co., Ltd.:
  Maximum allowable conductor temperature 105°C
- Environment temperature: 30°C

<table>
<thead>
<tr>
<th>Cable diameter [mm²]</th>
<th>Allowable current value [Arms]</th>
</tr>
</thead>
<tbody>
<tr>
<td>0.75</td>
<td>Less than 12</td>
</tr>
<tr>
<td>1.25</td>
<td>Less than 16</td>
</tr>
<tr>
<td>2</td>
<td>Less than 21</td>
</tr>
<tr>
<td>3.5</td>
<td>Less than 32</td>
</tr>
<tr>
<td>5.5</td>
<td>Less than 43</td>
</tr>
<tr>
<td>8</td>
<td>Less than 55</td>
</tr>
<tr>
<td>14</td>
<td>Less than 79</td>
</tr>
<tr>
<td>22</td>
<td>Less than 113</td>
</tr>
<tr>
<td>30</td>
<td>Less than 137</td>
</tr>
</tbody>
</table>

[Selection example 4]
- Fire-retardant polyflex wire or equivalent to LMFC manufactured by The Furukawa Electric Co., Ltd.:
  Maximum allowable conductor temperature 105°C
- Environment temperature: 55°C

<table>
<thead>
<tr>
<th>Cable diameter [mm²]</th>
<th>Allowable current value [Arms]</th>
</tr>
</thead>
<tbody>
<tr>
<td>0.75</td>
<td>Less than 10</td>
</tr>
<tr>
<td>1.25</td>
<td>Less than 13</td>
</tr>
<tr>
<td>2</td>
<td>Less than 17</td>
</tr>
<tr>
<td>3.5</td>
<td>Less than 26</td>
</tr>
<tr>
<td>5.5</td>
<td>Less than 35</td>
</tr>
<tr>
<td>8</td>
<td>Less than 44</td>
</tr>
<tr>
<td>14</td>
<td>Less than 64</td>
</tr>
<tr>
<td>22</td>
<td>Less than 92</td>
</tr>
<tr>
<td>30</td>
<td>Less than 112</td>
</tr>
<tr>
<td>38</td>
<td>Less than 131</td>
</tr>
</tbody>
</table>
11.2 SAMPLE POWER CABLES SELECTED FOR SERVO MOTORS (REFERENCE)

Examples of selections when a heavy-duty power cord is used

<table>
<thead>
<tr>
<th>Servo motor</th>
<th>Continuous rated current [Arms] (reference value)</th>
<th>Cable diameter [mm²] when environment temperature 30°C</th>
<th>Cable diameter [mm²] when environment temperature 55°C</th>
</tr>
</thead>
<tbody>
<tr>
<td>β2/4000is</td>
<td>3.3</td>
<td>0.75</td>
<td>0.75</td>
</tr>
<tr>
<td>β4/4000is</td>
<td>4.7</td>
<td>0.75</td>
<td>0.75</td>
</tr>
<tr>
<td>β8/3000is</td>
<td>6.0</td>
<td>0.75</td>
<td>0.75</td>
</tr>
<tr>
<td>β12/3000is</td>
<td>10.2</td>
<td>0.75</td>
<td>1.25</td>
</tr>
<tr>
<td>β22/2000is</td>
<td>11.3</td>
<td>0.75</td>
<td>1.25</td>
</tr>
</tbody>
</table>

11.3 SAMPLE POWER CABLES SELECTED FOR SPINDLE MOTORS (REFERENCE)

Environment temperature : 30°C

<table>
<thead>
<tr>
<th>SVPM model</th>
<th>Motor model</th>
<th>Continuous rated current [Arms] (reference value)</th>
<th>Cable diameter [mm²] when environment temperature 30°C</th>
<th>Cable diameter [mm²] when environment temperature 55°C</th>
<th>Terminal size</th>
</tr>
</thead>
<tbody>
<tr>
<td>SVPM-5.5i</td>
<td>β3i</td>
<td>5.5 mm²</td>
<td>3.5 mm²</td>
<td>M5</td>
<td>M5</td>
</tr>
<tr>
<td>SVPM-11i</td>
<td>β6i</td>
<td>8 mm²</td>
<td>5.5 mm²</td>
<td>M5</td>
<td>M5</td>
</tr>
<tr>
<td>SVPM-15i</td>
<td>β12i</td>
<td>14 mm²</td>
<td>8 mm²</td>
<td>M5</td>
<td>M5</td>
</tr>
</tbody>
</table>

Environment temperature : 55°C

<table>
<thead>
<tr>
<th>SVPM model</th>
<th>Motor model</th>
<th>Continuous rated current [Arms] (reference value)</th>
<th>Cable diameter [mm²] when environment temperature 30°C</th>
<th>Cable diameter [mm²] when environment temperature 55°C</th>
<th>Terminal size</th>
</tr>
</thead>
<tbody>
<tr>
<td>SVPM-5.5i</td>
<td>β3i</td>
<td>5.5 mm²</td>
<td>3.5 mm²</td>
<td>M5</td>
<td>M5</td>
</tr>
<tr>
<td>SVPM-11i</td>
<td>β6i</td>
<td>8 mm²</td>
<td>5.5 mm²</td>
<td>M5</td>
<td>M5</td>
</tr>
<tr>
<td>SVPM-15i</td>
<td>β12i</td>
<td>14 mm²</td>
<td>8 mm²</td>
<td>M5</td>
<td>M5</td>
</tr>
</tbody>
</table>

NOTE
1 Equivalent to four-conductor polyvinyl heavy-duty power cable (JIS C3312)
2 Fire-retardant polyflex wire or equivalent to LMFC manufactured by The Furukawa Electric Co., Ltd.
III. I/O Link
1 OVERVIEW

The FANUC SERVO AMPLIFIER \( \beta \)\( i \) series I/O Link option (called the \( \beta \)\( i \) SVM hereinafter) has the following features:

1. One-axis AC servo amplifier with excellent cost performance, suitable for a positioning axis
2. Designed for driving the \( \beta \)\( is \), \( \alpha \)\( is \), and \( \alpha \)\( i \) servo motors.
3. A position control function is provided. In addition, a set for easily controlling peripheral equipment such as a turret and ATC is provided.
4. The \( \beta \)\( i \) SVM can be connected to the Series 0\( i \)/0\( i \) Mate, Series 16\( i \)/18\( i \)/21\( i \), Series 30\( i \)/31\( i \)/32\( i \), and Power Mate i-MODEL D/H via the FANUC I/O Link (called the I/O Link hereinafter), therefore, easily expanding positioning axes.
5. Parameters, current positions, and diagnostic information can be displayed and set from a CNC.
6. Instructions for making a movement in synchronization with pulse trains externally input are provided, which can find various uses.
7. The \( \beta \)\( i \) SVM is designed in compliance with the following safety standards:
   - EN50178
   - UL508C
   - CSA C22.2
   - EN61000-6-2
   - EN55011

The following improvements have been made from FANUC SERVO AMPLIFIER \( \beta \) series I/O Link option:

1. HRV2 is employed as the current control method. This improves the response characteristics of the motor and makes feed operations more smoothly.
2. Improved maintainability
   - The new structure used allows you to remove the control PC board from the front of the \( \beta \)\( i \) SVM without removing the case. So, you can replace fuses more easily than before.
   - You can replace the cooling fan without removing the case.
   - Use of the Power Mate CNC manager enables the CNC to identify the \( \beta \)\( i \) SVM specifications and other information without opening the power magnetics cabinet. To use this function, the Power Mate CNC manager supporting this function is required.
2 CONFIGURATION
This section shows an example of a 2-axis system configuration using two SVM units which are the SVM1-4i or SVM1-20i.

In this example, a separated regenerative discharge unit is connected but no external pulse generator is connected to the SVM unit for the first axis (the unit nearer the CNC), while no separated regenerative discharge unit is connected but an external pulse generator is connected to the SVM unit for the second axis.

The servo check board adapter and servo check board in the configuration example are provided for the first axis.

CAUTION

1. A circuit breaker, magnetic contactor, and AC line filter are always required.
2. Use the stabilized 24VDC power supply for the i/ SVM. 24VDC power supply for the i/ SVM and 24VDC power supply for the motor brake cannot be shared.
2.2 SVM-40\textsuperscript{i} AND SVM-80\textsuperscript{i}

This section shows an example of a 2-axis system configuration using the SVM-80\textsuperscript{i} for the first axis (the unit nearer the CNC) and the SVM-40\textsuperscript{i} for the second axis.

In this example, a separated regenerative discharge unit is connected but no external pulse generator is connected for the first axis, while no separated regenerative discharge unit is connected but an external pulse generator is attached for the second axis.

The servo check board adapter and servo check board in the configuration example are provided for the first axis.

CAUTION
1. A circuit breaker, magnetic contactor, and AC line filter are always required.
2. Use the stabilized 24VDC power supply for the j\textsuperscript{i} SVM.

24VDC power supply for the i\textsuperscript{j} SVM and 24VDC power supply for the motor brake cannot be shared.
3 SPECIFICATIONS
## 3.1 SPECIFICATIONS

<table>
<thead>
<tr>
<th>Item</th>
<th>SVM1-4i</th>
<th>SVM1-20i</th>
<th>SVM1-40i</th>
<th>SVM1-80i</th>
</tr>
</thead>
<tbody>
<tr>
<td>No. of controlled axes</td>
<td>1 axis</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Interface with CNC</td>
<td>FANUC I/O Link</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Unit drawing No.</td>
<td>A06B-6132-H001</td>
<td>A06B-6132-H002</td>
<td>A06B-6132-H003</td>
<td>A06B-6132-H004</td>
</tr>
<tr>
<td>Power PCB drawing No.</td>
<td>See Section 3.1 “SPECIFICATIONS” in Part I.</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Control PCB drawing No.</td>
<td>A20B-8101-0200</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Main power supply</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Three-phase</td>
<td>Input voltage</td>
<td>Input current (50Hz)</td>
<td>Power supply rating</td>
<td></td>
</tr>
<tr>
<td>Single-phase</td>
<td>Input voltage</td>
<td>Input current (50Hz)</td>
<td>Power supply rating</td>
<td></td>
</tr>
<tr>
<td>Control power supply</td>
<td>Input voltage</td>
<td>Input current</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Rated output current</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Maximum output current</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Servo HRV control</td>
<td>HRV2</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Control method</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Dynamic brake circuit</td>
<td>See Section 3.1 “SPECIFICATIONS” in Part I.</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Output frequency range</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>External pulse input</td>
<td>Differential phase A/B, 1 ch</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Internal DI</td>
<td>5 points (ESP, interlock, + overtravel, - overtravel, skip)</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Setting display</td>
<td>Performed by master CNC via I/O Link</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>LEDs for status display</td>
<td>8 LEDs</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Protection function</td>
<td>-High Current</td>
<td>-IPM Abnormal</td>
<td>-High/Low Voltage of DC link</td>
<td>-Overheat of Discharge Resistor</td>
</tr>
<tr>
<td></td>
<td>-Low Voltage of Control Power Supply</td>
<td>-I/O Link Communication Error</td>
<td>-Locked Fan Motor</td>
<td>-Disconnection of External Pulse Input</td>
</tr>
<tr>
<td></td>
<td>-Program or Setting Error</td>
<td>-Servo Motor Overheat</td>
<td>-Exceeding Stroke Limit</td>
<td></td>
</tr>
<tr>
<td>Ambient temperature range</td>
<td>See Section 3.1 “SPECIFICATIONS” in Part I.</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Weight</td>
<td>1.3kg</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Remarks</td>
<td>See Section 3.1 “SPECIFICATIONS” in Part I.</td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>
3.2 APPLICABLE MOTORS

See Section 3.2 “APPLICABLE MOTORS” in Part I.

3.3 SELECTING CIRCUIT BREAKER, MAGNETIC CONTACTOR, AND AC LINE FILTER

3.3.1 Selecting Circuit Breaker

See Subsection 3.3.1, “Selecting Circuit Breaker” in Part I.

3.3.2 Selecting Magnetic Contactor

See Subsection 3.3.2, “Selecting Magnetic Contactor” in Part I. It is recommended that one magnetic contactor be connected per $\beta_i$ SVM unit.

3.3.3 Selecting AC Line Filter

See Subsection 3.3.3, “AC Line Filter” in Part I.
3.4 COOLING FAM MOTORS

3.4.1 Installing the Cooling Fan Motor in the SVM1-4i and SVM1-20i

The SVM1-4i and SVM1-20i are supplied with a fan motor as standard. Install the fan motor in the order (1), (2), and (3) as illustrated below. For an assembled diagram after the installation, see Subsection 8.1.1, "SVM1-4i and SVM1-20i".

3.4.2 SVM1-80i

For the SVM1-80i, the following cooling fan motor is required:

| Ordering specification | A06B-6134-K002 |
3.5 DERATING

Consider derating as shown below, according to ambient temperatures.

<table>
<thead>
<tr>
<th>Temperature (°C)</th>
<th>SVM1-20i</th>
</tr>
</thead>
<tbody>
<tr>
<td>35</td>
<td>1200</td>
</tr>
<tr>
<td>55</td>
<td>900</td>
</tr>
<tr>
<td>0</td>
<td>0</td>
</tr>
</tbody>
</table>

Motor output (W)

Temperature (°C)

The SVM1-40i and SVM1-80i require current derating according to the ambient temperature. For details, see the current derating diagrams for the SVM1-40i and SVM1-80i in Section 3.5, "DERATING" in Part I.

3.6 SEPARATED REGENERATIVE DISCHARGE RESISTOR

See Section 3.6 "SEPARATED REGENERATIVE DISCHARGE RESISTOR" in Part I. In the description of Section 3.6, replace Table 2.7.3 (a), "Regenerative discharge capacity of the regenerative discharge resistor incorporated in servo amplifiers" with the following:

<table>
<thead>
<tr>
<th>βi: SVM</th>
<th>Permissible regenerative energy amount</th>
</tr>
</thead>
<tbody>
<tr>
<td>A06B-6132-H003</td>
<td>50W</td>
</tr>
<tr>
<td>A06B-6132-H004</td>
<td>130W</td>
</tr>
</tbody>
</table>
See Chapter 4 “ORDERING INFORMATION” in Part I.
5

POWER SUPPLY
5.1 INPUT POWER SUPPLY

5.1.1 Three-phase Input Power Supply for Motor Power


5.1.2 Single-phase Input Power Supply for Motor Power


5.1.3 Control Power

Be sure to use a stabilized power supply as the 24-V power supply for the βi SVM. The 24-V power supply for motor brakes cannot be shared.
- Nominal rated voltage: 24VDC
- Allowable voltage fluctuation: ±10% (including momentary variations and ripples)
- Power supply rating: 0.9 A (per βi SVM unit)

5.1.3.1 Sequence for turning on control power supply

Turn on the control power supply of the βi SVM at the same time when the power to the host controller connected via the I/O Link is turned on or before the host controller is turned on. When turning off the power to the host controller, be sure to also turn off the control power supply of the βi SVM.

<table>
<thead>
<tr>
<th>Host controller power supply</th>
<th>On</th>
</tr>
</thead>
<tbody>
<tr>
<td>Off</td>
<td></td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>βi SVM control power supply</th>
<th>On</th>
<th>t: 0 or more</th>
</tr>
</thead>
<tbody>
<tr>
<td>Off</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

5.2 POWER TRANSFORMER FOR EXPORTS

See Section 5.2 “POWER TRANSFORMER FOR EXPORTS” in Part I.
See Chapter 6 “INSTALLATION CONDITIONS AND NOTES” in Part I.
In the four figures shown in Section 6.4, "INSTALLING LIGHTNING SURGE ABSORBERS", change the positions of the magnetic contactor and AC line filter.
7. GROUNDING

7 GROUNDING
7.1 SVM1-4i AND SVM1-20i

```
CAUTION

1 Ground the shield of the cable drawn from the outside of the cabinet to the ground plate provided near the cabinet inlet with a clamp. This is to prevent noise on the cable shield outside the cabinet from getting into the cabinet and also to prevent noise inside the cabinet from radiating outside.

2 Connect the FG terminal of the βi SVM to a ground. Use a Faston terminal (A65L-0001-0148/2) as the terminal on the βi SVM side. Use a 2-mm² or thicker twisted cable with a length of around 100 to 300 mm for installation. If the FG terminal is not grounded as mentioned here, the unit becomes more susceptible to noise.

3 The flange of the βi SVM has an M4 threaded hole for grounding. Use this hole for grounding as shown in the above figure.
```
7.2 SVM1-40i and SVM1-80i

- CAUTION -

1. Ground the shield of the cable drawn from the outside of the cabinet to the ground plate provided near the cabinet inlet with a clamp. This is to prevent noise on the cable shield outside the cabinet from getting into the cabinet and also to prevent noise inside the cabinet from radiating outside.

2. Connect the signal grounding terminal of the $\beta i$ SVM to a ground. Use a Faston terminal (A65L-0001-0148/2) as the terminal on the $\beta i$ SVM side. Use a 2-mm$^2$ or thicker twisted cable with a length of around 100 to 300 mm for installation. If the signal grounding terminal is not grounded as mentioned here, the unit becomes more susceptible to noise.

3. The flange of the $\beta i$ SVM has an M4 threaded hole for grounding. Use this hole for grounding as shown in the above figure.
EXTERNAL DIMENSIONS / PANEL CUT-OUT DRAWINGS / MAINTENANCE AREA
### 8.1 EXTERNAL DIMENSIONS

#### 8.1.1 SVM1-4i and SVM1-20i

βi SVM with the separated regenerative discharge unit and the battery (dedicated lithium battery) not installed

βi SVM with the separated regenerative discharge unit and the battery (dedicated lithium battery) installed
8.1.2 SVM1-40i and SVM1-80i
8.1.3 Fan Unit (A06B-6134-K002)

See Subsection 8.1.4 “External Dimensions of Fan Unit (A06B-6134-K002)” in Part I.

8.1.4 Separated Regenerative Discharge Resistor

See Subsection 8.1.5 “Discharge Resistor” in Part I.

8.1.5 AC Line Filter

See Subsection 8.1.6 “AC Line Filter” in Part I.

8.1.6 Transformer for Exports

See Subsection 8.1.7 “Transformer for Exports” in Part I.

8.1.7 Battery Case (for Size D Alkaline Battery)

See Subsection 8.1.8 “Battery Case” in Part I.

8.1.8 Lightning Surge Absorbers

See Subsection 8.1.9 “Lightning Surge Absorbers” in Part I.

8.2 PANEL CUT-OUT DRAWINGS

See Section 8.2 “PANEL CUT-OUT DRAWINGS” in Part I.
8.3 MAINTENANCE AREA

8.3.1 Maintenance Area for the SVM1-4\textit{i} and SVM1-20\textit{i}

The maintenance area varies depending on whether the separated regenerative discharge unit (A06B-6130-H401) is used or not. For details, see the figure below. The maintenance area when the separated regenerative discharge unit (A06B-6130-H401) is installed is shown on the left side of the figure, and the maintenance area when the separated regenerative discharge unit (A06B-6130-H401) is not installed is shown on the right side. When the battery for the absolute pulse coder (dedicated lithium battery) is installed, the same maintenance area applies.

8.3.2 Maintenance Area for the SVM1-40\textit{i}

See "When no cooling fan AC motor (A06B-6134-K002) is used to cool the heat sink" in Subsection 8.3.2, "Maintenance Area for the SVM1-40\textit{i} and SVM1-80\textit{i}" in Part I.

8.3.3 Maintenance Area for the SVM1-80\textit{i}

See "When the cooling fan AC motor (A06B-6134-K002) is used to cool the heat sink" in Subsection 8.3.2, "Maintenance Area for the SVM1-40\textit{i} and SVM1-80\textit{i}" in Part I.
This subsection shows a connection example of a 2-axis system using two SVM units which are the SVM1-4i or SVM1-20i.
In this example, a separated regenerative discharge unit is connected but no external pulse generator is connected to the SVM unit for the first axis (the unit nearer the CNC), while no separated regenerative discharge unit is connected but an external pulse generator is connected to the SVM unit for the second axis.

**CAUTION**
1. A circuit breakers, magnetic contactor, and AC line filter are always required.
2. Use the stabilized 24VDC power supply for the i) SVM, 24VDC power supply for the j) SVM and 24VDC power supply for the motor brake cannot be shared.
NOTE
1 Always install the circuit breakers, magnetic contactor, and AC line filter.
2 To protect the equipment from lightning surge voltages, install a lightning surge absorber across each pair of power lines and across each power line and the grounding line at the power inlet of the power magnetics cabinet.

WARNING
Defects, such as a loose screw and an incorrectly inserted connector, can lead to a motor malfunction, excessive heat generation, and a ground fault. Exercise adequate care in installing servo amplifiers.
A loose screw (or, if a connector is used, a loose connector contact or an incorrect connector pin-to-cable connection) on high-current carrying power supply wires or motor power wires can lead to fire. Exercise adequate care in wiring.
This subsection shows a connection example of a 2-axis system using the SVM1-80i for the first axis (the unit nearer the CNC) and the SVM1-40i for the second axis.

In this example, a separated regenerative discharge unit is connected but no external pulse generator is connected for the first axis, while no separated regenerative discharge unit is connected but an external pulse generator is connected for the second axis.

**CAUTION**
1. A circuit breaker, magnetic contactor, and AC line filter are always required.
2. Use the stabilized 24VDC power supply for the SVM. 24VDC power supply for the SVM and 24VDC power supply for the motor brake cannot be shared.
NOTE
1. Always install the circuit breakers, magnetic contactor, and AC line filter.
2. To protect the equipment from lightning surge voltages, install a lightning surge absorber across each pair of power lines and across each power line and the grounding line at the power inlet of the power magnetics cabinet.

WARNING
Defects, such as a loose screw and an incorrectly inserted connector, can lead to a motor malfunction, excessive heat generation, and a ground fault. Exercise adequate care in installing servo amplifiers.
A loose screw (or, if a connector is used, a loose connector contact or an incorrect connector pin-to-cable connection) on high-current carrying power supply wires or motor power wires can lead to fire. Exercise adequate care in wiring.
This subsection shows a connection example of a 2-axis system using two SVM units which are the SVM1-4i or SVM1-20i. In this example, a separated regenerative discharge unit is connected but no external pulse generator is connected to the SVM unit for the first axis (the unit nearer the CNC), while no separated regenerative discharge unit is connected but an external pulse generator is connected to the SVM unit for the second axis.

**Example for sharing a magnetic contactor**

1. A circuit breakers, magnetic contactor, and AC line filter are always required.
2. Use the stabilized 24VDC power supply for the i/j SVM. 24VDC power supply for the i/j SVM and 24VDC power supply for the motor brake cannot be shared.
3. If an alarm that turns off the magnetic contactor is issued in an amplifier, an alarm indicating DC link voltage shortage is issued in the other amplifiers.
NOTE
1 Always install the circuit breakers, magnetic contactor, and AC line filter.
2 To protect the equipment from lightning surge voltages, install a lightning surge absorber across each pair of power lines and across each power line and the grounding line at the power inlet of the power magnetics cabinet.

WARNING
Defects, such as a loose screw and an incorrectly inserted connector, can lead to a motor malfunction, excessive heat generation, and a ground fault. Exercise adequate care in installing servo amplifiers.
A loose screw (or, if a connector is used, a loose connector contact or an incorrect connector pin-to-cable connection) on high-current carrying power supply wires or motor power wires can lead to fire. Exercise adequate care in wiring.
9.1.4 SVM1-40i and SVM1-80i

Example for sharing a magnetic contactor

This subsection shows a connection example of a 2-axis system using the SVM1-80i for the first axis (the unit nearer the CNC) and the SVM1-40i for the second axis.

In this example, a separated regenerative discharge unit is connected but no external pulse generator is connected for the first axis, while no separated regenerative discharge unit is connected but an external pulse generator is connected for the second axis.

CAUTION
1. A circuit breaker, magnetic contactor, and AC line filter are always required.
2. Use the stabilized 24VDC power supply for the SVM. 24VDC power supply for the SVM and 24VDC power supply for the motor brake cannot be shared.
3. If an alarm that turns off the magnetic contactor is issued in an amplifier, an alarm indicating DC link voltage shortage is issued in the other amplifiers.
NOTE

1. Always install the circuit breakers, magnetic contactor, and AC line filter.
2. To protect the equipment from lightning surge voltages, install a lightning surge absorber across each pair of power lines and across each power line and the grounding line at the power inlet of the power magnetics cabinet.

WARNING

Defects, such as a loose screw and an incorrectly inserted connector, can lead to a motor malfunction, excessive heat generation, and a ground fault. Exercise adequate care in installing servo amplifiers.

A loose screw (or, if a connector is used, a loose connector contact or an incorrect connector pin-to-cable connection) on high-current carrying power supply wires or motor power wires can lead to fire. Exercise adequate care in wiring.
## 9.2 CONNECTOR LOCATION

### 9.2.1 SVM1-4\textit{i} and SVM1-20\textit{i}

<table>
<thead>
<tr>
<th>No.</th>
<th>Name</th>
<th>Remarks</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>DC link charge LED</td>
<td></td>
</tr>
<tr>
<td>2</td>
<td>CZ7-1, CZ7-2 Main power input connector</td>
<td></td>
</tr>
<tr>
<td>3</td>
<td>CZ7-3 Discharge register connector</td>
<td></td>
</tr>
<tr>
<td>4</td>
<td>CZ7-4, CZ7-5, CZ7-6 Motor power connector</td>
<td></td>
</tr>
<tr>
<td>5</td>
<td>CX29 Connector for main power MCC control signal</td>
<td></td>
</tr>
<tr>
<td>6</td>
<td>CX30 ESP signal connection connector</td>
<td></td>
</tr>
<tr>
<td>7</td>
<td>CXA20 Regenerative resistor connector (for alarms)</td>
<td></td>
</tr>
<tr>
<td>8</td>
<td>LED LED for status display</td>
<td></td>
</tr>
<tr>
<td>9</td>
<td>CXA19B 24VDC power input</td>
<td></td>
</tr>
<tr>
<td>10</td>
<td>CXA19A 24VDC power output</td>
<td></td>
</tr>
<tr>
<td>11</td>
<td>JD1B Connector for I/O Link (to previous stage)</td>
<td></td>
</tr>
<tr>
<td>12</td>
<td>JD1A Connector for I/O Link (to following stage)</td>
<td></td>
</tr>
<tr>
<td>13</td>
<td>JF1 Connector for Pulsedcoder</td>
<td></td>
</tr>
<tr>
<td>14</td>
<td>JA34 Connector for external pulse input</td>
<td></td>
</tr>
<tr>
<td>15</td>
<td>JA72 Connector for built-in DI</td>
<td></td>
</tr>
<tr>
<td>16</td>
<td>CX5X Absolute Pulsedcoder battery</td>
<td></td>
</tr>
<tr>
<td>17</td>
<td>Signal grounding terminal</td>
<td>Grounding terminal of control section</td>
</tr>
<tr>
<td>18</td>
<td>Tapped hole for grounding the flange</td>
<td></td>
</tr>
</tbody>
</table>

![Diagram of connector location](image)
### 9.2.2 SVM-40\(i\) and SVM-80\(i\)

<table>
<thead>
<tr>
<th>No.</th>
<th>Name</th>
<th>Remarks</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>DC link charge LED</td>
<td></td>
</tr>
<tr>
<td>2</td>
<td>CX29</td>
<td>Connector for main power MCC control signal</td>
</tr>
<tr>
<td>3</td>
<td>CX30</td>
<td>ESP signal connection connector</td>
</tr>
<tr>
<td>4</td>
<td>CXA20</td>
<td>Regenerative resistor connector (for alarms)</td>
</tr>
<tr>
<td>5</td>
<td>SW</td>
<td>Setting switch (DC alarm level)</td>
</tr>
<tr>
<td>6</td>
<td>CZ4</td>
<td>Main power input connector</td>
</tr>
<tr>
<td>7</td>
<td>CZ5</td>
<td>Motor power connector</td>
</tr>
<tr>
<td>8</td>
<td>CZ6</td>
<td>Discharge register connector</td>
</tr>
<tr>
<td>9</td>
<td>LED</td>
<td>LED for status display</td>
</tr>
<tr>
<td>10</td>
<td>CXA19B</td>
<td>24VDC power input</td>
</tr>
<tr>
<td>11</td>
<td>CXA19A</td>
<td>24VDC power output</td>
</tr>
<tr>
<td>12</td>
<td>JD1B</td>
<td>Connector for I/O Link (to previous stage)</td>
</tr>
<tr>
<td>13</td>
<td>JD1A</td>
<td>Connector for I/O Link (to following stage)</td>
</tr>
<tr>
<td>14</td>
<td>JF1</td>
<td>Connector for Puselcoder</td>
</tr>
<tr>
<td>15</td>
<td>JA34</td>
<td>Connector for external pulse input</td>
</tr>
<tr>
<td>16</td>
<td>JA72</td>
<td>Connector for built-in DI</td>
</tr>
<tr>
<td>17</td>
<td>CX5X</td>
<td>Absolute Puselcoder battery</td>
</tr>
<tr>
<td>18</td>
<td>Signal grounding terminal</td>
<td>Grounding terminal of control section</td>
</tr>
<tr>
<td>19</td>
<td></td>
<td>Tapped hole for grounding the flange</td>
</tr>
</tbody>
</table>
9.2.3 Connection Tools

See Subsection 9.2.3 “Connection Tools” in Part I.

9.2.4 Details of Cable K1

9.2.4.1 Servo motor $\alpha_i$, $\alpha_i$s series, Servo motor $\beta_i$s series ($\beta_0.4/5000i_s$ to $\beta_22/2000i_s$)

Using cable conductor

<table>
<thead>
<tr>
<th>Cable length</th>
<th>28 m or less</th>
<th>50 m or less</th>
</tr>
</thead>
<tbody>
<tr>
<td>5V, 0V, 6V</td>
<td>0.3mm$^2 \times 5$ Wire construction 12/0.18 or 60/0.08 Insulation outer diameter $\phi 1.5$ or less</td>
<td>0.5mm$^2 \times 5$ Wire construction 20/0.18 or 104/0.08 Insulation outer diameter $\phi 1.5$ or less</td>
</tr>
<tr>
<td>SD, *SD, REQ, *REQ</td>
<td>0.18mm$^2$ or more Twisted-pair wire</td>
<td>0.18mm$^2$ or more Twisted-pair wire</td>
</tr>
<tr>
<td>Drain wire</td>
<td>0.15mm$^2$ or more</td>
<td>0.15mm$^2$ or more</td>
</tr>
</tbody>
</table>

* This applies also to the $\alpha M_i$ and $\alpha C_i$ series servo motors.
NOTE
1 Place the grounding plate to which the shield is connected at a nearby position of the $\beta_i$ SVM to minimize the distance between the $\beta_i$ SVM and the grounding plate.
2 In case that the cable is prepared by MTB, total resistance of 5V and 0V must be less than 2\(\Omega\).
3 Pulsecoder side connector can accept maximum 0.5mm\(^2\) (wire construction 20/0.18 or 104/0.08, insulation outer diameter $\phi1.5$ or less) wire and sheath diameter is $\phi5.7$ to $\phi8.0$. In case of using thicker wire or cable, take measures described below.

\begin{itemize}
  \item The total resistance (round trip) of 5V and 0V must be less than 2\(\Omega\).
  \item [Case 1] Cable conductor exceeds 0.5mm\(^2\).
  \item [Case 2] Sheath diameter of exceeds $\phi8$.
\end{itemize}

4 In case of incremental Pulsecoder, 6V is not necessary to be connected.

• Crimp tool specification
  A06B-6114-K201/JN1E : For 0.18mm\(^2\) or 0.3mm\(^2\)
  A06B-6114-K201/JN1D : For 0.18mm\(^2\) or 0.5mm\(^2\)

• Connector kit specification
  A06B-6114-K204/S : Straight plug (including a contact)
  A06B-6114-K204/E : Elbow plug (including a contact)

• Recommended cable
  A66L-0001-0479 : Flexible cable 28 m or less long
  A66L-0001-0488 : Flexible cable 50 m or less long

9.2.4.2 Servo motor $\beta$is series ($\beta0.2/5000is$, $\beta0.3/5000is$)

See Subsection 9.2.4.2 "Servo motor $\beta$is series ($\beta0.2/5000is$, $\beta0.3/5000is$)" in Part I.
9.2.5 Details of Cable K2

See Subsection 9.2.5 “Details of Cable K2” in Part I.

9.2.6 Details of Cable K3

See Subsection 9.2.6 “Details of Cable K3” in Part I.

9.2.7 Details of Cables K4 and K5

See Subsection 9.2.7 “Details of Cables K4 and K5” in Part I.

9.2.8 Details of Cable K6

See Subsection 9.2.8 “Details of Cable K6” in Part I.
9.2.9 Details of Cable K7

External power supply
(Use an appropriate power supply for the coil voltage the customer uses.)

D-2000 series
Housing: 3-1318130-3
Contact: 1318107-1
Applicable wire: 0.3 to 0.85 mm²
Manufacture: Tyco Electronics AMP

For connection tools, see Subsection 9.2.3 in Part I.

<table>
<thead>
<tr>
<th>Internal contact capacity</th>
<th>Resistance load (COS φ =1)</th>
<th>Inductive load (COS φ =0.4, L/R=15msec)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Rated load</td>
<td>AC250V, 3A/ DC24V, 5A</td>
<td>AC250V, 2A/ DC24V, 1A</td>
</tr>
<tr>
<td>Maximum contact capacity</td>
<td>5A</td>
<td>5A</td>
</tr>
</tbody>
</table>

**NOTE**
1. To protect the internal contact, be sure to insert a spark killer (CR) that matches the magnetic contactor used.
2. It is recommended that one MCC be installed per βi SVM unit.
When sharing a magnetic contactor

External power supply
(Use an appropriate power supply for the coil voltage the customer uses.)

9.2.9.1 Connection of external magnetic contactor when βi SVM FSSB interface is used together

See Section 9.3 "HANDLING OF EXTERNAL MAGNETIC CONTACTORS" in Part I.
9.2.10 Details of Cable K8

See Subsection 9.2.10 “Details of Cable K8” in Part I.

9.2.11 Details of Cable K9

See Subsection 9.2.11 “Details of Cable K9” in Part I.

9.2.12 Details of Cable K10

See Subsection 9.2.12 “Details of Cable K10” in Part I.

9.2.13 Details of Cable K11

See Subsection 9.2.13 “Details of Cable K11” in Part I.
9.2.14 Details of Cable K20 (Connection of FANUC I/O Link)

9.2.14.1 Overview

The FANUC I/O Link is a serial interface that connects a CNC, βi SVM, I/O Unit-A, Power Mate CNC, and other units to transfer I/O signals (bit data) between these units at high speed. When units are connected by the FANUC I/O Link, one of the units serves as a master, and the other units serve as slaves. The status of input signals from the slaves is transferred to the master at regular intervals, and an output signal from the master is transferred to the slaves at regular intervals. The βi SVM can function as a slave only. It has 128 input signals and 128 output signals.

The connectors of the I/O Link are named JD1A (or JD1A1) and JD1B, which are common to all units having the I/O Link function. Every cable must be connected from JD1A (or JD1A1) to JD1B. JD1A of the last unit is connected to nothing, so it is left open. It need not be connected to a terminator or the like.

Electric cables or optical fiber cables are used for I/O Link connection. In the following cases, use optical fiber cables:

- The cable length is 10 m or longer. When units are located within the same cabinet, the cable length is 15 m or longer. When a cable is installed in a duct, the units connected at both ends of the cable should be assumed to be within the same cabinet. For example, suppose that a CNC serving as the host is placed on the operator's panel, the βi SVM is placed in the power magnetics cabinet, and the I/O Link cable connecting these units is passed through a duct. In this case, the CNC and βi SVM are assumed to be within the same cabinet.

- A cable is routed between different cabinets, and it is impossible to connect the cabinets with a 5.5-mm² or thicker ground cable.

- There is a possibility that a cable is affected by noise significantly. For example, there is a strong electromagnetic noise source such as a welding machine near the cable, or a cable generating noise such as a power cable or a power magnetics cable is laid in parallel to the cable over a long distance.
9.2.14.2 Connection of FANUC I/O Link by electric cable

Details of connection by cable K20 (when the βi SVM is connected to the host controller or the preceding slave unit)

<table>
<thead>
<tr>
<th>Host controller or preceding slave unit</th>
<th>βi SVM</th>
</tr>
</thead>
<tbody>
<tr>
<td>JD1A1/JD1</td>
<td>JD1B</td>
</tr>
<tr>
<td>SIN (1)</td>
<td>SOUT (3)</td>
</tr>
<tr>
<td>*SIN (2)</td>
<td>*SOUT (4)</td>
</tr>
<tr>
<td>SOUT (3)</td>
<td>SIN (1)</td>
</tr>
<tr>
<td>*SOUT (4)</td>
<td>*SIN (2)</td>
</tr>
<tr>
<td>0V (11)</td>
<td>0V (11)</td>
</tr>
<tr>
<td>0V (12)</td>
<td>0V (12)</td>
</tr>
<tr>
<td>0V (13)</td>
<td>0V (13)</td>
</tr>
<tr>
<td>0V (14)</td>
<td>0V (14)</td>
</tr>
</tbody>
</table>

Details of connection by cable K20 (when connected to the following slave unit)
When a slave unit follows, connect the unit as follows:

<table>
<thead>
<tr>
<th>βi SVM</th>
<th>Following slave unit</th>
</tr>
</thead>
<tbody>
<tr>
<td>SIN (1)</td>
<td>SOUT (3)</td>
</tr>
<tr>
<td>*SIN (2)</td>
<td>*SOUT (4)</td>
</tr>
<tr>
<td>SOUT (3)</td>
<td>SIN (1)</td>
</tr>
<tr>
<td>*SOUT (4)</td>
<td>*SIN (2)</td>
</tr>
<tr>
<td>0V (11)</td>
<td>0V (11)</td>
</tr>
<tr>
<td>0V (12)</td>
<td>0V (12)</td>
</tr>
<tr>
<td>0V (13)</td>
<td>0V (13)</td>
</tr>
<tr>
<td>0V (14)</td>
<td>0V (14)</td>
</tr>
</tbody>
</table>
Specifications of recommended connector and case of cable K20 on the βi SVM side
Connector:  PCR-E20FS (soldering type) (Honda Tsushin)
              PCR-E20FA (crimp type)
Case:  PCR-V20L

Recommended cable for cable K20
A66L-0001-0284#10P (10 twisted pairs, 28AWG, with common shield)

**NOTE**
1  Maximum cable length:  10m (when the above recommended cable is used)
2  Be sure to use twisted pairs to connect the SIN and *SIN signals and the SOUT and *SOUT signals in pairs.
3  Except the pins indicated in the above figure, leave pins open.  Never connect unused conductors of the cable to these pins.
4  Connect the shield of the cable to the ground plate of the cabinet by using a cable clamp.
   Regardless of whether the βi SVM is connected to the host controller (or the preceding slave unit) or the following slave unit, clamp the cable and process the shield properly as soon as the cable is drawn into the cabinet.  When the host controller and the βi SVM are placed in different cabinets, shield processing must be performed in two places for one cable.  Even when the cable is not drawn outside the cabinet, it must be clamped for shield processing in at least one place.

**9.2.14.3  Connection of FANUC I/O Link by optical fiber cable**

When an optical I/O Link adapter is used, FANUC I/O Link can be extended to up to 200 m by using optical fiber cables.
For details, refer to the manual on the host controller.
9.2.15 Details of Cable K21 (Internal DI Connection)

9.2.15.1 Signals

The βi SVM has five DI signals. For the connection of the emergency stop signal, see Subsection 9.2.10, "Details of Cable K8" and Subsection 9.2.8, "Details of Cable K6". The other four DI signals are explained below.

1. *+OT: A + overtravel signal input. When this signal is set to "logic 0", movement in the positive direction is disabled. Use of this signal can be suppressed by parameter setting.

2. *-OT: A - overtravel signal input. When this signal is set to "logic 0", movement in the negative direction is disabled. Use of this signal can be suppressed by parameter setting.

3. *RILK (*DEC): An interlock signal input (*RILK) or a reference position return deceleration signal input (*DEC). One of these functions is selected by parameter setting. When the interlock signal input (*RILK) is selected, setting this signal to "logic 0" decelerates then stops axis movement operation. Setting this signal to "logic 1" resumes the operation. When the reference position return deceleration signal input (*DEC) is selected, setting this signal to "logic 0" decelerates the feedrate, then feed operation continues at a constant low feedrate. If the signal is then set to "logic 1", the feed operation stops as an electrical grid position is encountered.

4. HDI: Skip signal input. The currently executed block is skipped at the rising edge or falling edge of this signal. Whether to use the rising edge or falling edge of the signal is determined by parameter setting.
**9.2.15.2 *+OT, *-OT, and *RILK(*DEC)**

**Input signal specifications**

The receiving circuit has a non-insulating interface that can switch between the sink type (24 V common) and the source type (0 V common). Safety standards require use of the sink type.

The contacts on the machine side must satisfy the following:
- Contact capacity: 30 VDC, 16 mA or more
- Leak current between contact points when a contact is closed: 1 mA or less (voltage: 26.4 V)
- Voltage drop between contact points when a contact is closed: 2 V or less (current: 8.5 mA, including voltage drop in cable)

**Signal connection to power magnetics cabinet**

![Signal connection diagram]

**NOTE**

1. Use a common shield cable as cable K21.
2. For 0V, +24V, and DIC, wires of at least 7/0.18 (0.18mm²) must be used.
3. Except the pins indicated in the above figure, leave pins open. Never connect unused conductors of the cable to these pins.
4. The above shows an example of the 24 V common type. When the 0 V common type is used, connect DIC (JA72-11) to +24V (JA72-10, and 19), and the later stage of each switch to 0V (JA72-12, 14, and 16).
9.2.15.3 Skip signal interface

Input signal specifications

- Circuit configuration

- Maximum absolute rating

- Input characteristics

<table>
<thead>
<tr>
<th>Item</th>
<th>Signal</th>
<th>Specification</th>
<th>Unit</th>
<th>Remarks</th>
</tr>
</thead>
<tbody>
<tr>
<td>High level input voltage</td>
<td>VH</td>
<td>3.6-11.6 V</td>
<td>V</td>
<td></td>
</tr>
<tr>
<td>Low level input voltage</td>
<td>VL</td>
<td>0-0.55 V</td>
<td>V</td>
<td></td>
</tr>
<tr>
<td>High level input current</td>
<td>IiH</td>
<td>2 max MA</td>
<td>Vin=5V</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>11 max MA</td>
<td>Vin=10V</td>
<td></td>
</tr>
<tr>
<td>Low level input current</td>
<td>IiL</td>
<td>-8.0 max MA</td>
<td>Vin=0V</td>
<td></td>
</tr>
<tr>
<td>Input signal pulse width</td>
<td></td>
<td>20 min μs</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

NOTE

The positive sign (+) of IiH/IiL indicates the direction in which current flows into the receiver, and the negative sign (-) indicates the direction in which current flows out of the receiver.
9.2.16 Connection to External Pulse Generator

The βi SVM can operate according to the pulse input from the outside. As the external pulse generator, a differential type A/B phase pulse generator that satisfies specifications or FANUC's manual pulse generator may be selected. When selecting the manual pulse generator, you need a manual pulse generator adapter (A06B-6093-D001).

One manual pulse generator can be connected to up to six βi SVM units. In this case, one manual pulse generator adapter is required per βi SVM unit.

When a differential type A/B phase pulse generator is used

When FANUC's manual pulse generator is used (connected to βi SVM on a one-to-one basis)

When FANUC's manual pulse generator is used (connected to more than one βi SVM)
9.2.16.1 Connection when differential type A/B phase pulse generator is used

Details of cable K22

- Connector: FI40-2015S (Hirose Electric Co., Ltd.)
- Case: FI-20-CV (Hirose Electric Co., Ltd.)

- Cable specification: Conductor 20/0.18 × 6, 7/0.18 × 3 pairs
- Recommended cable: A66L-0001-0286 (#20AWG × 6 + #24AWG × 6 + #24AWG × 3 pairs)

**NOTE**

1. Power can be supplied from the βi SVM to the equipment if the equipment operates on +5 V and 0.35 A maximum. In this case, pay attention to the power supply voltage drop due to cable resistance.
2. Be sure to use twisted pairs to connect the PA and *PA signals and the PB and *PB signals in pairs.
3. Except the pins indicated in the above figure, leave pins open. Never connect unused conductors of the cable to these pins.
4. Maximum cable length: 50 m
9.2.16.2 Connection when FANUC's manual pulse generator is used

Details of cable K23

Cable K23 is a signal cable used to connect the manual pulse generator and adapter (JA54).

![Diagram of cable K23]

Manual pulse generator
(M3 screw terminal)

<table>
<thead>
<tr>
<th>+5V</th>
<th>0V</th>
<th>A</th>
<th>B</th>
</tr>
</thead>
<tbody>
<tr>
<td>0V</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>+5V</td>
<td></td>
<td>HA1</td>
<td>HB1</td>
</tr>
</tbody>
</table>

Connector: FI40-2015S
Case: FI-20-CV (M3 screw terminal)

Cable connection (K23)

Manual pulse generator

<table>
<thead>
<tr>
<th>A</th>
<th>HA1</th>
<th>1</th>
</tr>
</thead>
<tbody>
<tr>
<td>B</td>
<td>HB1</td>
<td>2</td>
</tr>
<tr>
<td>+5V</td>
<td>(HA2)</td>
<td>3</td>
</tr>
<tr>
<td>0V</td>
<td>(HB2)</td>
<td>4</td>
</tr>
<tr>
<td>0V</td>
<td></td>
<td>5</td>
</tr>
<tr>
<td>+5V</td>
<td></td>
<td>6</td>
</tr>
<tr>
<td>0V</td>
<td></td>
<td>7</td>
</tr>
<tr>
<td>+5V</td>
<td></td>
<td>8</td>
</tr>
<tr>
<td>0V</td>
<td></td>
<td>9</td>
</tr>
<tr>
<td>0V</td>
<td></td>
<td>10</td>
</tr>
<tr>
<td>+5V</td>
<td></td>
<td>11</td>
</tr>
<tr>
<td>0V</td>
<td></td>
<td>12</td>
</tr>
<tr>
<td>0V</td>
<td></td>
<td>13</td>
</tr>
<tr>
<td>+5V</td>
<td></td>
<td>14</td>
</tr>
<tr>
<td>0V</td>
<td></td>
<td>15</td>
</tr>
<tr>
<td>+5V</td>
<td></td>
<td>16</td>
</tr>
<tr>
<td>0V</td>
<td></td>
<td>17</td>
</tr>
<tr>
<td>+5V</td>
<td></td>
<td>18</td>
</tr>
<tr>
<td>0V</td>
<td></td>
<td>19</td>
</tr>
<tr>
<td>+5V</td>
<td></td>
<td>20</td>
</tr>
</tbody>
</table>

HA1
HB1

JA54 (PCR-EV20MDT)

<table>
<thead>
<tr>
<th>1</th>
<th>HA1</th>
<th>11</th>
</tr>
</thead>
<tbody>
<tr>
<td>2</td>
<td>HB1</td>
<td>12</td>
</tr>
<tr>
<td>3</td>
<td>(HA2)</td>
<td>13</td>
</tr>
<tr>
<td>4</td>
<td>(HB2)</td>
<td>14</td>
</tr>
<tr>
<td>5</td>
<td></td>
<td>15</td>
</tr>
<tr>
<td>6</td>
<td></td>
<td>16</td>
</tr>
<tr>
<td>7</td>
<td></td>
<td>17</td>
</tr>
<tr>
<td>8</td>
<td></td>
<td>18</td>
</tr>
<tr>
<td>9</td>
<td>+5V</td>
<td>19</td>
</tr>
<tr>
<td>10</td>
<td></td>
<td>20</td>
</tr>
</tbody>
</table>

Recommended cable:
A66L-0001-0286 (#20AWG × 6 + #24AWG × 3 pairs)
Recommended connector (JA54 side)
Connector: FI40-2015S (Hirose Electric Co., Ltd.)
Case: FI-20-CV (Hirose Electric Co., Ltd.)
Recommended cable:
A02B-0259-K821 (7m) Change the connector name before use.

Although the maximum cable length is 50 m, the length is further limited because of the power supply voltage drop as follows:

Limitation due to power supply voltage drop
Suppress the power supply voltage drop due to the cable resistance to 0.2 V or less (the sum of the voltage drop of both the 0V and 5V lines). Perform calculation assuming that the power supply current of the manual pulse generator is 0.1 A.
In the calculations, the cable length must include the cable length of K24.
Details of cable K24

Cable K24 is a signal cable used to connect the manual pulse generator adapter (JA55) and the βi SVM (JA34).

<table>
<thead>
<tr>
<th>Manual pulse generator adapter</th>
</tr>
</thead>
<tbody>
<tr>
<td><strong>JA55</strong> (PCR-EV20MDT)</td>
</tr>
<tr>
<td>1  PA  11</td>
</tr>
<tr>
<td>2  *PA  12  0V</td>
</tr>
<tr>
<td>3  PB  13</td>
</tr>
<tr>
<td>4  *PB  14  0V</td>
</tr>
<tr>
<td>5  15</td>
</tr>
<tr>
<td>6  16  0V</td>
</tr>
<tr>
<td>7  17</td>
</tr>
<tr>
<td>8  18  +5V</td>
</tr>
<tr>
<td>9  +5V  19</td>
</tr>
<tr>
<td>10 +5V  20</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>βi SVM</th>
</tr>
</thead>
<tbody>
<tr>
<td><strong>JA34</strong> (PCR-EV20MDT)</td>
</tr>
<tr>
<td>1  PA  11</td>
</tr>
<tr>
<td>2  *PA  12  0V</td>
</tr>
<tr>
<td>3  PB  13</td>
</tr>
<tr>
<td>4  *PB  14  0V</td>
</tr>
<tr>
<td>5  15</td>
</tr>
<tr>
<td>6  16  0V</td>
</tr>
<tr>
<td>7  17</td>
</tr>
<tr>
<td>8  18  +5V</td>
</tr>
<tr>
<td>9  +5V  19</td>
</tr>
<tr>
<td>10 +5V  20</td>
</tr>
</tbody>
</table>

Cable connection (K24)

Recommended cable: A66L-0001-0286 (#20AWG × 6 + #24AWG × 3 pairs)
Recommended connector:
Connector: FI40-2015S (Hirose Electric Co., Ltd.)
Case: FI-20-CV (Hirose Electric Co., Ltd.)
The maximum cable length is 5 m.
Details of cable K25

Cable K25 is a signal cable used to connect the manual pulse generator and more than one manual pulse generator adapter (JA54).
Cable connection (K25)
The bold lines indicate that three conductors are used for connection.
Manual pulse generator adapter

- Dimensions

Because the manual pulse generator adapter does not have a sealed structure, it must be installed in a sealed cabinet similar to the cabinet of the βi SVM.

The manual pulse generator adapter has two 3.6-diameter holes. Use these holes to secure the adapter.

Because being lightweight, the manual pulse generator adapter need not secured with screws. However, be careful not to allow the adapter to touch other electrical circuits to cause short-circuit.

Ground the case by using the case mounting screw of the manual pulse generator adapter.
- Operation conditions

The maximum allowable frequency of the input signals is 100 kHz. The βi SVM multiplies input pulses by four to obtain move commands. Therefore, up to 400 kpps is specified as a move command.

1) Positive direction move command pulse

1.2 µsec or more

2) Negative direction move command pulse

1.2 µsec or more

10 µsec or more

3) Sequence

βi SVM internal input

± pulse
- Recommended circuit example

External pulse generator

SN75113 or equivalent

Numbers denote pin numbers of SN75113

Receiver circuit

β SVM

External pulse generator

PA

5 6

7 9 10 11

4,3 1,2 12,13 14,15

12,14,16
9.2.17 Connection to Servo Check Board

The servo check board converts digital values used for control in the digital servo system into analog voltages to allow observation with instruments such as an oscilloscope.

Ordering specification

A cable with a reverse connection prevention feature and a servo check board adapter are required to connect the servo check board to the βi SVM.

<table>
<thead>
<tr>
<th>Ordering specification</th>
<th>Name</th>
</tr>
</thead>
<tbody>
<tr>
<td>A06B-6057-H630</td>
<td>Servo check board</td>
</tr>
<tr>
<td>A06B-6050-K871</td>
<td>Cable with reverse connection prevention feature</td>
</tr>
<tr>
<td>A06B-6093-K021</td>
<td>Servo check board adapter (adapter board and cable, both dedicated to βi SVM)</td>
</tr>
</tbody>
</table>

Connection

Before installing and removing the servo check board, turn off the power to the βi SVM.

NOTE

The servo check board adapter and the servo check board may be connected only when adjustments are made. Never start operation while they are left connected.
See Chapter 10 “HEAT DISSIPATION” in Part I.
A

CONNECTING THE REACTOR AND LINE FILETER
A.1 OVERVIEW

Below are an correct example and incorrect examples of connection of the reactor for the power supply regenerative amplifier and the line filter for the resistive discharge amplifier.
A.2 CONNECTION EXAMPLES

Correct connection

- One power supply regenerative amplifier is connected to one reactor.
- The line filter is connected from the primary side of the reactor.
- More than one resistance regenerative amplifier can be connected to the line filter. (The current rating of the line filter must not be exceeded, however.)

Incorrect connection (1)

- The resistance regenerative amplifier is connected to the secondary side of the reactor. The resistance regenerative amplifier may be damaged.
- The power supply regenerative amplifier may malfunction.

Incorrect connection (2)

- The line filter is connected from the secondary side of the reactor. The resistance regenerative amplifier may be damaged.
- The power supply regenerative amplifier may malfunction.

Incorrect connection (3)

- More than one power supply regenerative amplifier is connected to one reactor. One power supply regenerative amplifier may be damaged. The other power supply regenerative amplifier may malfunction.

NOTE
Any devices must not be connected between the reactor and power supply regenerative amplifier. Otherwise, the connected device may be damaged and the power supply regenerative amplifier may malfunction.
(1) Power supply regenerative amplifier
   - α series PSM: A06B-6077-HXXX, A06B-6087-HXXX
   - αi series PSM: A06B-6110-HXXX
   - βi series SVPM: A06B-6134-HXXX
   Others

(2) Resistance regenerative amplifier
   - α series PSMR: A06B-6081-HXXX
   - αi series PSMR: A06B-6115-HXXX
   - α series SVU: A06B-6089-HXXX
   - α series SVUC: A06B-6090-HXXX
   - β series SVU: A06B-6093-HXXX
   - βi series SVM: A06B-6130-HXXX
   A06B-6132-HXXX
   Others

(3) Reactor
   - A81L-0001-0133
   - A81L-0001-0147
   - A81L-0001-0150
   - A81L-0001-0122
   - A81L-0001-0123
   - A81L-0001-0120
   - A81L-0001-0124
   - A81L-0001-0155
   - A81L-0001-0156
   - A81L-0001-0157
   - A81L-0001-0158
   - A81L-0001-0159
   - A81L-0001-0160
   Others

(4) Line filter
   - A81L-0001-0083/3C
   - A81L-0001-0101/C
   - A81L-0001-0102
   Others
INDEX

<Symbol>
*+OT, *-OT, and *RILK(*DEC)................................. 227

<A>
AC Line Filter ................................................... 10, 53, 204
APPLICABLE MOTORS ......................................... 8, 191

<B>
Battery Case .................................................. 55
Battery Case (for Size D Alkaline Battery)............. 204

<C>
Cable Clamp and Shield Processing ....................... 36
CONFIGURATION ............................................... 4, 186
CONNECTING THE REACTOR AND LINE FILTERER .......... 243
CONNECTION DIAGRAM ..................................... 66, 207
CONNECTION EXAMPLES ..................................... 245
Connection of external magnetic contactor when \( \beta_i \)
SVM FSSB interface is used together ................... 221
Connection of FANUC I/O Link by electric cable ..... 224
Connection of FANUC I/O Link by optical fiber cable 225
Connection to External Pulse Generator ................. 229
Connection to Servo Check Board ......................... 238
Connection Tools ........................................... 72, 217
Connection when differential type A/B phase pulse
generator is used ........................................... 230
Connection when FANUC's manual pulse generator is
used ......................................................... 231
CONNECTOR LOCATION ..................................... 70, 215
Control Power .............................................. 196
COOLING FAM MOTORS ...................................... 11, 192

<D>
DERATING .................................................... 12, 193
Details of Cable K1 ........................................... 73, 217
Details of Cable K10 ........................................ 94, 222
Details of Cable K11 ........................................ 96, 222
Details of Cable K2 .......................................... 77, 219
Details of Cable K20
( Connection of FANUC I/O Link ) ....................... 223
Details of Cable K21 ( Internal DI Connection) .......... 226
Details of Cable K3 .......................................... 82, 219
Details of Cable K6 .......................................... 89, 219
Details of Cable K7 .......................................... 90, 220
Details of Cable K8 .......................................... 91, 222
Details of Cable K9 .......................................... 93, 222
Details of cables ( general ) ............................... 83
Details of Cables K4 and K5 ............................... 85, 219
Details of connectors ....................................... 77, 82
Details of input cables ..................................... 81
Discharge Resistor .......................................... 50, 60

<E>
ENVIRONMENTAL CONDITIONS .......................... 31
EXTERNAL DIMENSIONS ................................... 46, 202
EXTERNAL DIMENSIONS / PANEL CUT-OUT DRAWINGS / MAINTENANCE AREA ....... 45, 201
External Dimensions of Fan Unit (A06B-6134-K002) ........................................................................... 49
External Dimensions of Fan Unit (A06B-6134-K003) ........................................................................... 48
External Dimensions of SVM1-40i and SVM1-80i ...... 47
External Dimensions of SVM1-4i and SVM1-20i ...... 46

<F>
Fan Unit (A06B-6134-K002) ................................... 204

<G>
Grounding ...................................................... 34, 198

<H>
HANDLING OF EXTERNAL MAGNETIC CONTACTORS ................................................................. 97
HEAT DISSIPATION ........................................... 98, 239
How to Select a Transformer ................................. 29

<I>
INPUT power supply ........................................ 24, 196
INSTALLATION CONDITIONS AND NOTES .......... 30, 197
Installing a Separate Cooling Fan motor ................ 11
INSTALLING LIGHTNING SURGE ABSORBERS ....... 39
Installing the Cooling Fan Motor in the SVM1-4i and
SVM1-20i ....................................................... 192

<L>
Lightning Surge Absorbers ................................ 56, 204

<M>
MAINTENANCE AREA ........................................ 62, 205
Maintenance Area for the SVM1-40i ...................... 205
Maintenance Area for the SVM1-40i and SVM1-80i .... 63
INDEX

Maintenance Area for the SVM1-4 and SVM1-20i ....................................... 62, 205
Maintenance Area for the SVM1-80i ........................................ 205
Models Requiring Cooling Fan motors ........................................ 11

<\N>
NOISE PROTECTION ................................................................. 33
Noise Suppressor ........................................................................ 35

<\O>
ORDERING INFORMATION .................................................. 22m 194

<P>
PANEL CUT-OUT DRAWINGS .................................................. 58, 204
Power cable for servo motor ...................................................... 84
POWER SUPPLY .................................................................. 23, 195
POWER TRANSFORMER FOR EXPORTS .................. 28, 196
PROTECTIVE GROUNDING .................................................... 42

<S>
SAFETY PRECAUTIONS .......................................................... 8-1
SELECTING A GROUND-FAULT CIRCUIT
  INTERRUPTER ................................................................ 32
Selecting AC Line Filter ............................................................ 191
Selecting cables (general) .......................................................... 80
Selecting Circuit Breaker .......................................................... 9, 191
SELECTING CIRCUIT BREAKER, MAGNETIC
  CONTACTOR, AND AC LINE FILTER ...................... 9, 191
Selecting Magnetic Contactor .................................................. 10, 191
SEPARATED REGENERATIVE DISCHARGE
  RESISTOR ........................................................................ 13, 193
Separated Regenerative Discharge Resistor .................................. 204
Separation of Signal Lines ......................................................... 33
Sequence for turning on control power supply ......................... 196
Servo motor αi, αis series, Servo motor βis series
  (β0.4/5000is to β22/2000is) ........................................... 73, 217
Servo motor βis series (β0.2/5000is, β0.3/5000is) .. 75, 218
Signals ................................................................................. 226
Single-phase Input for Control Power .............................. 24
Single-phase Input Power Supply for Motor Power
  .................................................................................. 24, 196
Skip signal interface ................................................................. 228
Specification .............................................................. 7, 8, 28, 189, 190
SVM1-40i and SVM1-80i ........................................ 5, 58, 66, 70, 85, 187, 199, 202, 207, 211, 215
SVM1-4i and SVM1-20i ........................................ 43
SVM1-80i ............................................................................ 192

<T>
Three-phase Input Power Supply for Motor Power 24, 196
TOTAL CONNECTION DIAGRAM .................................. 65, 206
Transformer for Exports ....................................................... 55, 204

<W>
When a Separated Regenerative Discharge Resistor Is
  Needed .......................................................................... 15
When Amplifier Models SVM-40i and SVM-80i Are Used
  .................................................................................. 17
When No Separated Regenerative Discharge Resistor Is
  Needed .......................................................................... 13
<table>
<thead>
<tr>
<th>Edition</th>
<th>Date</th>
<th>Contents</th>
<th>Edition</th>
<th>Date</th>
<th>Contents</th>
</tr>
</thead>
<tbody>
<tr>
<td>02</td>
<td>Aug., 2004</td>
<td>Total revision</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>01</td>
<td>Aug., 2003</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>
• No part of this manual may be reproduced in any form.

• All specifications and designs are subject to change without notice.