Warnings, Cautions, and Notes as Used in this Publication

Warning

Warning notices are used in this publication to emphasize that hazardous voltages, currents, temperatures, or other conditions that could cause personal injury exist in this equipment or may be associated with its use.

In situations where inattention could cause either personal injury or damage to equipment, a Warning notice is used.

Caution

Caution notices are used where equipment might be damaged if care is not taken.

Note

Notes merely call attention to information that is especially significant to understanding and operating the equipment.

This document is based on information available at the time of its publication. While efforts have been made to be accurate, the information contained herein does not purport to cover all details or variations in hardware or software, nor to provide for every possible contingency in connection with installation, operation, or maintenance. Features may be described herein which are not present in all hardware and software systems. GE Fanuc Automation assumes no obligation of notice to holders of this document with respect to changes subsequently made.

GE Fanuc Automation makes no representation or warranty, expressed, implied, or statutory with respect to, and assumes no responsibility for the accuracy, completeness, sufficiency, or usefulness of the information contained herein. No warranties of merchantability or fitness for purpose shall apply.

©Copyright 2004 GE Fanuc Automation North America, Inc.
All Rights Reserved.
This section describes the safety precautions related to the use of CNC units. It is essential that these precautions be observed by users to ensure the safe operation of machines equipped with a CNC unit (all descriptions in this section assume this configuration). Note that some precautions are related only to specific functions, and thus may not be applicable to certain CNC units.

Users must also observe the safety precautions related to the machine, as described in the relevant manual supplied by the machine tool builder. Before attempting to operate the machine or create a program to control the operation of the machine, the operator must become fully familiar with the contents of this manual and relevant manual supplied by the machine tool builder.

Contents

1. DEFINITION OF WARNING, CAUTION, AND NOTE s–2
2. GENERAL WARNINGS AND CAUTIONS s–3
3. WARNINGS AND CAUTIONS RELATED TO PROGRAMMING s–5
4. WARNINGS AND CAUTIONS RELATED TO HANDLING s–7
5. WARNINGS RELATED TO DAILY MAINTENANCE s–9
DEFINITION OF WARNING, CAUTION, AND NOTE

This manual includes safety precautions for protecting the user and preventing damage to the machine. Precautions are classified into Warning and Caution according to their bearing on safety. Also, supplementary information is described as a Note. Read the Warning, Caution, and Note thoroughly before attempting to use the machine.

WARNING

Applied when there is a danger of the user being injured or when there is a danger of both the user being injured and the equipment being damaged if the approved procedure is not observed.

CAUTION

Applied when there is a danger of the equipment being damaged, if the approved procedure is not observed.

NOTE

The Note is used to indicate supplementary information other than Warning and Caution.

Read this manual carefully, and store it in a safe place.
GENERAL WARNINGS AND CAUTIONS

WARNING

1. Never attempt to machine a workpiece without first checking the operation of the machine. Before starting a production run, ensure that the machine is operating correctly by performing a trial run using, for example, the single block, feedrate override, or machine lock function or by operating the machine with neither a tool nor workpiece mounted. Failure to confirm the correct operation of the machine may result in the machine behaving unexpectedly, possibly causing damage to the workpiece and/or machine itself, or injury to the user.

2. Before operating the machine, thoroughly check the entered data. Operating the machine with incorrectly specified data may result in the machine behaving unexpectedly, possibly causing damage to the workpiece and/or machine itself, or injury to the user.

3. Ensure that the specified feedrate is appropriate for the intended operation. Generally, for each machine, there is a maximum allowable feedrate. The appropriate feedrate varies with the intended operation. Refer to the manual provided with the machine to determine the maximum allowable feedrate. If a machine is run at other than the correct speed, it may behave unexpectedly, possibly causing damage to the workpiece and/or machine itself, or injury to the user.

4. When using a tool compensation function, thoroughly check the direction and amount of compensation. Operating the machine with incorrectly specified data may result in the machine behaving unexpectedly, possibly causing damage to the workpiece and/or machine itself, or injury to the user.

5. The parameters for the CNC and PMC are factory-set. Usually, there is no need to change them. When, however, there is no alternative other than to change a parameter, ensure that you fully understand the function of the parameter before making any change. Failure to set a parameter correctly may result in the machine behaving unexpectedly, possibly causing damage to the workpiece and/or machine itself, or injury to the user.

6. Immediately after switching on the power, do not touch any of the keys on the MDI panel until the position display or alarm screen appears on the CNC unit. Some of the keys on the MDI panel are dedicated to maintenance or other special operations. Pressing any of these keys may place the CNC unit in other than its normal state. Starting the machine in this state may cause it to behave unexpectedly.

7. The operator’s manual and programming manual supplied with a CNC unit provide an overall description of the machine’s functions, including any optional functions. Note that the optional functions will vary from one machine model to another. Therefore, some functions described in the manuals may not actually be available for a particular model. Check the specification of the machine if in doubt.
WARNING

8. Some functions may have been implemented at the request of the machine–tool builder. When using such functions, refer to the manual supplied by the machine–tool builder for details of their use and any related cautions.

NOTE

Programs, parameters, and macro variables are stored in nonvolatile memory in the CNC unit. Usually, they are retained even if the power is turned off. Such data may be deleted inadvertently, however, or it may prove necessary to delete all data from nonvolatile memory as part of error recovery.
To guard against the occurrence of the above, and assure quick restoration of deleted data, backup all vital data, and keep the backup copy in a safe place.
3 WARNINGS AND CAUTIONS RELATED TO PROGRAMMING

This section covers the major safety precautions related to programming. Before attempting to perform programming, read the supplied operator’s manual and programming manual carefully such that you are fully familiar with their contents.

WARNING

1. **Coordinate system setting**

 If a coordinate system is established incorrectly, the machine may behave unexpectedly as a result of the program issuing an otherwise valid move command. Such an unexpected operation may damage the tool, the machine itself, the workpiece, or cause injury to the user.

2. **Positioning by nonlinear interpolation**

 When performing positioning by nonlinear interpolation (positioning by nonlinear movement between the start and end points), the tool path must be carefully confirmed before performing programming. Positioning involves rapid traverse. If the tool collides with the workpiece, it may damage the tool, the machine itself, the workpiece, or cause injury to the user.

3. **Function involving a rotation axis**

 When programming polar coordinate interpolation or normal–direction (perpendicular) control, pay careful attention to the speed of the rotation axis. Incorrect programming may result in the rotation axis speed becoming excessively high, such that centrifugal force causes the chuck to lose its grip on the workpiece if the latter is not mounted securely. Such mishap is likely to damage the tool, the machine itself, the workpiece, or cause injury to the user.

4. **Inch/metric conversion**

 Switching between inch and metric inputs does not convert the measurement units of data such as the workpiece origin offset, parameter, and current position. Before starting the machine, therefore, determine which measurement units are being used. Attempting to perform an operation with invalid data specified may damage the tool, the machine itself, the workpiece, or cause injury to the user.

5. **Constant surface speed control**

 When an axis subject to constant surface speed control approaches the origin of the workpiece coordinate system, the spindle speed may become excessively high. Therefore, it is necessary to specify a maximum allowable speed. Specifying the maximum allowable speed incorrectly may damage the tool, the machine itself, the workpiece, or cause injury to the user.
6. **Stroke check**

After switching on the power, perform a manual reference position return as required. Stroke check is not possible before manual reference position return is performed. Note that when stroke check is disabled, an alarm is not issued even if a stroke limit is exceeded, possibly damaging the tool, the machine itself, the workpiece, or causing injury to the user.

7. **Absolute/incremental mode**

If a program created with absolute values is run in incremental mode, or vice versa, the machine may behave unexpectedly.

8. **Plane selection**

If an incorrect plane is specified for circular interpolation, helical interpolation, or a canned cycle, the machine may behave unexpectedly. Refer to the descriptions of the respective functions for details.

9. **Torque limit skip**

Before attempting a torque limit skip, apply the torque limit. If a torque limit skip is specified without the torque limit actually being applied, a move command will be executed without performing a skip.

10. **Compensation function**

If a command based on the machine coordinate system or a reference position return command is issued in compensation function mode, compensation is temporarily canceled, resulting in the unexpected behavior of the machine.

Before issuing any of the above commands, therefore, always cancel compensation function mode.
4 WARNINGS AND CAUTIONS RELATED TO HANDLING

This section presents safety precautions related to the handling of machine tools. Before attempting to operate your machine, read the supplied operator’s manual and programming manual carefully, such that you are fully familiar with their contents.

WARNING

1. **Manual operation**

 When operating the machine manually, determine the current position of the tool and workpiece, and ensure that the movement axis, direction, and feedrate have been specified correctly. Incorrect operation of the machine may damage the tool, the machine itself, the workpiece, or cause injury to the operator.

2. **Manual reference position return**

 After switching on the power, perform manual reference position return as required. If the machine is operated without first performing manual reference position return, it may behave unexpectedly. Stroke check is not possible before manual reference position return is performed. An unexpected operation of the machine may damage the tool, the machine itself, the workpiece, or cause injury to the user.

3. **Manual handle feed**

 In manual handle feed, rotating the handle with a large scale factor, such as 100, applied causes the tool and table to move rapidly. Careless handling may damage the tool and/or machine, or cause injury to the user.

4. **Disabled override**

 If override is disabled (according to the specification in a macro variable) during threading, rigid tapping, or other tapping, the speed cannot be predicted, possibly damaging the tool, the machine itself, the workpiece, or causing injury to the operator.

5. **Origin/preset operation**

 Basically, never attempt an origin/preset operation when the machine is operating under the control of a program. Otherwise, the machine may behave unexpectedly, possibly damaging the tool, the machine itself, the tool, or causing injury to the user.
WARNING

6. Workpiece coordinate system shift

Manual intervention, machine lock, or mirror imaging may shift the workpiece coordinate system. Before attempting to operate the machine under the control of a program, confirm the coordinate system carefully.

If the machine is operated under the control of a program without making allowances for any shift in the workpiece coordinate system, the machine may behave unexpectedly, possibly damaging the tool, the machine itself, the workpiece, or causing injury to the operator.

7. Software operator’s panel and menu switches

Using the software operator’s panel and menu switches, in combination with the MDI panel, it is possible to specify operations not supported by the machine operator’s panel, such as mode change, override value change, and jog feed commands.

Note, however, that if the MDI panel keys are operated inadvertently, the machine may behave unexpectedly, possibly damaging the tool, the machine itself, the workpiece, or causing injury to the user.

8. Manual intervention

If manual intervention is performed during programmed operation of the machine, the tool path may vary when the machine is restarted. Before restarting the machine after manual intervention, therefore, confirm the settings of the manual absolute switches, parameters, and absolute/incremental command mode.

9. Feed hold, override, and single block

The feed hold, feedrate override, and single block functions can be disabled using custom macro system variable #3004. Be careful when operating the machine in this case.

10. Dry run

Usually, a dry run is used to confirm the operation of the machine. During a dry run, the machine operates at dry run speed, which differs from the corresponding programmed feedrate. Note that the dry run speed may sometimes be higher than the programmed feed rate.

11. Tool nose radius compensation in MDI mode

Pay careful attention to a tool path specified by a command in MDI mode, because tool nose radius compensation is not applied. When a command is entered from the MDI to interrupt in automatic operation in tool nose radius compensation mode, pay particular attention to the tool path when automatic operation is subsequently resumed. Refer to the descriptions of the corresponding functions for details.

12. Program editing

If the machine is stopped, after which the machining program is edited (modification, insertion, or deletion), the machine may behave unexpectedly if machining is resumed under the control of that program. Basically, do not modify, insert, or delete commands from a machining program while it is in use.
5 WARNINGS RELATED TO DAILY MAINTENANCE

WARNING

1. **Memory backup battery replacement**

 When replacing the memory backup batteries, keep the power to the machine (CNC) turned on, and apply an emergency stop to the machine. Because this work is performed with the power on and the cabinet open, only those personnel who have received approved safety and maintenance training may perform this work. When replacing the batteries, be careful not to touch the high-voltage circuits (marked \(\Delta \) and fitted with an insulating cover). Touching the uncovered high-voltage circuits presents an extremely dangerous electric shock hazard.

NOTE

The CNC uses batteries to preserve the contents of its memory, because it must retain data such as programs, offsets, and parameters even while external power is not applied. If the battery voltage drops, a low battery voltage alarm is displayed on the machine operator’s panel or screen. When a low battery voltage alarm is displayed, replace the batteries within a week. Otherwise, the contents of the CNC’s memory will be lost. Refer to the maintenance section of the this manual for details of the battery replacement procedure.
WARNING

2. Absolute pulse coder battery replacement

When replacing the memory backup batteries, keep the power to the machine (CNC) turned on, and apply an emergency stop to the machine. Because this work is performed with the power on and the cabinet open, only those personnel who have received approved safety and maintenance training may perform this work.

When replacing the batteries, be careful not to touch the high-voltage circuits (marked and fitted with an insulating cover).

Touching the uncovered high-voltage circuits presents an extremely dangerous electric shock hazard.

NOTE

The absolute pulse coder uses batteries to preserve its absolute position.

If the battery voltage drops, a low battery voltage alarm is displayed on the machine operator’s panel or screen.

When a low battery voltage alarm is displayed, replace the batteries within a week. Otherwise, the absolute position data held by the pulse coder will be lost.

Refer to the FANUC Servo Motor αi series Maintenance Manual for details of the battery replacement procedure.
3. Fuse replacement

For some units, the chapter covering daily maintenance in the operator’s manual or programming manual describes the fuse replacement procedure. Before replacing a blown fuse, however, it is necessary to locate and remove the cause of the blown fuse. For this reason, only those personnel who have received approved safety and maintenance training may perform this work.

When replacing a fuse with the cabinet open, be careful not to touch the high–voltage circuits (marked ⱀ and fitted with an insulating cover). Touching an uncovered high–voltage circuit presents an extremely dangerous electric shock hazard.
Table of Contents

SAFETY PRECAUTIONS ... s–1

I. GENERAL .. 3
 1. GENERAL .. 6
 1.1 GENERAL FLOW OF OPERATION OF CNC MACHINE TOOL
 1.2 CAUTIONS ON READING THIS MANUAL ...
 1.3 CAUTIONS ON VARIOUS KINDS OF DATA ...

II. PROGRAMMING .. 11
 1. GENERAL .. 12
 1.1 TOOL MOVEMENT ALONG WORKPIECE PARTS FIGURE–INTERPOLATION
 1.2 FEED–FEED FUNCTION ...
 1.3 PART DRAWING AND TOOL MOVEMENT ...
 1.3.1 Reference Position (Machine–Specific Position)
 1.3.2 Coordinate System on Part Drawing and Coordinate System Specified by
 CNC – Coordinate System ...
 1.3.3 How to Indicate Command Dimensions for Moving the Tool – Absolute,
 Incremental Commands ...
 1.4 CUTTING SPEED – SPINDLE SPEED FUNCTION
 1.5 SELECTION OF TOOL USED FOR VARIOUS MACHINING – TOOL FUNCTION ..
 1.6 COMMAND FOR MACHINE OPERATIONS – MISCELLANEOUS FUNCTION
 1.7 PROGRAM CONFIGURATION ...
 1.8 COMPENSATION FUNCTION ...
 1.9 TOOL MOVEMENT RANGE – STROKE ...

 2. CONTROLLED AXES ... 28
 2.1 CONTROLLED AXES ...
 2.2 NAMES OF AXES ...
 2.3 INCREMENT SYSTEM ...
 2.4 MAXIMUM STROKES ...

 3. PREPARATORY FUNCTION (G FUNCTION) 32

 4. INTERPOLATION FUNCTIONS 37
 4.1 POSITIONING (G00) ...
 4.2 LINEAR INTERPOLATION (G01) ...
 4.3 CIRCULAR INTERPOLATION (G02, G03) ...
 4.4 HELICAL INTERPOLATION (G02, G03) ...
 4.5 POLAR COORDINATE INTERPOLATION (G12.1, G13.1)
 4.6 CYLINDRICAL INTERPOLATION (G07.1) ...
 4.7 CONSTANT LEAD THREADING (G32) ...
 4.8 VARIABLE–LEAD THREAD CUTTING (G34) ...
 4.9 CONTINUOUS THREAD CUTTING ...
 4.10 MULTIPLE–THREAD CUTTING ...

 c–1
<table>
<thead>
<tr>
<th>Section</th>
<th>Title</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>4.11</td>
<td>SKIP FUNCTION (G31)</td>
<td>62</td>
</tr>
<tr>
<td>4.12</td>
<td>MULTISTAGE SKIP</td>
<td>64</td>
</tr>
<tr>
<td>4.13</td>
<td>TORQUE LIMIT SKIP (G31 P99)</td>
<td>65</td>
</tr>
<tr>
<td>5.</td>
<td>FEED FUNCTIONS</td>
<td>67</td>
</tr>
<tr>
<td>5.1</td>
<td>GENERAL</td>
<td>68</td>
</tr>
<tr>
<td>5.2</td>
<td>RAPID TRAVERSE</td>
<td>69</td>
</tr>
<tr>
<td>5.3</td>
<td>CUTTING FEED</td>
<td>70</td>
</tr>
<tr>
<td>5.4</td>
<td>DWELL (G04)</td>
<td>72</td>
</tr>
<tr>
<td>6.</td>
<td>REFERENCE POSITION</td>
<td>73</td>
</tr>
<tr>
<td>6.1</td>
<td>REFERENCE POSITION RETURN</td>
<td>74</td>
</tr>
<tr>
<td>7.</td>
<td>COORDINATE SYSTEM</td>
<td>77</td>
</tr>
<tr>
<td>7.1</td>
<td>MACHINE COORDINATE SYSTEM</td>
<td>78</td>
</tr>
<tr>
<td>7.2</td>
<td>WORKPIECE COORDINATE SYSTEM</td>
<td>79</td>
</tr>
<tr>
<td>7.2.1</td>
<td>Setting a Workpiece Coordinate System</td>
<td>79</td>
</tr>
<tr>
<td>7.2.2</td>
<td>Selecting a Workpiece Coordinate System</td>
<td>81</td>
</tr>
<tr>
<td>7.2.3</td>
<td>Changing Workpiece Coordinate System</td>
<td>82</td>
</tr>
<tr>
<td>7.2.4</td>
<td>Workpiece Coordinate System Preset (G92.1)</td>
<td>84</td>
</tr>
<tr>
<td>7.2.5</td>
<td>Workpiece Coordinate System Shift</td>
<td>86</td>
</tr>
<tr>
<td>7.3</td>
<td>LOCAL COORDINATE SYSTEM</td>
<td>87</td>
</tr>
<tr>
<td>7.4</td>
<td>PLANE SELECTION</td>
<td>89</td>
</tr>
<tr>
<td>8.</td>
<td>COORDINATE VALUE AND DIMENSION</td>
<td>90</td>
</tr>
<tr>
<td>8.1</td>
<td>ABSOLUTE AND INCREMENTAL PROGRAMMING (G90, G91)</td>
<td>91</td>
</tr>
<tr>
<td>8.2</td>
<td>INCH/METRIC CONVERSION (G20, G21)</td>
<td>92</td>
</tr>
<tr>
<td>8.3</td>
<td>DECIMAL POINT PROGRAMMING</td>
<td>93</td>
</tr>
<tr>
<td>8.4</td>
<td>DIAMETER AND RADIUS PROGRAMMING</td>
<td>94</td>
</tr>
<tr>
<td>9.</td>
<td>SPINDLE SPEED FUNCTION</td>
<td>95</td>
</tr>
<tr>
<td>9.1</td>
<td>SPECIFYING THE SPINDLE SPEED WITH A CODE</td>
<td>96</td>
</tr>
<tr>
<td>9.2</td>
<td>SPECIFYING THE SPINDLE SPEED VALUE DIRECTLY (S5–DIGIT COMMAND)</td>
<td>96</td>
</tr>
<tr>
<td>9.3</td>
<td>CONSTANT SURFACE SPEED CONTROL (G96, G97)</td>
<td>97</td>
</tr>
<tr>
<td>9.4</td>
<td>SPINDLE SPEED FLUCTUATION DETECTION FUNCTION (G25, G26)</td>
<td>101</td>
</tr>
<tr>
<td>9.5</td>
<td>SPINDLE POSITIONING FUNCTION</td>
<td>104</td>
</tr>
<tr>
<td>9.5.1</td>
<td>Spindle Orientation</td>
<td>104</td>
</tr>
<tr>
<td>9.5.2</td>
<td>Spindle Positioning</td>
<td>104</td>
</tr>
<tr>
<td>9.5.3</td>
<td>Canceling Spindle Positioning</td>
<td>106</td>
</tr>
<tr>
<td>10.</td>
<td>TOOL FUNCTION (T FUNCTION)</td>
<td>107</td>
</tr>
<tr>
<td>10.1</td>
<td>TOOL SELECTION</td>
<td>108</td>
</tr>
<tr>
<td>10.2</td>
<td>TOOL LIFE MANAGEMENT</td>
<td>109</td>
</tr>
<tr>
<td>10.2.1</td>
<td>Program of Tool Life Data</td>
<td>109</td>
</tr>
<tr>
<td>10.2.2</td>
<td>Counting a Tool Life</td>
<td>112</td>
</tr>
<tr>
<td>10.2.3</td>
<td>Specifying a Tool Group in a Machining Program</td>
<td>113</td>
</tr>
</tbody>
</table>
Table of Contents

11. Auxiliary Function

<table>
<thead>
<tr>
<th>Section</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>11.1 Auxiliary Function (M Function)</td>
<td>115</td>
</tr>
<tr>
<td>11.2 Multiple M Commands in a Single Block</td>
<td>116</td>
</tr>
<tr>
<td>11.3 The Second Auxiliary Functions (B Codes)</td>
<td>117</td>
</tr>
</tbody>
</table>

12. Program Configuration

<table>
<thead>
<tr>
<th>Section</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>12.1 Program Components Other Than Program Sections</td>
<td>120</td>
</tr>
<tr>
<td>12.2 Program Section Configuration</td>
<td>123</td>
</tr>
<tr>
<td>12.3 Subprogram (M98, M99)</td>
<td>129</td>
</tr>
</tbody>
</table>

13. Functions to Simplify Programming

<table>
<thead>
<tr>
<th>Section</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>13.1 Canned Cycle (G90, G92, G94)</td>
<td>133</td>
</tr>
<tr>
<td>13.1.1 Outer Diameter / Internal Diameter Cutting Cycle (G90)</td>
<td>133</td>
</tr>
<tr>
<td>13.1.2 Thread Cutting Cycle (G92)</td>
<td>135</td>
</tr>
<tr>
<td>13.1.3 End Face Turning Cycle (G94)</td>
<td>138</td>
</tr>
<tr>
<td>13.1.4 How to Use Canned Cycles (G90, G92, G94)</td>
<td>141</td>
</tr>
<tr>
<td>13.2 Multiple Repetitive Cycle (G70 – G76)</td>
<td>143</td>
</tr>
<tr>
<td>13.2.1 Stock Removal in Turning (G71)</td>
<td>143</td>
</tr>
<tr>
<td>13.2.2 Stock Removal in Facing (G72)</td>
<td>147</td>
</tr>
<tr>
<td>13.2.3 Pattern Repeating (G73)</td>
<td>148</td>
</tr>
<tr>
<td>13.2.4 Finishing Cycle (G70)</td>
<td>149</td>
</tr>
<tr>
<td>13.2.5 End Face Peck Drilling Cycle (G74)</td>
<td>152</td>
</tr>
<tr>
<td>13.2.6 Outer Diameter / Internal Diameter Drilling Cycle (G75)</td>
<td>153</td>
</tr>
<tr>
<td>13.2.7 Multiple Thread Cutting Cycle (G76)</td>
<td>154</td>
</tr>
<tr>
<td>13.2.8 Notes on Multiple Repetitive Cycle (G70 – G76)</td>
<td>158</td>
</tr>
<tr>
<td>13.3 Canned Cycle for Drilling (G80 – G89)</td>
<td>159</td>
</tr>
<tr>
<td>13.3.1 Front Drilling Cycle (G83) / Side Drilling Cycle (G87)</td>
<td>163</td>
</tr>
<tr>
<td>13.3.2 Front Tapping Cycle (G84) / Side Tapping Cycle (G88)</td>
<td>166</td>
</tr>
<tr>
<td>13.3.3 Front Boring Cycle (G85) / Side Boring Cycle (G89)</td>
<td>168</td>
</tr>
<tr>
<td>13.3.4 Canned Cycle for Drilling Cancel (G80)</td>
<td>169</td>
</tr>
<tr>
<td>13.3.5 Precautions to be Taken by Operator</td>
<td>170</td>
</tr>
<tr>
<td>13.4 Canned Grinding Cycle (For Grinding Machine)</td>
<td>171</td>
</tr>
<tr>
<td>13.4.1 Traverse Grinding Cycle (G71)</td>
<td>171</td>
</tr>
<tr>
<td>13.4.2 Traverse Direct Fixed–dimension Grinding Cycle (G72)</td>
<td>172</td>
</tr>
<tr>
<td>13.4.3 Oscillation Grinding Cycle (G73)</td>
<td>173</td>
</tr>
<tr>
<td>13.4.4 Oscillation Direct Fixed–Dimension Grinding Cycle</td>
<td>174</td>
</tr>
<tr>
<td>13.5 Chamfering and Corner R</td>
<td>175</td>
</tr>
<tr>
<td>13.6 Mirror Image for Double Turret (G68, G69)</td>
<td>178</td>
</tr>
<tr>
<td>13.7 Direct Drawing Dimensions Programming</td>
<td>179</td>
</tr>
<tr>
<td>13.8 Rigid Tapping</td>
<td>184</td>
</tr>
<tr>
<td>13.8.1 Front Face Rigid Tapping Cycle (G84) / Side Face Rigid Tapping Cycle (G88)</td>
<td>185</td>
</tr>
<tr>
<td>13.8.2 Rigid Tapping Cancel (G80)</td>
<td>187</td>
</tr>
</tbody>
</table>

14. Compensation Function

<table>
<thead>
<tr>
<th>Section</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>14.1 Tool Offset</td>
<td>189</td>
</tr>
<tr>
<td>14.1.1 Tool Geometry Offset and Tool Wear Offset</td>
<td>189</td>
</tr>
<tr>
<td>14.1.2 T Code for Tool Offset</td>
<td>190</td>
</tr>
<tr>
<td>14.1.3 Tool Selection</td>
<td>190</td>
</tr>
<tr>
<td>14.1.4 Offset Number</td>
<td>190</td>
</tr>
<tr>
<td>14.1.5 Offset</td>
<td>191</td>
</tr>
<tr>
<td>14.1.6 G53, G28, and G30 Commands When Tool Position Offset is Applied</td>
<td>194</td>
</tr>
</tbody>
</table>
14.2 OVERVIEW OF TOOL NOSE RADIUS COMPENSATION ... 197
 14.2.1 Imaginary Tool Nose ... 197
 14.2.2 Direction of Imaginary Tool Nose .. 199
 14.2.3 Offset Number and Offset Value ... 200
 14.2.4 Work Position and Move Command .. 202
 14.2.5 Notes on Tool Nose Radius Compensation .. 207
14.3 DETAILS OF TOOL NOSE RADIUS COMPENSATION ... 210
 14.3.1 General ... 210
 14.3.2 Tool Movement in Start-up ... 212
 14.3.3 Tool Movement in Offset Mode .. 214
 14.3.4 Tool Movement in Offset Mode Cancel .. 227
 14.3.5 Interference Check .. 230
 14.3.6 Overcutting by Tool Nose Radius Compensation 235
 14.3.7 Correction in Chamfering and Corner Arcs .. 236
 14.3.8 Input Command from MDI ... 238
 14.3.9 General Precautions for Offset Operations .. 239
14.4 TOOL COMPENSATION VALUES, NUMBER OF COMPENSATION VALUES, AND ENTERING VALUES FROM THE PROGRAM (G10) .. 249
 14.4.1 Tool Compensation and Number of Tool Compensation 249
 14.4.2 Changing of Tool Offset Value ... 250
14.5 AUTOMATIC TOOL OFFSET (G36, G37) ... 251

15.CUSTOM MACRO ... 254
 15.1 VARIABLES ... 255
 15.2 SYSTEM VARIABLES ... 259
 15.3 ARITHMETIC AND LOGIC OPERATION .. 266
 15.4 MACRO STATEMENTS AND NC STATEMENTS 271
 15.5 BRANCH AND REPETITION ... 272
 15.5.1 Unconditional Branch (GOTO Statement) ... 272
 15.5.2 Conditional Branch (IF Statement) .. 273
 15.5.3 Repetition (WHILE Statement) .. 274
 15.6 MACRO CALL ... 277
 15.6.1 Simple Call (G65) .. 278
 15.6.2 Modal Call (G66) .. 282
 15.6.3 Macro Call Using G Code ... 284
 15.6.4 Macro Call Using an M Code .. 285
 15.6.5 Subprogram Call Using an M Code .. 286
 15.6.6 Subprogram Calls Using a T Code .. 287
 15.6.7 Sample Program .. 288
 15.7 PROCESSING MACRO STATEMENTS .. 290
 15.8 REGISTERING CUSTOM MACRO PROGRAMS 292
 15.9 LIMITATIONS .. 293
 15.10 EXTERNAL OUTPUT COMMANDS ... 294
 15.11 INTERRUPTION TYPE CUSTOM MACRO ... 298
 15.11.1 Specification Method ... 299
 15.11.2 Details of Functions .. 300

16.PROGRAMMABLE PARAMETER ENTRY (G10) .. 307

17.MEMORY OPERATION BY Series 10/11 TAPE FORMAT 310
17. ADDRESSES AND SPECIFIABLE VALUE RANGE FOR Series 10/11 TAPE FORMAT

- **17.1** ADDRESSES AND SPECIFIABLE VALUE RANGE FOR Series 10/11 TAPE FORMAT 311
- **17.2** EQUAL-LEAD THREADING ... 312
- **17.3** SUBPROGRAM CALLING .. 313
- **17.4** CANNED CYCLE .. 314
- **17.5** MULTIPLE REPEETITIVE CANNED TURNING CYCLE .. 315
- **17.6** CANNED DRILLING CYCLE FORMATS ... 317

18. FUNCTIONS FOR HIGH SPEED CUTTING .. 321

- **18.1** ADVANCED PREVIEW CONTROL (G08) ... 322

19. AXIS CONTROL FUNCTION .. 327

- **19.1** POLYGONAL TURNING ... 328
- **19.2** ROTARY AXIS ROLL-OVER .. 333
- **19.3** SIMPLE SYNCHRONIZATION CONTROL ... 334
- **19.4** TANDEM CONTROL .. 336
- **19.5** ANGULAR AXIS CONTROL / ARBITRARY ANGULAR AXIS CONTROL 337

20. PATTERN DATA INPUT FUNCTION ... 339

- **20.1** DISPLAYING THE PATTERN MENU ... 340
- **20.2** PATTERN DATA DISPLAY .. 344
- **20.3** CHARACTERS AND CODES TO BE USED FOR THE PATTERN DATA INPUT FUNCTION

III. OPERATION

1. GENERAL .. 353

- **1.1** MANUAL OPERATION ... 354
- **1.2** TOOL MOVEMENT BY PROGRAMMING – AUTOMATIC OPERATION 356
- **1.3** AUTOMATIC OPERATION .. 357
- **1.4** TESTING A PROGRAM .. 359
 - **1.4.1** Check by Running the Machine ... 359
 - **1.4.2** How to View the Position Display Change without Running the Machine 360
- **1.5** EDITING A PART PROGRAM ... 361
- **1.6** DISPLAYING AND SETTING DATA ... 362
- **1.7** DISPLAY ... 365
 - **1.7.1** Program Display .. 365
 - **1.7.2** Current Position Display .. 366
 - **1.7.3** Alarm Display .. 366
 - **1.7.4** Parts Count Display, Run Time Display ... 367
 - **1.7.5** Graphic Display (See Section III–12) ... 367
- **1.8** DATA OUTPUT .. 368

2. OPERATIONAL DEVICES .. 369

- **2.1** SETTING AND DISPLAY UNITS .. 370
 - **2.1.1** 7.2″ Monochrome/8.4″ Color LCD/MDI Unit (Horizontal Type) .. 371
 - **2.1.2** 7.2″ Monochrome/8.4″ Color LCD/MDI Unit (Vertical Type) ... 372
 - **2.1.3** Key Location of MDI (Horizontal Type LCD/MDI Unit) ... 373
2.1.4 Key Location of MDI (Vertical Type LCD/MDI Unit) 374
2.2 EXPLANATION OF THE KEYBOARD ... 375
2.3 FUNCTION KEYS AND SOFT KEYS .. 377
2.3.1 General Screen Operations ... 377
2.3.2 Function Keys ... 378
2.3.3 Soft Keys ... 379
2.3.4 Key Input and Input Buffer .. 395
2.3.5 Warning Messages .. 396
2.4 EXTERNAL I/O DEVICES .. 397
2.4.1 FANUC Handy File ... 399
2.5 POWER ON/OFF ... 400
2.5.1 Turning on the Power .. 400
2.5.2 Screen Displayed at Power–on ... 401
2.5.3 Power Disconnection ... 402

3. MANUAL OPERATION ... 403
3.1 MANUAL REFERENCE POSITION RETURN 404
3.2 JOG FEED ... 406
3.3 INCREMENTAL FEED .. 408
3.4 MANUAL HANDLE FEED .. 409
3.5 MANUAL ABSOLUTE ON AND OFF .. 412

4. AUTOMATIC OPERATION ... 417
4.1 MEMORY OPERATION .. 418
4.2 MDI OPERATION ... 421
4.3 DNC OPERATION ... 424
4.4 PROGRAM RESTART .. 426
4.5 SCHEDULING FUNCTION ... 434
4.6 SUBPROGRAM CALL FUNCTION (M198) 439
4.7 MANUAL HANDLE INTERRUPTION .. 441
4.8 MIRROR IMAGE .. 444
4.9 MANUAL INTERVENTION AND RETURN 446
4.10 DNC OPERATION WITH MEMORY CARD 448
4.10.1 Specification ... 448
4.10.2 Operations .. 449
4.10.2.1 DNC Operation ... 449
4.10.2.2 Subprogram Call (M198) ... 450
4.10.3 Limitation and Notes .. 451
4.10.4 Parameter .. 451
4.10.5 Procedure for Fixing the Memory Card 451

5. TEST OPERATION ... 453
5.1 MACHINE LOCK AND AUXILIARY FUNCTION LOCK 454
5.2 FEEDRATE OVERRIDE .. 456
5.3 RAPID TRAVERSE OVERRIDE ... 457
5.4 DRY RUN .. 458
5.5 SINGLE BLOCK ... 459

The file contains a table of contents for a manual, with sections and subsections listed in a hierarchical manner. Each section is numbered and titled, with page numbers indicating the location of each section in the document.
Table of Contents

6. SAFETY FUNCTIONS

6.1 EMERGENCY STOP .. 463
6.2 OVERTRAVEL ... 464
6.3 STORED STROKE CHECK 465
6.4 CHUCK AND TAILSTOCK BARRIERS 469
6.5 STROKE LIMIT CHECK PRIOR TO PERFORMING MOVEMENT 476

7. ALARM AND SELF–DIAGNOSIS FUNCTIONS

7.1 ALARM DISPLAY .. 480
7.2 ALARM HISTORY DISPLAY 482
7.3 CHECKING BY SELF–DIAGNOSTIC SCREEN 483

8. DATA INPUT/OUTPUT

8.1 FILES .. 487
8.2 FILE SEARCH ... 489
8.3 FILE DELETION .. 491
8.4 PROGRAM INPUT/OUTPUT 492
8.4.1 Inputting a Program 492
8.4.2 Outputting a Program 495
8.5 OFFSET DATA INPUT AND OUTPUT 497
8.5.1 Inputting Offset Data 497
8.5.2 Outputting Offset Data 498
8.6 INPUTTING AND OUTPUTTING PARAMETERS AND PITCH ERROR COMPENSATION DATA 499
8.6.1 Inputting Parameters 499
8.6.2 Outputting Parameters 500
8.6.3 Inputting Pitch Error Compensation Data 501
8.6.4 Outputting Pitch Error Compensation Data 502
8.7 INPUTTING/OUTPUTTING CUSTOM MACRO COMMON VARIABLES .. 503
8.7.1 Inputting Custom Macro Common Variables 503
8.7.2 Outputting Custom Macro Common Variable 504
8.8 DISPLAYING DIRECTORY OF FLOPPY DISK 505
8.8.1 Displaying the Directory 506
8.8.2 Reading Files ... 509
8.8.3 Outputting Programs 510
8.8.4 Deleting Files .. 511
8.9 OUTPUTTING A PROGRAM LIST FOR A SPECIFIED GROUP 513
8.10 DATA INPUT/OUTPUT ON THE ALL IO SCREEN 514
8.10.1 Setting Input/Output–Related Parameters 515
8.10.2 Inputting and Outputting Programs 516
8.10.3 Inputting and Outputting Parameters 520
8.10.4 Inputting and Outputting Offset Data 522
8.10.5 Outputting Custom Macro Common Variables 524
8.10.6 Inputting and Outputting Floppy Files 525
8.11 DATA INPUT/OUTPUT USING A MEMORY CARD 530

9. EDITING PROGRAMS

9.1 INSERTING, ALTERING AND DELETING A WORD 543
9.1.1 Word Search .. 544
Table of Contents

9. SETTING AND DISPLAYING DATA

<table>
<thead>
<tr>
<th>Section</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>9.1.2 Heading a Program</td>
<td>546</td>
</tr>
<tr>
<td>9.1.3 Inserting a Word</td>
<td>547</td>
</tr>
<tr>
<td>9.1.4 Altering a Word</td>
<td>548</td>
</tr>
<tr>
<td>9.1.5 Deleting a Word</td>
<td>549</td>
</tr>
<tr>
<td>9.2 DELETING BLOCKS</td>
<td>550</td>
</tr>
<tr>
<td>9.2.1 Deleting a Block</td>
<td>550</td>
</tr>
<tr>
<td>9.2.2 Deleting Multiple Blocks</td>
<td>551</td>
</tr>
<tr>
<td>9.3 PROGRAM NUMBER SEARCH</td>
<td>552</td>
</tr>
<tr>
<td>9.4 SEQUENCE NUMBER SEARCH</td>
<td>553</td>
</tr>
<tr>
<td>9.5 DELETING PROGRAMS</td>
<td>555</td>
</tr>
<tr>
<td>9.5.1 Deleting One Program</td>
<td>555</td>
</tr>
<tr>
<td>9.5.2 Deleting All Programs</td>
<td>555</td>
</tr>
<tr>
<td>9.5.3 Deleting More Than One Program by Specifying a Range</td>
<td>556</td>
</tr>
<tr>
<td>9.6 EXTENDED PART PROGRAM EDITING FUNCTION</td>
<td>557</td>
</tr>
<tr>
<td>9.6.1 Copying an Entire Program</td>
<td>558</td>
</tr>
<tr>
<td>9.6.2 Copying Part of a Program</td>
<td>559</td>
</tr>
<tr>
<td>9.6.3 Moving Part of a Program</td>
<td>560</td>
</tr>
<tr>
<td>9.6.4 Merging a Program</td>
<td>561</td>
</tr>
<tr>
<td>9.6.5 Supplementary Explanation for Copying, Moving and Merging</td>
<td>562</td>
</tr>
<tr>
<td>9.6.6 Replacement of Words and Addresses</td>
<td>564</td>
</tr>
<tr>
<td>9.7 EDITING OF CUSTOM MACROS</td>
<td>566</td>
</tr>
<tr>
<td>9.8 BACKGROUND EDITING</td>
<td>567</td>
</tr>
<tr>
<td>9.9 PASSWORD FUNCTION</td>
<td>568</td>
</tr>
</tbody>
</table>

10. CREATING PROGRAMS

<table>
<thead>
<tr>
<th>Section</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>10.1 CREATING PROGRAMS USING THE MDI PANEL</td>
<td>571</td>
</tr>
<tr>
<td>10.2 AUTOMATIC INSERTION OF SEQUENCE NUMBERS</td>
<td>572</td>
</tr>
<tr>
<td>10.3 CREATING PROGRAMS IN TEACH IN MODE (PLAYBACK)</td>
<td>574</td>
</tr>
<tr>
<td>10.4 CONVERSATIONAL PROGRAMMING WITH GRAPHIC FUNCTION</td>
<td>577</td>
</tr>
</tbody>
</table>

11. SETTING AND DISPLAYING DATA

<table>
<thead>
<tr>
<th>Section</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>11.1 SCREENS DISPLAYED BY FUNCTION KEY</td>
<td>580</td>
</tr>
<tr>
<td>11.1.1 Position Display in the Workpiece Coordinate System</td>
<td>590</td>
</tr>
<tr>
<td>11.1.2 Position Display in the Relative Coordinate System</td>
<td>591</td>
</tr>
<tr>
<td>11.1.3 Overall Position Display</td>
<td>593</td>
</tr>
<tr>
<td>11.1.4 Presetting the Workpiece Coordinate System</td>
<td>594</td>
</tr>
<tr>
<td>11.1.5 Actual Feedrate Display</td>
<td>595</td>
</tr>
<tr>
<td>11.1.6 Display of Run Time and Parts Count</td>
<td>597</td>
</tr>
<tr>
<td>11.1.7 Operating Monitor Display</td>
<td>598</td>
</tr>
<tr>
<td>11.2 SCREENS DISPLAYED BY FUNCTION KEY (IN MEMORY MODE OR MDI MODE)</td>
<td>600</td>
</tr>
<tr>
<td>11.2.1 Program Contents Display</td>
<td>600</td>
</tr>
<tr>
<td>11.2.2 Current Block Display Screen</td>
<td>601</td>
</tr>
<tr>
<td>11.2.3 Next Block Display Screen</td>
<td>602</td>
</tr>
<tr>
<td>11.2.4 Program Check Screen</td>
<td>603</td>
</tr>
<tr>
<td>11.2.5 Program Screen for MDI Operation</td>
<td>604</td>
</tr>
<tr>
<td>11.3 SCREENS DISPLAYED BY FUNCTION KEY (IN THE EDIT MODE)</td>
<td>605</td>
</tr>
<tr>
<td>11.3.1 Displaying Memory Used and a List of Programs</td>
<td>605</td>
</tr>
<tr>
<td>11.3.2 Displaying a Program List for a Specified Group</td>
<td>608</td>
</tr>
</tbody>
</table>
Table of Contents

11. Screens Displayed by Function Key

<table>
<thead>
<tr>
<th>Section</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>11.4 Screens Displayed by Function Key</td>
<td>611</td>
</tr>
<tr>
<td>11.4.1 Setting and Displaying the Tool Offset Value</td>
<td>612</td>
</tr>
<tr>
<td>11.4.2 Direct Input of Tool Offset Value</td>
<td>615</td>
</tr>
<tr>
<td>11.4.3 Direct Input of Tool Offset Measured B</td>
<td>617</td>
</tr>
<tr>
<td>11.4.4 Counter Input of Offset value</td>
<td>619</td>
</tr>
<tr>
<td>11.4.5 Setting the Workpiece Coordinate System Shifting Amount</td>
<td>620</td>
</tr>
<tr>
<td>11.4.6 Y Axis Offset</td>
<td>622</td>
</tr>
<tr>
<td>11.4.7 Displaying and Entering Setting Data</td>
<td>625</td>
</tr>
<tr>
<td>11.4.8 Sequence Number Comparison and Stop</td>
<td>627</td>
</tr>
<tr>
<td>11.4.9 Displaying and Setting Run Time, Parts Count, and Time</td>
<td>629</td>
</tr>
<tr>
<td>11.4.10 Displaying and Setting the Workpiece Origin Offset Value</td>
<td>631</td>
</tr>
<tr>
<td>11.4.11 Direct Input of Measured Workpiece Origin Offsets</td>
<td>632</td>
</tr>
<tr>
<td>11.4.12 Displaying and Setting Custom Macro Common Variables</td>
<td>634</td>
</tr>
<tr>
<td>11.4.13 Displaying Pattern Data and Pattern Menu</td>
<td>635</td>
</tr>
<tr>
<td>11.4.14 Displaying and Setting the Software Operator’s Panel</td>
<td>637</td>
</tr>
<tr>
<td>11.4.15 Displaying and Setting Tool Life Management Data</td>
<td>639</td>
</tr>
<tr>
<td>11.5 Screens Displayed by Function Key</td>
<td>642</td>
</tr>
<tr>
<td>11.5.1 Displaying and Setting Parameters</td>
<td>643</td>
</tr>
<tr>
<td>11.5.2 Displaying and Setting Pitch Error Compensation Data</td>
<td>645</td>
</tr>
<tr>
<td>11.6 Displaying the Program Number, Sequence Number, and Status, and Warning Messages for Data Setting or Input/Output Operation</td>
<td>648</td>
</tr>
<tr>
<td>11.6.1 Displaying the Program Number and Sequence Number</td>
<td>648</td>
</tr>
<tr>
<td>11.6.2 Displaying the Status and Warning for Data Setting or Input/Output Operation</td>
<td>649</td>
</tr>
<tr>
<td>11.7 Screens Displayed by Function Key</td>
<td>651</td>
</tr>
<tr>
<td>11.7.1 External Operator Message History Display</td>
<td>651</td>
</tr>
<tr>
<td>11.8 Clearing the Screen</td>
<td>653</td>
</tr>
<tr>
<td>11.8.1 Erase CRT Screen Display</td>
<td>653</td>
</tr>
<tr>
<td>11.8.2 Automatic Erase Screen Display</td>
<td>654</td>
</tr>
</tbody>
</table>

12. Graphics Function

<table>
<thead>
<tr>
<th>Section</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>12.1 Graphics Display</td>
<td>656</td>
</tr>
<tr>
<td>12.2 Dynamic Graphic</td>
<td>661</td>
</tr>
</tbody>
</table>

13. Help Function

<table>
<thead>
<tr>
<th>Section</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>13. Help Function</td>
<td>662</td>
</tr>
</tbody>
</table>

14. Screen Hardcopy

<table>
<thead>
<tr>
<th>Section</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>14. Screen Hardcopy</td>
<td>667</td>
</tr>
</tbody>
</table>

IV. Manual Guide 0i

<table>
<thead>
<tr>
<th>Section</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>1. Manual Guide 0i</td>
<td>673</td>
</tr>
<tr>
<td>1.1 Overview</td>
<td>674</td>
</tr>
<tr>
<td>1.2 Introduction</td>
<td>675</td>
</tr>
<tr>
<td>1.3 Program Creating Operations</td>
<td>676</td>
</tr>
<tr>
<td>1.3.1 Start up</td>
<td>676</td>
</tr>
<tr>
<td>1.3.2 Start up</td>
<td>677</td>
</tr>
<tr>
<td>1.3.3 Creating a New Part Program</td>
<td>678</td>
</tr>
<tr>
<td>1.3.4 Process Assistance</td>
<td>680</td>
</tr>
<tr>
<td>1.3.5 G-code Assistance</td>
<td>682</td>
</tr>
<tr>
<td>1.3.6 M-code Assistance</td>
<td>685</td>
</tr>
</tbody>
</table>
V. MAINTENANCE

1. METHOD OF REPLACING BATTERY 743

1.1 BATTERY FOR MEMORY BACKUP (3VDC) 744
APPENDIX

A. TAPE CODE LIST .. 753

B. LIST OF FUNCTIONS AND TAPE FORMAT 756

C. RANGE OF COMMAND VALUE 761

D. NOMOGRAPHS ... 764
 D.1 INCORRECT THREADED LENGTH 765
 D.2 SIMPLE CALCULATION OF INCORRECT THREAD LENGTH 767
 D.3 TOOL PATH AT CORNER ... 769
 D.4 RADIUS DIRECTION ERROR AT CIRCLE CUTTING 772

E. STATUS WHEN TURNING POWER ON,
 WHEN CLEAR AND WHEN RESET 773

F. CHARACTER–TO–CODES CORRESPONDENCE TABLE 775

G. ALARM LIST .. 776
I. GENERAL
1 GENERAL

About this manual

This manual consists of the following parts:

I. GENERAL
 Describes chapter organization, applicable models, related manuals, and notes for reading this manual.

II. PROGRAMMING
 Describes each function: Format used to program functions in the NC language, characteristics, and restrictions.

III. OPERATION
 Describes the manual operation and automatic operation of a machine, procedures for inputting and outputting data, and procedures for editing a program.

IV. MANUAL GUIDE 0i
 Describes MANUAL GUIDE 0i.

V. MAINTENANCE
 Describes procedures for replacing batteries.

APPENDIX
 Lists tape codes, valid data ranges, and error codes.

Some functions described in this manual may not be applied to some products. For detail, refer to the DESCRIPTIONS manual (B–64112EN).

This manual does not describe parameters in detail. For details on parameters mentioned in this manual, refer to the manual for parameters (B–64120EN).

This manual describes all optional functions. Look up the options incorporated into your system in the manual written by the machine tool builder.

The models covered by this manual, and their abbreviations are:

<table>
<thead>
<tr>
<th>Product name</th>
<th>Abbreviations</th>
</tr>
</thead>
<tbody>
<tr>
<td>FANUC Series 0i–TC</td>
<td>0i–TC</td>
</tr>
<tr>
<td>Series 0i</td>
<td></td>
</tr>
</tbody>
</table>
Special symbols

This manual uses the following symbols:

- **IP**: Indicates a combination of axes such as X__ Y__ Z (used in PROGRAMMING.).
- **;**: Indicates the end of a block. It actually corresponds to the ISO code LF or EIA code CR.

Related manuals of Series 0i–C/0i Mate–C

The following table lists the manuals related to Series 0i–C and 0i Mate–C. This manual is indicated by an asterisk(*).

<table>
<thead>
<tr>
<th>Manual name</th>
<th>Specification number</th>
</tr>
</thead>
<tbody>
<tr>
<td>DESCRIPTIONS</td>
<td>B–64112EN</td>
</tr>
<tr>
<td>CONNECTION MANUAL (HARDWARE)</td>
<td>B–64113EN</td>
</tr>
<tr>
<td>CONNECTION MANUAL (FUNCTION)</td>
<td>B–64113EN–1</td>
</tr>
<tr>
<td>Series 0i–TC OPERATOR’S MANUAL</td>
<td>B–64114EN *</td>
</tr>
<tr>
<td>Series 0i–MC OPERATOR’S MANUAL</td>
<td>B–64124EN</td>
</tr>
<tr>
<td>Series 0i Mate–TC OPERATOR’S MANUAL</td>
<td>B–64134EN</td>
</tr>
<tr>
<td>Series 0i Mate–MC OPERATOR’S MANUAL</td>
<td>B–64144EN</td>
</tr>
<tr>
<td>MAINTENANCE MANUAL</td>
<td>B–64115EN</td>
</tr>
<tr>
<td>PARAMETER MANUAL</td>
<td>B–64120EN</td>
</tr>
<tr>
<td>PROGRAMMING MANUAL</td>
<td></td>
</tr>
<tr>
<td>Macro Compiler/Macro Executor PROGRAMMING MANUAL</td>
<td>B–61803E–1</td>
</tr>
<tr>
<td>FANUC MACRO COMPILER (For Personal Computer) PROGRAMMING MANUAL</td>
<td>B–66102E</td>
</tr>
<tr>
<td>PMC</td>
<td></td>
</tr>
<tr>
<td>PMC Ladder Language PROGRAMMING MANUAL</td>
<td>B–61863E</td>
</tr>
<tr>
<td>PMC C Language PROGRAMMING MANUAL</td>
<td>B–61863E–1</td>
</tr>
<tr>
<td>Network</td>
<td></td>
</tr>
<tr>
<td>Profibus–DP Board OPERATOR’S MANUAL</td>
<td>B–62924EN</td>
</tr>
<tr>
<td>Ethernet Board/DATA SERVER Board OPERATOR’S MANUAL</td>
<td>B–63354EN</td>
</tr>
<tr>
<td>FAST Ethernet Board/FAST DATA SERVER OPERATOR’S MANUAL</td>
<td>B–63644EN</td>
</tr>
<tr>
<td>DeviceNet Board OPERATOR’S MANUAL</td>
<td>B–63404EN</td>
</tr>
<tr>
<td>OPEN CNC</td>
<td></td>
</tr>
<tr>
<td>FANUC OPEN CNC OPERATOR’S MANUAL (Basic Operation Package (For Windows 95/NT))</td>
<td>B–62994EN</td>
</tr>
<tr>
<td>FANUC OPEN CNC OPERATOR’S MANUAL (Operation Management Package)</td>
<td>B–63214EN</td>
</tr>
</tbody>
</table>
The following table lists the manuals related to Servo Motor $\alpha i s/\alpha i/\beta i s$ series.

<table>
<thead>
<tr>
<th>Manual name</th>
<th>Specification number</th>
</tr>
</thead>
<tbody>
<tr>
<td>FANUC AC SERVO MOTOR $\alpha i s/\alpha i$ series DESCRIPCIONES</td>
<td>B–65262EN</td>
</tr>
<tr>
<td>FANUC AC SERVO MOTOR $\beta i s$ series DESCRIPCIONES</td>
<td>B–65302EN</td>
</tr>
<tr>
<td>FANUC AC SERVO MOTOR $\alpha i s/\alpha i/\beta i s$ series PARAMETER MANUAL</td>
<td>B–65270EN</td>
</tr>
<tr>
<td>FANUC AC SPINDLE MOTOR αi series DESCRIPCIONES</td>
<td>B–65272EN</td>
</tr>
<tr>
<td>FANUC AC SPINDLE MOTOR βi series DESCRIPCIONES</td>
<td>B–65312EN</td>
</tr>
<tr>
<td>FANUC AC SPINDLE MOTOR $\alpha i/\beta i$ series PARAMETER MANUAL</td>
<td>B–65280EN</td>
</tr>
<tr>
<td>FANUC SERVO AMPLIFIER αi series DESCRIPCIONES</td>
<td>B–65282EN</td>
</tr>
<tr>
<td>FANUC SERVO AMPLIFIER βi series DESCRIPCIONES</td>
<td>B–65322EN</td>
</tr>
<tr>
<td>FANUC AC SERVO MOTOR $\alpha i s/\alpha i$ series FANUC AC SPINDLE MOTOR αi series FANUC SERVO AMPLIFIER αi series MAINTENANCE MANUAL</td>
<td>B–65285EN</td>
</tr>
<tr>
<td>FANUC AC SERVO MOTOR βi series FANUC AC SPINDLE MOTOR βi series FANUC SERVO AMPLIFIER βi series MAINTENANCE MANUAL</td>
<td>B–65325EN</td>
</tr>
</tbody>
</table>
When machining the part using the CNC machine tool, first prepare the program, then operate the CNC machine by using the program.

1) First, prepare the program from a part drawing to operate the CNC machine tool. How to prepare the program is described in the Chapter II. PROGRAMMING.

2) The program is to be read into the CNC system. Then, mount the workpieces and tools on the machine, and operate the tools according to the programming. Finally, execute the machining actually. How to operate the CNC system is described in the Chapter III. OPERATION.

Before the actual programming, make the machining plan for how to machine the part.
Machining plan
1. Determination of workpieces machining range
2. Method of mounting workpieces on the machine tool
3. Machining sequence in every cutting process
4. Cutting tools and cutting conditions
Decide the cutting method in every cutting process.

<table>
<thead>
<tr>
<th>Cutting process</th>
<th>1</th>
<th>2</th>
<th>3</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>End face</td>
<td>Outer diameter</td>
<td>Grooving</td>
</tr>
<tr>
<td></td>
<td>cutting</td>
<td>cutting</td>
<td></td>
</tr>
<tr>
<td>1. Cutting method</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>: Rough</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>: Semi</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>: Finish</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>2. Cutting tools</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>3. Cutting conditions</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>: Feedrate</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>: Cutting depth</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>4. Tool path</td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>
Prepare the program of the tool path and cutting condition according to the workpiece figure, for each cutting.
1.2 CAUTIONS ON READING THIS MANUAL

CAUTION
1. The function of an CNC machine tool system depends not only on the CNC, but on the combination of the machine tool, its magnetic cabinet, the servo system, the CNC, the operator’s panels, etc. It is too difficult to describe the function, programming, and operation relating to all combinations. This manual generally describes these from the stand-point of the CNC. So, for details on a particular CNC machine tool, refer to the manual issued by the machine tool builder, which should take precedence over this manual.

2. Headings are placed in the left margin so that the reader can easily access necessary information. When locating the necessary information, the reader can save time by searching through these headings.

3. This manual describes as many reasonable variations in equipment usage as possible. It cannot address every combination of features, options and commands that should not be attempted. If a particular combination of operations is not described, it should not be attempted.

1.3 CAUTIONS ON VARIOUS KINDS OF DATA

CAUTION
Machining programs, parameters, variables, etc. are stored in the CNC unit internal non-volatile memory. In general, these contents are not lost by the switching ON/OFF of the power. However, it is possible that a state can occur where precious data stored in the non-volatile memory has to be deleted, because of deletions from a maloperation, or by a failure restoration. In order to restore rapidly when this kind of mishap occurs, it is recommended that you create a copy of the various kinds of data beforehand.
II. PROGRAMMING
The tool moves along straight lines and arcs constituting the workpiece parts figure (See II–4).

1.1 TOOL MOVEMENT ALONG WORKPIECE PARTS FIGURE–INTERPOLATION

Explanations

• Tool movement along a straight line

![Fig.1.1 (a) Tool movement along the straight line which is parallel to Z–axis](image)

Program
G01 \ Z...;

![Fig.1.1 (b) Tool movement along the taper line](image)

Program
G01 \ X ... Z... ;

• Tool movement along an arc

![Fig.1.1 (c) Tool movement along an arc](image)

Program
G02 \ X ... Z ... R ... ;
or
G03 \ X ... Z ... R ... ;
The term interpolation refers to an operation in which the tool moves along a straight line or arc in the way described above. Symbols of the programmed commands G01, G02, ... are called the preparatory function and specify the type of interpolation conducted in the control unit.

![Interpolation diagram](image)

(a) Movement along straight line
G01 Z; X--; Z--;

(b) Movement along arc
G03X--; Z--;

Control unit

Interpolation

X axis

Y axis

Tool

movement

Fig. 1.1 (d) Interpolation function

NOTE
Some machines move workpiece (spindle) instead of tools but this manual assumes that tools are moved against workpieces.

Thread cutting

Threads can be cut by moving the tool in synchronization with spindle rotation. In a program, specify the thread cutting function by G32.

![Thread cutting diagram](image)

Program
G32Z--; F--;

Workpiece

Tool

Z

Fig. 1.1 (e) Straight thread cutting
Movement of the tool at a specified speed for cutting a workpiece is called the feed.

Feedrates can be specified by using actual numerics. For example, the following command can be used to feed the tool 2 mm while the workpiece makes one turn:

```
F2.0
```

The function of deciding the feed rate is called the feed function (See II–5).
1.3
PART DRAWING AND TOOL MOVEMENT

1.3.1 Reference Position (Machine–Specific Position)

A CNC machine tool is provided with a fixed position. Normally, tool change and programming of absolute zero point as described later are performed at this position. This position is called the reference position.

![Fig. 1.3.1 Reference position](image-url)

Explanations

The tool can be moved to the reference position in two ways:

1. Manual reference position return (See III–3.1)
 Reference position return is performed by manual button operation.

2. Automatic reference position return (See II–6)
 In general, manual reference position return is performed first after the power is turned on. In order to move the tool to the reference position for tool change thereafter, the function of automatic reference position return is used.
1.3.2
Coordinate System on Part Drawing and Coordinate System Specified by CNC – Coordinate System

The following two coordinate systems are specified at different locations: (See II–7)

1. Coordinate system on part drawing
 The coordinate system is written on the part drawing. As the program data, the coordinate values on this coordinate system are used.

2. Coordinate system specified by the CNC
 The coordinate system is prepared on the actual machine tool. This can be achieved by programming the distance from the current position of the tool to the zero point of the coordinate system to be set.

Fig. 1.3.2 (a) Coordinate system

Fig. 1.3.2 (b) Coordinate system specified by the CNC
The tool moves on the coordinate system specified by the CNC in accordance with the command program generated with respect to the coordinate system on the part drawing, and cuts a workpiece into a shape on the drawing. Therefore, in order to correctly cut the workpiece as specified on the drawing, the two coordinate systems must be set at the same position.

The following method is usually used to define two coordinate systems at the same location.

1. When coordinate zero point is set at chuck face

![Fig. 1.3.2 (c) Coordinates and dimensions on part drawing](image)

![Fig. 1.3.2 (d) Coordinate system on lathe as specified by CNC (made to coincide with the coordinate system on part drawing)](image)
2. When coordinate zero point is set at work end face.

![Fig. 1.3.2 (e) Coordinates and dimensions on part drawing](image)

![Fig. 1.3.2 (f) Coordinate system on lathe as specified by CNC](image) (made to coincide with the coordinate system on part drawing)
1.3.3
How to Indicate Command Dimensions for Moving the Tool – Absolute, Incremental Commands

Explanations

- **Absolute command**

Methods of command for moving the tool can be indicated by absolute or incremental designation (See II–8.1).

The tool moves to a point at “the distance from zero point of the coordinate system” that is to the position of the coordinate values.

![Diagram](image)

Command specifying movement from point A to point B

\[\text{G90X30.0Z70.0;} \]

Coordinates of point B

Fig. 1.3.3 (a) Absolute command
• **Incremental command**

Specify the distance from the previous tool position to the next tool position.

![Incremental command diagram](image)

Fig. 1.3.3 (b) Incremental command

• **Diameter programming / radius programming**

Dimensions of the X axis can be set in diameter or in radius. Diameter programming or radius programming is employed independently in each machine.

1. Diameter programming

In diameter programming, specify the diameter value indicated on the drawing as the value of the X axis.

![Diameter programming diagram](image)

Fig. 1.3.3 (c) Diameter programming
2. Radius programming

In radius programming, specify the distance from the center of the workpiece, i.e. the radius value as the value of the X axis.

![Diagram showing radius programming with coordinates A(15.0, 80.0) and B(20.0, 60.0).]

The speed of the tool with respect to the workpiece when the workpiece is cut is called the cutting speed. As for the CNC, the cutting speed can be specified by the spindle speed in min$^{-1}$ unit.

![Diagram showing cutting speed with a formula for spindle speed calculation.]

1.4 CUTTING SPEED – SPINDLE SPEED FUNCTION

The speed of the tool with respect to the workpiece when the workpiece is cut is called the cutting speed. As for the CNC, the cutting speed can be specified by the spindle speed in min$^{-1}$ unit.

Examples

<When a workpiece 200 mm in diameter should be machined at a cutting speed of 300 m/min. >

The spindle speed is approximately 478 min$^{-1}$, which is obtained from $N=1000v/\pi D$. Hence the following command is required:

\[S478; \]

Commands related to the spindle speed are called the spindle speed function (See II–9).

The cutting speed v (m/min) can also be specified directly by the speed value. Even when the workpiece diameter is changed, the CNC changes the spindle speed so that the cutting speed remains constant. This function is called the constant surface speed control function (See II–9.3).
When drilling, tapping, boring, milling or the like, is performed, it is necessary to select a suitable tool. When a number is assigned to each tool and the number is specified in the program, the corresponding tool is selected.

![Diagram of tool post and tool number](image)

Fig. 1.5 Tool used for various machining

Examples

<When No.01 is assigned to a roughing tool>

When the tool is stored at location 01 of the tool post, the tool can be selected by specifying `T0101`. This is called the tool function (See II–10).

1.6 COMMAND FOR MACHINE OPERATIONS – MISCELLANEOUS FUNCTION

When machining is actually started, it is necessary to rotate the spindle, and feed coolant. For this purpose, on–off operations of spindle motor and coolant valve should be controlled (See II–11).

![Diagram of machine operations and components](image)

Fig. 1.6 Command for machine operations

The function of specifying the on–off operations of the components of the machine is called the miscellaneous function. In general, the function is specified by an M code. For example, when M03 is specified, the spindle is rotated clockwise at the specified spindle speed.
1.7 PROGRAM CONFIGURATION

A group of commands given to the CNC for operating the machine is called the program. By specifying the commands, the tool is moved along a straight line or an arc, or the spindle motor is turned on and off. In the program, specify the commands in the sequence of actual tool movements.

A group of commands at each step of the sequence is called the block. The program consists of a group of blocks for a series of machining. The number for discriminating each block is called the sequence number, and the number for discriminating each program is called the program number (See II–12).
The block and the program have the following configurations.

Block

![Fig. 1.7 (b) Block configuration](image)

A block begins with a sequence number that identifies that block and ends with an end–of–block code.

This manual indicates the end–of–block code by ; (LF in the ISO code and CR in the EIA code).

The contents of the dimension word depend on the preparatory function. In this manual, the portion of the dimension word may be represent as IP_.

Program

![Fig. 1.7 (c) Program configuration](image)

Normally, a program number is specified after the end–of–block (;) code at the beginning of the program, and a program end code (M02 or M30) is specified at the end of the program.
When machining of the same pattern appears at many portions of a program, a program for the pattern is created. This is called the subprogram. On the other hand, the original program is called the main program. When a subprogram execution command appears during execution of the main program, commands of the subprogram are executed. When execution of the subprogram is finished, the sequence returns to the main program.
1.8 COMPENSATION FUNCTION

Explanations

- **Machining using the end of cutter – Tool length compensation function**

Usually, several tools are used for machining one workpiece. The tools have different tool length. It is very troublesome to change the program in accordance with the tools. Therefore, the length of each tool used should be measured in advance. By setting the difference between the length of the standard tool and the length of each tool in the CNC (data display and setting : see III–11), machining can be performed without altering the program even when the tool is changed. This function is called tool length compensation.
1.9 TOOL MOVEMENT RANGE – STROKE

Limit switches are installed at the ends of each axis on the machine to prevent tools from moving beyond the ends. The range in which tools can move is called the stroke. Besides the stroke limits, data in memory can be used to define an area which tools cannot enter.

Besides strokes defined with limit switches, the operator can define an area which the tool cannot enter using a program or data in memory. This function is called stroke check. (See III–6.3)
CONTROLLED AXES
2.1
CONTROLLED AXES

<table>
<thead>
<tr>
<th>Item</th>
<th>0i–TC</th>
</tr>
</thead>
<tbody>
<tr>
<td>Number of basic controlled axes</td>
<td>2 axes</td>
</tr>
<tr>
<td>Controlled axis expansion (total)</td>
<td>Max. 4 axes (Included in Cs axis)</td>
</tr>
<tr>
<td>Number of basic simultaneously controlled axes</td>
<td>2 axes</td>
</tr>
<tr>
<td>Simultaneously controlled axis expansion (total)</td>
<td>Max. 4 axes</td>
</tr>
</tbody>
</table>

NOTE
The number of simultaneously controllable axes for manual operation (jog feed, incremental feed, or manual handle feed) is 1 or 3 (1 when bit 0 (JAX) of parameter 1002 is set to 0 and 3 when it is set to 1).

2.2
NAMES OF AXES

The names of two basic axes are always X and Z; the names of additional axes can be optionally selected below by using parameter No. 1020.

- G code system A: Y, A, B, and C
- G code system B/C: Y, U, V, W, A, B, and C

Limitations

- **Default axis name**
 Each axis name is determined according to parameter No. 1020. If the parameter specifies 0 or anything other than the nine letters, the axis name defaults to a number from 1 to 4.
 When a default axis name (1 to 4) is used, the system cannot operate in MEM or MDI mode.

- **Duplicate axis name**
 If the parameter specifies an axis name more than once, only the first axis to be assigned that axis name becomes operable.

NOTE
1. When G code system A is used, the letters U, V, and W cannot be used as an axis name (hence, the maximum of six controlled axes), because these letters are used as incremental commands for X, Y, and Z. To use the letters U, V, and W as axis names, the G code system must be B or C. Likewise, letter H is used as an incremental command for C, thus incremental commands cannot be used if A or B is used as an axis name.
2. In G76 (multiple-thread cutting), the A address in a block specifies the tool nose angle instead of a command for axis A.
 If C or A is used as an axis name, C or A cannot be used as an angle command for a straight line in chamfering or direct drawing dimension programming. Therefore, ",C" and ",A" should be used according to bit 4 (CCR) of parameter No. 3405.
2.3 INCREMENT SYSTEM

The increment system consists of the least input increment (for input) and least command increment (for output). The least input increment is the least increment for programming the travel distance. The least command increment is the least increment for moving the tool on the machine. Both increments are represented in millimeters, inches, or degrees.

The increment system is classified into IS–B and IS–C (Tables 2.3(a) and 2.3(b)). Set bit 1 (ISC) of parameter No. 1004 to select which increment system to use. The setting of bit 1 (ISC) of parameter No. 1004 is applied to all the axes. For example, when IS–C is selected, the increment system for all the axes is IS–C.

Table 2.3 (a) Increment system IS–B

<table>
<thead>
<tr>
<th>Metric system machine</th>
<th>Least input increment</th>
<th>Least command increment</th>
</tr>
</thead>
<tbody>
<tr>
<td>Diameter</td>
<td>0.0001mm</td>
<td>0.0005mm</td>
</tr>
<tr>
<td>Radius</td>
<td>0.001mm</td>
<td>0.001mm</td>
</tr>
<tr>
<td>Degree</td>
<td>0.001deg</td>
<td>0.001deg</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Inch machine system</th>
<th>Least input increment</th>
<th>Least command increment</th>
</tr>
</thead>
<tbody>
<tr>
<td>Diameter</td>
<td>0.0001inch</td>
<td>0.00005inch</td>
</tr>
<tr>
<td>Radius</td>
<td>0.0001inch</td>
<td>0.0001inch</td>
</tr>
<tr>
<td>Degree</td>
<td>0.0001deg</td>
<td>0.0001deg</td>
</tr>
</tbody>
</table>

Table 2.3 (b) Increment system IS–C

<table>
<thead>
<tr>
<th>Metric system machine</th>
<th>Least input increment</th>
<th>Least command increment</th>
</tr>
</thead>
<tbody>
<tr>
<td>Diameter</td>
<td>0.00001mm</td>
<td>0.000005mm</td>
</tr>
<tr>
<td>Radius</td>
<td>0.00001mm</td>
<td>0.0001mm</td>
</tr>
<tr>
<td>Degree</td>
<td>0.0001deg</td>
<td>0.0001deg</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Inch machine system</th>
<th>Least input increment</th>
<th>Least command increment</th>
</tr>
</thead>
<tbody>
<tr>
<td>Diameter</td>
<td>0.000001inch</td>
<td>0.0000005inch</td>
</tr>
<tr>
<td>Radius</td>
<td>0.000001inch</td>
<td>0.00001inch</td>
</tr>
<tr>
<td>Degree</td>
<td>0.00001deg</td>
<td>0.0001deg</td>
</tr>
</tbody>
</table>

Whether the least command increment is measured in millimeters or inches depends on the machine. Select either the increment in advance according to the setting of parameter INM (No. 1001#0). A G code (G20 or G21) or a setting parameter can be used to toggle the least command increment between millimeter input and inch input.
An axis in the metric system cannot be used together with a one in the inch system, or vice versa. In addition, some features such as circular interpolation and tool–nose radius compensation cannot be used for both axes in different units. For the unit to be set, refer to the manual supplied by the machine manufacturer.

2.4 MAXIMUM STROKES

The maximum stroke controlled by this CNC is shown in the table below:

Maximum stroke = Least command increment ± 99999999

<table>
<thead>
<tr>
<th>Increment system</th>
<th>Maximum strokes</th>
</tr>
</thead>
<tbody>
<tr>
<td>IS–B</td>
<td>Metric machine system</td>
</tr>
<tr>
<td></td>
<td>± 99999.999 mm</td>
</tr>
<tr>
<td></td>
<td>± 99999.999 deg</td>
</tr>
<tr>
<td></td>
<td>Inch machine system</td>
</tr>
<tr>
<td></td>
<td>± 9999.9999 inch</td>
</tr>
<tr>
<td></td>
<td>± 9999.9999 deg</td>
</tr>
<tr>
<td>IS–C</td>
<td>Metric machine system</td>
</tr>
<tr>
<td></td>
<td>± 9999.9999 mm</td>
</tr>
<tr>
<td></td>
<td>± 9999.9999 deg</td>
</tr>
<tr>
<td></td>
<td>Inch machine system</td>
</tr>
<tr>
<td></td>
<td>± 999.99999 inch</td>
</tr>
<tr>
<td></td>
<td>± 9999.99999 deg</td>
</tr>
</tbody>
</table>

NOTE
1. The unit in the table is a diameter value with diameter programming and a radius value in radius programming.
2. A command exceeding the maximum stroke cannot be specified.
3. The actual stroke depends on the machine tool.
A number following address G determines the meaning of the command for the concerned block.
G codes are divided into the following two types.

<table>
<thead>
<tr>
<th>Type</th>
<th>Meaning</th>
</tr>
</thead>
<tbody>
<tr>
<td>One-shot G code</td>
<td>The G code is effective only in the block in which it is specified</td>
</tr>
<tr>
<td>Modal G code</td>
<td>The G code is effective until another G code of the same group is specified.</td>
</tr>
</tbody>
</table>

(Example)
G01 and G00 are modal G codes.

\[
\begin{align*}
G01X_\cdot \\
G00Z_\cdot
\end{align*}
\]

G01 is effective in this range

There are three G code systems: A, B, and C (Table 3). Select a G code system using bits 6 (GSB) and 7 (GSC) of parameter 3401. Generally, this manual describes the use of G code system A, except when the described item can use only G code system B or C. In such cases, the use of G code system B or C is described.
1. If the CNC enters the clear state (see bit 6 (CLR) of parameter 3402) when the power is turned on or the CNC is reset, the modal G codes change as follows.

 (1) G codes marked with in Table 3 are enabled.

 (2) When the system is cleared due to power–on or reset, whichever specified, either G20 or G21, remains effective.

 (3) Bit 7 of parameter No. 3402 can be used to specify whether G22 or G23 is selected upon power–on. Resetting the CNC to the clear state does not affect the selection of G22 or G23.

 (4) Setting bit 0 (G01) of parameter 3402 determines which code, either G00 or G01, is effective.

 (5) In the G code system B or C, setting bit 3 (G91) of parameter 3402 determines which code, either G90 or G91, is effective.

2. G codes of group 00 except G10 and G11 are single–shot G codes.

3. P/S larm (No.010) is displayed when a G code not listed in the G code list is specified or a G code without a corresponding option is specified.

4. G codes of different groups can be specified in the same block. If G codes of the same group are specified in the same block, the G code specified last is valid.

5. If a G code of group 01 is specified in a canned cycle, the canned cycle is canceled in the same way as when a G80 command is specified. G codes of group 01 are not affected by G codes for specifying a canned cycle.

6. When G code system A is used, absolute or incremental programming is specified not by a G code (G90/G91) but by an address word (X/U, Z/W, C/H, Y/V) (See II–8.1). When G code system A is used for a drilling cycle, only the initial level is provided at the return point.

7. G codes are displayed for each group number.
Table 3 G code list (1/3)

<table>
<thead>
<tr>
<th>G code</th>
<th>A</th>
<th>B</th>
<th>C</th>
<th>Group</th>
<th>Function</th>
</tr>
</thead>
<tbody>
<tr>
<td>G00</td>
<td>G00</td>
<td>G00</td>
<td>G00</td>
<td>01</td>
<td>Positioning (Rapid traverse)</td>
</tr>
<tr>
<td>G01</td>
<td>G01</td>
<td>G01</td>
<td></td>
<td>01</td>
<td>Linear interpolation (Cutting feed)</td>
</tr>
<tr>
<td>G02</td>
<td>G02</td>
<td>G02</td>
<td></td>
<td>01</td>
<td>Circular interpolation CW or helical interpolation CW</td>
</tr>
<tr>
<td>G03</td>
<td>G03</td>
<td>G03</td>
<td></td>
<td>01</td>
<td>Circular interpolation CCW or helical interpolation CCW</td>
</tr>
<tr>
<td>G04</td>
<td>G04</td>
<td></td>
<td></td>
<td></td>
<td>Dwell</td>
</tr>
<tr>
<td>G07.1</td>
<td>G07.1 (G107)</td>
<td>G07.1 (G107)</td>
<td>00</td>
<td></td>
<td>Cylindrical interpolation</td>
</tr>
<tr>
<td>G08</td>
<td>G08</td>
<td></td>
<td>G08</td>
<td>00</td>
<td>Advanced preview control</td>
</tr>
<tr>
<td>G10</td>
<td>G10</td>
<td></td>
<td>G10</td>
<td></td>
<td>Programmable data input</td>
</tr>
<tr>
<td>G11</td>
<td>G11</td>
<td></td>
<td>G11</td>
<td></td>
<td>Programmable data input cancel</td>
</tr>
<tr>
<td>G12.1</td>
<td>G12.1 (G112)</td>
<td>G12.1 (G112)</td>
<td>21</td>
<td></td>
<td>Polar coordinate interpolation mode</td>
</tr>
<tr>
<td>G13.1</td>
<td>G13.1 (G113)</td>
<td>G13.1 (G113)</td>
<td>21</td>
<td></td>
<td>Polar coordinate interpolation cancel mode</td>
</tr>
<tr>
<td>G17</td>
<td>G17</td>
<td></td>
<td>G17</td>
<td>16</td>
<td>XpYp plane selection</td>
</tr>
<tr>
<td>G18</td>
<td>G18</td>
<td></td>
<td>G18</td>
<td></td>
<td>ZpXp plane selection</td>
</tr>
<tr>
<td>G19</td>
<td>G19</td>
<td></td>
<td>G19</td>
<td></td>
<td>YpZp plane selection</td>
</tr>
<tr>
<td>G20</td>
<td>G20</td>
<td>G70</td>
<td></td>
<td>06</td>
<td>Input in inch</td>
</tr>
<tr>
<td>G21</td>
<td>G21</td>
<td></td>
<td>G71</td>
<td></td>
<td>Input in mm</td>
</tr>
<tr>
<td>G22</td>
<td>G22</td>
<td></td>
<td>G22</td>
<td>09</td>
<td>Stored stroke check function on</td>
</tr>
<tr>
<td>G23</td>
<td>G23</td>
<td></td>
<td>G23</td>
<td></td>
<td>Stored stroke check function off</td>
</tr>
<tr>
<td>G25</td>
<td>G25</td>
<td>G25</td>
<td></td>
<td>08</td>
<td>Spindle speed fluctuation detection off</td>
</tr>
<tr>
<td>G26</td>
<td>G26</td>
<td></td>
<td>G26</td>
<td></td>
<td>Spindle speed fluctuation detection on</td>
</tr>
<tr>
<td>G27</td>
<td>G27</td>
<td>G27</td>
<td></td>
<td>00</td>
<td>Reference position return check</td>
</tr>
<tr>
<td>G28</td>
<td>G28</td>
<td>G28</td>
<td></td>
<td>00</td>
<td>Return to reference position</td>
</tr>
<tr>
<td>G30</td>
<td>G30</td>
<td>G30</td>
<td></td>
<td></td>
<td>2nd, 3rd and 4th reference position return</td>
</tr>
<tr>
<td>G31</td>
<td>G31</td>
<td>G31</td>
<td></td>
<td></td>
<td>Skip function</td>
</tr>
<tr>
<td>G32</td>
<td>G32</td>
<td>G33</td>
<td></td>
<td>01</td>
<td>Thread cutting</td>
</tr>
<tr>
<td>G34</td>
<td>G34</td>
<td>G34</td>
<td></td>
<td></td>
<td>Variable–lead thread cutting</td>
</tr>
<tr>
<td>G36</td>
<td>G36</td>
<td>G36</td>
<td></td>
<td>00</td>
<td>Automatic tool compensation X</td>
</tr>
<tr>
<td>G37</td>
<td>G37</td>
<td>G37</td>
<td></td>
<td></td>
<td>Automatic tool compensation Z</td>
</tr>
<tr>
<td>G40</td>
<td>G40</td>
<td>G40</td>
<td></td>
<td>07</td>
<td>Tool nose radius compensation cancel</td>
</tr>
<tr>
<td>G41</td>
<td>G41</td>
<td></td>
<td>G41</td>
<td></td>
<td>Tool nose radius compensation left</td>
</tr>
<tr>
<td>G42</td>
<td>G42</td>
<td>G42</td>
<td></td>
<td></td>
<td>Tool nose radius compensation right</td>
</tr>
<tr>
<td>G50.3</td>
<td>G92.1 (G250)</td>
<td>G92.1 (G250)</td>
<td>00</td>
<td></td>
<td>Coordinate system setting or max. spindle speed setting</td>
</tr>
<tr>
<td>G50.2</td>
<td>G92.1 (G250)</td>
<td>G92.1 (G250)</td>
<td>20</td>
<td></td>
<td>Polygonal turning cancel</td>
</tr>
<tr>
<td>G51.2</td>
<td>G92.1 (G251)</td>
<td>G92.1 (G251)</td>
<td></td>
<td></td>
<td>Polygonal turning</td>
</tr>
</tbody>
</table>
Table 3 G code list (2/3)

<table>
<thead>
<tr>
<th>G code</th>
<th>Group</th>
<th>Function</th>
</tr>
</thead>
<tbody>
<tr>
<td>A</td>
<td>B</td>
<td>C</td>
</tr>
<tr>
<td>G52</td>
<td>G52</td>
<td>00 Local coordinate system setting</td>
</tr>
<tr>
<td>G53</td>
<td>G53</td>
<td>03 Machine coordinate setting</td>
</tr>
<tr>
<td>G54</td>
<td>G54</td>
<td>14 Workpiece coordinate system 1 selection</td>
</tr>
<tr>
<td>G55</td>
<td>G55</td>
<td>14 Workpiece coordinate system 2 selection</td>
</tr>
<tr>
<td>G56</td>
<td>G56</td>
<td>14 Workpiece coordinate system 3 selection</td>
</tr>
<tr>
<td>G57</td>
<td>G57</td>
<td>14 Workpiece coordinate system 4 selection</td>
</tr>
<tr>
<td>G58</td>
<td>G58</td>
<td>14 Workpiece coordinate system 5 selection</td>
</tr>
<tr>
<td>G59</td>
<td>G59</td>
<td>14 Workpiece coordinate system 6 selection</td>
</tr>
<tr>
<td>G65</td>
<td>G65</td>
<td>00 Macro calling</td>
</tr>
<tr>
<td>G66</td>
<td>G66</td>
<td>12 Macro modal call</td>
</tr>
<tr>
<td>G67</td>
<td>G67</td>
<td>12 Macro modal call cancel</td>
</tr>
<tr>
<td>G68</td>
<td>G68</td>
<td>04 Mirror image for double turrets ON</td>
</tr>
<tr>
<td>G69</td>
<td>G69</td>
<td>04 Mirror image for double turrets OFF</td>
</tr>
<tr>
<td>G70</td>
<td>G70</td>
<td>00 Finishing cycle</td>
</tr>
<tr>
<td>G71</td>
<td>G71</td>
<td>01 Traverse grinding cycle (for grinding machine)</td>
</tr>
<tr>
<td>G72</td>
<td>G72</td>
<td>01 Traverse direct constant–dimension grinding cycle (for grinding machine)</td>
</tr>
<tr>
<td>G73</td>
<td>G73</td>
<td>01 Oscillation grinding cycle (for grinding machine)</td>
</tr>
<tr>
<td>G74</td>
<td>G74</td>
<td>01 Oscillation direct constant–dimension grinding cycle (for grinding machine)</td>
</tr>
<tr>
<td>G80</td>
<td>G80</td>
<td>10 Canned cycle for drilling cancel</td>
</tr>
<tr>
<td>G83</td>
<td>G83</td>
<td>10 Cycle for face drilling</td>
</tr>
<tr>
<td>G84</td>
<td>G84</td>
<td>10 Cycle for face tapping</td>
</tr>
<tr>
<td>G86</td>
<td>G86</td>
<td>10 Cycle for face boring</td>
</tr>
<tr>
<td>G87</td>
<td>G87</td>
<td>10 Cycle for side drilling</td>
</tr>
<tr>
<td>G88</td>
<td>G88</td>
<td>10 Cycle for side tapping</td>
</tr>
<tr>
<td>G89</td>
<td>G89</td>
<td>10 Cycle for side boring</td>
</tr>
<tr>
<td>G90</td>
<td>G77</td>
<td>01 Outer diameter/internal diameter cutting cycle</td>
</tr>
<tr>
<td>G92</td>
<td>G78</td>
<td>01 Thread cutting cycle</td>
</tr>
<tr>
<td>G94</td>
<td>G79</td>
<td>01 Endface turning cycle</td>
</tr>
<tr>
<td>G96</td>
<td>G96</td>
<td>02 Constant surface speed control</td>
</tr>
<tr>
<td>G97</td>
<td>G97</td>
<td>02 Constant surface speed control cancel</td>
</tr>
</tbody>
</table>
Table 3 G code list (3/3)

<table>
<thead>
<tr>
<th>G code</th>
<th>A</th>
<th>B</th>
<th>C</th>
<th>Group</th>
<th>Function</th>
</tr>
</thead>
<tbody>
<tr>
<td>G98</td>
<td>G94</td>
<td>G94</td>
<td>05</td>
<td></td>
<td>Per minute feed</td>
</tr>
<tr>
<td>G99</td>
<td>G95</td>
<td>G95</td>
<td>05</td>
<td></td>
<td>Per revolution feed</td>
</tr>
<tr>
<td></td>
<td>G90</td>
<td>G90</td>
<td>03</td>
<td></td>
<td>Absolute programming</td>
</tr>
<tr>
<td></td>
<td>G91</td>
<td>G91</td>
<td>03</td>
<td></td>
<td>Incremental programming</td>
</tr>
<tr>
<td></td>
<td>G98</td>
<td>G98</td>
<td>11</td>
<td></td>
<td>Return to initial level</td>
</tr>
<tr>
<td></td>
<td>G99</td>
<td>G99</td>
<td>11</td>
<td></td>
<td>Return to R point level</td>
</tr>
</tbody>
</table>
4. INTERPOLATION FUNCTIONS
4.1 POSITIONING (G00)

The G00 command moves a tool to the position in the workpiece system specified with an absolute or an incremental command at a rapid traverse rate.
In the absolute command, coordinate value of the end point is programmed.
In the incremental command the distance the tool moves is programmed.

Format

\[
\text{G00IP_;}
\]

\[
\text{IP_: For an absolute command, the coordinates of an end position, and for an incremental command, the distance the tool moves.}
\]

Explanations

Either of the following tool paths can be selected according to bit 1 (LRP) of parameter No. 1401.

- **Nonlinear interpolation positioning**
 The tool is positioned with the rapid traverse rate for each axis separately. The tool path is normally straight.

- **Linear interpolation positioning**
 The tool path is the same as in linear interpolation (G01). The tool is positioned within the shortest possible time at a speed that is not more than the rapid traverse rate for each axis. However, the tool path is not the same as in linear interpolation (G01).

The rapid traverse rate in the G00 command is set to the parameter No.1420 for each axis independently by the machine tool builder. In the positioning mode actuated by G00, the tool is accelerated to a predetermined speed at the start of a block and is decelerated at the end of a block. Execution proceeds to the next block after confirming the in–position.

“In–position” means that the feed motor is within the specified range. This range is determined by the machine tool builder by setting to parameter No.1826.
Examples

< Radius programming >
G00X40.0Z56.0 ; (Absolute command)
or
G00U–60.0W–30.5;(Incremental command)

Restrictions

The rapid traverse rate cannot be specified in the address F. Even if linear interpolation positioning is specified, nonlinear interpolation positioning is used in the following cases. Therefore, be careful to ensure that the tool does not foul the workpiece.

- G28 specifying positioning between the reference and intermediate positions.
- G53
4.2 LINEAR INTERPOLATION (G01)

Tools can move along a line.

Format

G01 IP_F_;
IP_: For an absolute command, the coordinates of an end point, and for an incremental command, the distance the tool moves.
F_: Speed of tool feed (Feedrate)

Explanations

A tool moves along a line to the specified position at the feedrate specified in F.
The feedrate specified in F is effective until a new value is specified. It need not be specified for each block.
The feedrate commanded by the F code is measured along the tool path.
If the F code is not commanded, the feedrate is regarded as zero.
For feed-per-minute mode under 2-axis simultaneous control, the feedrate for a movement along each axis as follows:

G01αβ FF_;
Feed rate of α axis direction:
\[F_α = \frac{α}{L} \times f \]
Feed rate of β axis direction:
\[F_β = \frac{β}{L} \times f \]
\[L = \sqrt{α^2 + β^2} \]

Examples

- Linear interpolation

< Diameter programming >
G01X40.0Z20.1F20; (Absolute command)
or
G01U20.0W–25.9F20; (Incremental command)
The command below will move a tool along a circular arc.

4.3 CIRCULAR INTERPOLATION (G02, G03)

Format

Arc in the XpYp plane

\[G17 \left\{ \begin{array}{l} G02 \\ G03 \end{array} \right\} Xp_Yp_ \left\{ \begin{array}{l} I_J_ \\ R_ \end{array} \right\} F_ \]

Arc in the ZpXp plane

\[G18 \left\{ \begin{array}{l} G02 \\ G03 \end{array} \right\} Xp_Zp_ \left\{ \begin{array}{l} I_K_ \\ R_ \end{array} \right\} F_ \]

Arc in the YpZp plane

\[G19 \left\{ \begin{array}{l} G02 \\ G03 \end{array} \right\} Yp_Zp_ \left\{ \begin{array}{l} J_K_ \\ R_ \end{array} \right\} F_ \]

Table 4.3 Description of the command format

<table>
<thead>
<tr>
<th>Command</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>G17</td>
<td>Specification of arc on XpYp plane</td>
</tr>
<tr>
<td>G18</td>
<td>Specification of arc on ZpXp plane</td>
</tr>
<tr>
<td>G19</td>
<td>Specification of arc on YpZp plane</td>
</tr>
<tr>
<td>G02</td>
<td>Circular Interpolation Clockwise direction (CW)</td>
</tr>
<tr>
<td>G03</td>
<td>Circular Interpolation Counterclockwise direction (CCW)</td>
</tr>
<tr>
<td>Xp_</td>
<td>Command values of X axis or its parallel axis (set by parameter No. 1022)</td>
</tr>
<tr>
<td>Yp_</td>
<td>Command values of Y axis or its parallel axis (set by parameter No. 1022)</td>
</tr>
<tr>
<td>Zp_</td>
<td>Command values of Z axis or its parallel axis (set by parameter No. 1022)</td>
</tr>
<tr>
<td>I_</td>
<td>Xp axis distance from the start point to the center of an arc with sign, radius value</td>
</tr>
<tr>
<td>J_</td>
<td>Yp axis distance from the start point to the center of an arc with sign, radius value</td>
</tr>
<tr>
<td>k_</td>
<td>Zp axis distance from the start point to the center of an arc with sign, radius value</td>
</tr>
<tr>
<td>R_</td>
<td>Arc radius with no sign (always with radius value)</td>
</tr>
<tr>
<td>F_</td>
<td>Feedrate along the arc</td>
</tr>
</tbody>
</table>
NOTE
The U-, V-, and W-axes (parallel with the basic axis) can be used with G-codes B and C.

Explanations

- **Direction of the circular interpolation**
 “Clockwise” (G02) and “counterclockwise” (G03) on the XpYp plane (ZpXp plane or YpZp plane) are defined when the XpYp plane is viewed in the positive-to-negative direction of the Zp axis (Yp axis or Xp axis, respectively) in the Cartesian coordinate system. See the figure below.

- **Distance moved on an arc**
 The end point of an arc is specified by address Xp, Yp or Zp, and is expressed as an absolute or incremental value according to G90 or G91. For the incremental value, the distance of the end point which is viewed from the start point of the arc is specified.

- **Distance from the start point to the center of arc**
 The arc center is specified by addresses I, J, and K for the Xp, Yp, and Zp axes, respectively. The numerical value following I, J, or K, however, is a vector component in which the arc center is seen from the start point, and is always specified as an incremental value irrespective of G90 and G91, as shown below.
 I, J, and K must be signed according to the direction.

- **Full-circle programming**
 When Xp, Yp, and Zp are omitted (the end point is the same as the start point) and the center is specified with I, J, and K, a 360° arc (circle) is specified.

I0, J0, and K0 can be omitted.
If the difference between the radius at the start point and that at the end point exceeds the value in a parameter (No.3410), an P/S alarm (No.020) occurs.
Arc radius

The distance between an arc and the center of a circle that contains the arc can be specified using the radius, R, of the circle instead of I, J, and K. In this case, one arc is less than 180°, and the other is more than 180° are considered. An arc with a sector angle of 180° or wider cannot be specified. If Xp, Yp, and Zp are all omitted, if the end point is located at the same position as the start point and when R is used, an arc of 0° is programmed G02R ; (The cutter does not move.)

```
For arc (1) (less than 180°)
  G02 W60.0 U10.0 R50.0 F300.0 ;
For arc (2) (greater than 180°)
  An arc with a sector angle of 180°
or wider cannot be specified
  within a single block.
```

Feedrate

The feedrate in circular interpolation is equal to the feed rate specified by the F code, and the feedrate along the arc (the tangential feedrate of the arc) is controlled to be the specified feedrate.

The error between the specified feedrate and the actual tool feedrate is ±2% or less. However, this feed rate is measured along the arc after the tool nose radius compensation is applied.

Restrictions

- Simultaneously specifying R with I, J, and K
- Specifying an axis that is not contained in the specified plane
- Difference in the radius between the start and end points

If I, J, K, and R addresses are specified simultaneously, the arc specified by address R takes precedence and the other are ignored.

If an axis not contained in the specified plane is commanded, an alarm is displayed.

For example, when a ZX plane is specified in G-code B or C, specifying the X-axis or U-axis (parallel to the X-axis) causes P/S alarm No. 028 to be generated.

If the difference in the radius between the start and end points of the arc exceeds the value specified in parameter No. 3410, P/S alarm No. 020 is generated.

If the end point is not on the arc, the tool moves in a straight line along one of the axes after reaching the end point.
• Specifying a semicircle with R

If an arc having a central angle approaching 180° is specified with R, the calculation of the center coordinates may produce an error. In such a case, specify the center of the arc with I, J, and K.

Examples

• Command of circular interpolation X, Z

G02X_Z_I_K_F_; G03X_Z_I_K_F_; G02X_Z_R_F_; G02U_Z_R_F_; or

G02X50.0Z30.0I25.0F0.3;
G02X50.0Z30.0R25.0F0.3;
G02U20.0Z–20.0R25.0F0.3;
G02U20.0Z–20.0R25.0F0.3;
4.4 HELICAL INTERPOLATION (G02, G03)

Format

<table>
<thead>
<tr>
<th>Format</th>
<th>Explanation</th>
</tr>
</thead>
<tbody>
<tr>
<td>Synchronously with arc of XpYp plane</td>
<td>G17 { G02 \ G03 } Xp_Yp_ { I_J_ \ R_ } (\alpha___ \beta__)F_;</td>
</tr>
<tr>
<td>Synchronously with arc of ZpXp plane</td>
<td>G18 { G02 \ G03 } Xp_Zp_ { I_K_ \ R_ } (\alpha___ \beta__)F_;</td>
</tr>
<tr>
<td>Synchronously with arc of YpZp plane</td>
<td>G19 { G02 \ G03 } Yp_Zp_ { J_K_ \ R_ } (\alpha___ \beta__)F_;</td>
</tr>
</tbody>
</table>

\(\alpha__ \beta__ \): Any one axis where circular interpolation is not applied.
Up to two other axes can be specified.

Explanations

The command method is to simply or secondary add a move command axis which is not circular interpolation axes. An F command specifies a feed rate along a circular arc. Therefore, the feed rate of the linear axis is as follows:

\[
F \times \frac{\text{Length of linear axis}}{\text{Length of circular arc}}
\]

Determine the feed rate so the linear axis feed rate does not exceed any of the various limit values. Bit 0 (HFC) of parameter No. 1404 can be used to prevent the linear axis feedrate from exceeding various limit values.

Limitations

- Tool nose radius compensation is applied only for a circular arc.
- Tool offset and tool length compensation cannot be used in a block in which a helical interpolation is commanded.
Polar coordinate interpolation is a function that exercises contour control in converting a command programmed in a Cartesian coordinate system to the movement of a linear axis (movement of a tool) and the movement of a rotary axis (rotation of a workpiece). This method is useful in cutting a front surface and grinding a cam shaft on a lathe.

Format

- Specify G12.1 and G13.1 in Separate Blocks.

| G12.1 ; | Starts polar coordinate interpolation mode (enables polar coordinate interpolation) Specify linear or circular interpolation using coordinates in a Cartesian coordinate system consisting of a linear axis and rotary axis (virtual axis). |
| G13.1 ; | Polar coordinate interpolation mode is cancelled (for not performing polar coordinate interpolation) G112 and G113 can be used in place of G12.1 and G13.1, respectively. |

Explanations

- **Polar coordinate interpolation plane**

G12.1 starts the polar coordinate interpolation mode and selects a polar coordinate interpolation plane (Fig. 4.5). Polar coordinate interpolation is performed on this plane.

When the power is turned on or the system is reset, polar coordinate interpolation is canceled (G13.1). The linear and rotation axes for polar coordinate interpolation must be set in parameters (No. 5460 and 5461) beforehand.

CAUTION

The plane used before G12.1 is specified (plane selected by G17, G18, or G19) is canceled. It is restored when G13.1 (canceling polar coordinate interpolation) is specified. When the system is reset, polar coordinate interpolation is canceled and the plane specified by G17, G18, or G19 is used.
In the polar coordinate interpolation mode, program commands are specified with Cartesian coordinates on the polar coordinate interpolation plane. The axis address for the rotation axis is used as the axis address for the second axis (virtual axis) in the plane. Whether a diameter or radius is specified for the first axis in the plane is the same as for the specification for the first axis in the plane. The virtual axis is at coordinate 0 immediately after G12.1 is specified. Polar interpolation is started assuming the angle of 0 for the position of the tool when G12.1 is specified. Specify the feedrate as a speed (relative speed between the workpiece and tool) tangential to the polar coordinate interpolation plane (Cartesian coordinate system) using F.

G codes which can be specified in the polar coordinate interpolation mode

<table>
<thead>
<tr>
<th>G Code</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>G01</td>
<td>Linear interpolation</td>
</tr>
<tr>
<td>G02, G03</td>
<td>Circular interpolation</td>
</tr>
<tr>
<td>G04</td>
<td>Dwell</td>
</tr>
<tr>
<td>G40, G41, G42</td>
<td>Tool nose radius compensation (Polar coordinate interpolation is applied to the path after cutter compensation.)</td>
</tr>
<tr>
<td>G65, G66, G67</td>
<td>Custom macro command</td>
</tr>
<tr>
<td>G98, G99</td>
<td>Feed per minute, feed per revolution</td>
</tr>
</tbody>
</table>

Circular interpolation in the polar coordinate plane

The addresses for specifying the radius of an arc for circular interpolation (G02 or G03) in the polar coordinate interpolation plane depend on the first axis in the plane (linear axis).

- I and J in the Xp–Yp plane when the linear axis is the X–axis or an axis parallel to the X–axis.
- J and K in the Yp–Zp plane when the linear axis is Y–axis or an axis parallel to the Y–axis.
- K and I in the Zp–Xp plane when the linear axis is the Z–axis or an axis parallel to the Z–axis.

The radius of an arc can be specified also with an R command.

Distance moved and feedrate for polar coordinate interpolation

- The unit for coordinates on the hypothetical axis is the same as the unit for the linear axis (mm/inch)
- The unit for the feedrate is mm/min or inch/min

Movement along axes not in the polar coordinate interpolation plane

The tool moves along such axes normally, independent of polar coordinate interpolation.

Current position display in the polar coordinate interpolation mode

Actual coordinates are displayed. However, the remaining distance to move in a block is displayed based on the coordinates in the polar coordinate interpolation plane (Cartesian coordinates).
Restrictions

- **Coordinate system for the polar coordinate interpolation**

 Before G12.1 is specified, a workpiece coordinate system where the center of the rotary axis is the origin of the coordinate system must be set. In the G12.1 mode, the coordinate system must not be changed (G92, G52, G53, relative coordinate reset, G54 through G59, etc.).

- **Tool nose radius compensation command**

 The polar coordinate interpolation mode cannot be started or terminated (G12.1 or G13.1) in the tool nose radius compensation mode (G41 or G42). G12.1 or G13.1 must be specified in the tool nose radius compensation canceled mode (G40).

- **Program restart**

 For a block in the G12.1 mode, the program cannot be restarted.

- **Cutting feedrate for the rotation axis**

 Polar coordinate interpolation converts the tool movement for a figure programmed in a Cartesian coordinate system to the tool movement in the rotation axis (C-axis) and the linear axis (X-axis). When the tool moves closer to the center of the workpiece, the C-axis component of the feedrate becomes larger and may exceed the maximum cutting feedrate for the C-axis (set in parameter (No. 1422)), causing an alarm (see the figure below). To prevent the C-axis component from exceeding the maximum cutting feedrate for the C-axis, reduce the feedrate specified with address F or create a program so that the tool (center of the tool when tool nose radius compensation is applied) does not move close to the center of the workpiece.

WARNING

Consider lines L1, L2, and L3. ΔX is the distance the tool moves per time unit at the feedrate specified with address F in the Cartesian coordinate system. As the tool moves from L1 to L2 to L3, the angle at which the tool moves per time unit corresponding to ΔX in the Cartesian coordinate system increases from θ₁ to θ₂ to θ₃.

In other words, the C-axis component of the feedrate becomes larger as the tool moves closer to the center of the workpiece. The C component of the feedrate may exceed the maximum cutting feedrate for the C-axis because the tool movement in the Cartesian coordinate system has been converted to the tool movement for the C-axis and the X-axis.

L : Distance (in mm) between the tool center and workpiece center when the tool center is the nearest to the workpiece center
R : Maximum cutting feedrate (deg/min) of the C axis

Then, a speed specifiable with address F in polar coordinate interpolation can be given by the formula below. Specify a speed allowed by the formula. The formula provides a theoretical value; in practice, a value slightly smaller than a theoretical value may need to be used due to a calculation error.

\[F < L \times R \times \frac{\pi}{180} \text{(mm/min)} \]

- **Diameter and radius programming**

 Even when diameter programming is used for the linear axis (X-axis), radius programming is applied to the rotary axis (C-axis).
Examples

Example of Polar Coordinate Interpolation Program Based on X Axis (Linear Axis) and C Axis (Rotary Axis)

X axis is by diameter programming, C axis is by radius programming.

```
O0001 ;
;
N010 T0101
;
N0100 G00 X120.0 C0 Z _ ;
N0200 G12.1 ;
N0201 G42 G01 X40.0 F _ ;
N0202 C10.0 ;
N0203 G03 X20.0 C20.0 R10.0 ;
N0204 G01 X–40.0 ;
N0205 C–10.0 ;
N0206 G03 X–20.0 C–20.0 I10.0 J0 ;
N0207 G01 X40.0 ;
N0208 C0 ;
N0209 G40 X120.0 ;
N0210 G13.1 ;
N0300 Z _ ;
N0400 X _C _ ;
;
N0900M30 ;
```

Positioning to start position
Start of polar coordinate interpolation
Geometry program (program based on cartesian coordinates on X–C’ plane)
Cancellation of polar coordinate interpolation
4.6 CYLINDRICAL INTERPOLATION (G07.1)

The amount of travel of a rotary axis specified by an angle is once internally converted to a distance of a linear axis along the outer surface so that linear interpolation or circular interpolation can be performed with another axis. After interpolation, such a distance is converted back to the amount of travel of the rotary axis.

The cylindrical interpolation function allows the side of a cylinder to be developed for programming. So programs such as a program for cylindrical cam grooving can be created very easily.

Format

```
G07.1 IP \ r ; Starts the cylindrical interpolation mode
   (enables cylindrical interpolation).
   ...
G07.1 IP 0 ; The cylindrical interpolation mode is cancelled.
   IP : An address for the rotation axis
   r : The radius of the cylinder

Specify G07.1 IP \ r ; and G07.1 IP 0; in separate blocks.
G107 can be used instead of G07.1.
```

Explanations

- **Plane selection (G17, G18, G19)**

 Use parameter No. 1002 to specify whether the rotation axis is the X–, Y–, or Z–axis, or an axis parallel to one of these axes. Specify the G code to select a plane for which the rotation axis is the specified linear axis.

 For example, when the rotation axis is an axis parallel to the X–axis, G17 must specify an Xp–Yp plane, which is a plane defined by the rotation axis and the Y–axis or an axis parallel to the Y–axis.

 Only one rotation axis can be set for cylindrical interpolation.

 NOTE

 The U–, V–, and W–axes (parallel with the basic axis) can be used with G–codes B and C.

- **Feedrate**

 A feedrate specified in the cylindrical interpolation mode is a speed on the developed cylindrical surface.
In the cylindrical interpolation mode, circular interpolation is possible with the rotation axis and another linear axis. Radius R is used in commands in the same way as described in Section 4.4. The unit for a radius is not degrees but millimeters (for metric input) or inches (for inch input).

Example: Circular interpolation between the Z axis and C axis
For the C axis of parameter No. 1022, 5 (axis parallel with the X axis) is to be set. In this case, the command for circular interpolation is

G18 Z__C__;
G02 (G03) Z__C__R__;

For the C axis of parameter No. 1022, 6 (axis parallel with the Y axis) may be specified instead. In this case, however, the command for circular interpolation is

G19 C__Z__;
G02 (G03) Z__C__R__;

To perform tool nose radius compensation in the cylindrical interpolation mode, cancel any ongoing tool nose radius compensation mode before entering the cylindrical interpolation mode. Then, start and terminate tool nose radius compensation within the cylindrical interpolation mode.

In the cylindrical interpolation mode, the amount of travel of a rotary axis specified by an angle is once internally converted to a distance of a linear axis on the outer surface so that linear interpolation or circular interpolation can be performed with another axis. After interpolation, such a distance is converted back to an angle. For this conversion, the amount of travel is rounded to a least input increment. So when the radius of a cylinder is small, the actual amount of travel can differ from a specified amount of travel. Note, however, that such an error is not accumulative.

If manual operation is performed in the cylindrical interpolation mode with manual absolute on, an error can occur for the reason described above.

\[
\text{The actual amount of travel} = \left[\frac{\text{MOTION REV}}{2 \times 2\pi R} \times \text{Specified value} \times \frac{2 \times 2\pi R}{\text{MOTION REV}} \right]
\]

MOTION REV : The amount of travel per rotation of the rotation axis (Setting value of parameter No. 1260)

R : Workpiece radius

\[\begin{array}{c}
\text{R} \\
\text{Rounded to the least input increment}
\end{array} \]

Restrictions

- Arc radius specification in the cylindrical interpolation mode
- Circular interpolation and tool nose radius compensation

In the cylindrical interpolation mode, an arc radius cannot be specified with word address I, J, or K.

If the cylindrical interpolation mode is started when tool nose radius compensation is already applied, circular interpolation is not correctly performed in the cylindrical interpolation mode.
Positioning
In the cylindrical interpolation mode, positioning operations (including those that produce rapid traverse cycles such as G28, G80 through G89) cannot be specified. Before positioning can be specified, the cylindrical interpolation mode must be cancelled. Cylindrical interpolation (G07.1) cannot be performed in the positioning mode (G00).

Coordinate system setting
In the cylindrical interpolation mode, a workpiece coordinate system G50 cannot be specified.

Cylindrical interpolation mode setting
In the cylindrical interpolation mode, the cylindrical interpolation mode cannot be reset. The cylindrical interpolation mode must be cancelled before the cylindrical interpolation mode can be reset.

Canned cycle for drilling during cylindrical interpolation mode
Canned cycles for drilling, G81 to G89, cannot be specified during cylindrical interpolation mode.

Mirror Image for Double Turret
Mirror image for double turret, G68 and G69, cannot be specified during cylindrical interpolation mode.
Examples

Example of a Cylindrical Interpolation Program

O0001 (CYLINDRICAL INTERPOLATION);
N01 G00 Z100.0 C0 ;
N02 G01 G18 W0 H0 ;
N03 G07.1 H57299 ;
N04 G01 G42 Z120.0 D01 F250 ;
N05 C30.0 ;
N06 G03 Z90.0 C60.0 R30.0 ;
N07 G01 Z70.0 ;
N08 G02 Z60.0 C70.0 R10.0 ;
N09 G01 C150.0 ;
N10 G02 Z70.0 C190.0 R75.0 ;
N11 G01 Z110.0 C230.0 ;
N12 G03 Z120.0 C270.0 R75.0 ;
N13 G01 C360.0 ;
N14 G40 Z100.0 ;
N15 G07.1 C0 ;
N16 M30 ;
4.7 CONSTANT LEAD THREADING (G32)

Tapered screws and scroll threads in addition to equal lead straight threads can be cut by using a G32 command. The spindle speed is read from the position coder on the spindle in real time and converted to a cutting feedrate for feed–per minute mode, which is used to move the tool.

Format

```
G32 IP_F_

IP_: End point
F_: Lead of the long axis (always radius programming)
```

Explanations

In general, thread cutting is repeated along the same tool path in rough cutting through finish cutting for a screw. Since thread cutting starts when the position coder mounted on the spindle outputs a 1–turn signal, threading is started at a fixed point and the tool path on the workpiece is unchanged for repeated thread cutting. Note that the spindle speed must remain constant from rough cutting through finish cutting. If not, incorrect thread lead will occur.
In general, the lag of the servo system, etc. will produce somewhat incorrect leads at the starting and ending points of a thread cut. To compensate for this, a threading length somewhat longer than required should be specified.

Table 4.7 lists the ranges for specifying the thread lead.

Table 4.7 Ranges of lead sizes that can be specified

<table>
<thead>
<tr>
<th>Least command increment</th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>mm input</td>
<td>0.0001 to 500.0000mm</td>
</tr>
<tr>
<td>Inch input</td>
<td>0.000001 inch to 9.999999 inch</td>
</tr>
</tbody>
</table>
Explanations

1. Straight thread cutting

The following values are used in programming:
- Thread lead: 4 mm
- $\delta_1 = 3$ mm
- $\delta_2 = 1.5$ mm
- Depth of cut: 1 mm (cut twice)

(Metric input, Diameter programming)

```
G00 U-62.0 ;
G32 W-74.5 F4.0 ;
G00 U62.0 ;
W74.5 ;
U-64.0 ;
(For the second cut, cut 1 mm more)
G32 W-74.5 ;
G00 U64.0 ;
W74.5 ;
```

2. Tapered thread cutting

The following values are used in programming:
- Thread lead: 3.5 mm in the direction of the Z axis
- $\delta_1 = 2$ mm
- $\delta_2 = 1$ mm
- Cutting depth in the X axis direction is 1 mm
- (Cut twice)

(Metric input, Diameter programming)

```
G00 X 12.0 Z 72.0 ;
G32 X 41.0 Z 29.0 F3.5 ;
G00 X 50.0 ;
Z 72.0 ;
X 10.0 ;
(Cut 1 mm more for the second cut)
G32 X 39.0 Z 29.0 ;
G00 X 50.0 ;
Z 72.0 ;
```
WARNING
1 Feedrate override is effective (fixed at 100%) during thread cutting.
2 It is very dangerous to stop feeding the thread cutter without stopping the spindle. This will suddenly increase the cutting depth. Thus, the feed hold function is ineffective while thread cutting. If the feed hold button is pressed during thread cutting, the tool will stop after a block not specifying thread cutting is executed as if the SINGLE BLOCK button were pushed. However, the feed hold lamp (SPL lamp) lights when the FEED HOLD button on the machine control panel is pushed. Then, when the tool stops, the lamp is turned off (Single Block stop status).
3 When the FEED HOLD button is held down, or is pressed again in the first block that does not specify thread cutting immediately after a thread cutting block, the tool stops at the block that does not specify thread cutting.
4 When thread cutting is executed in the single block status, the tool stops after execution of the first block not specifying thread cutting.
5 When the mode was changed from automatic operation to manual operation during thread cutting, the tool stops at the first block not specifying thread cutting as when the feed hold button is pushed as mentioned in Note 3. However, when the mode is changed from one automatic operation mode to another, the tool stops after execution of the block not specifying thread cutting as for the single block mode in Note 4.
6 When the previous block was a thread cutting block, cutting will start immediately without waiting for detection of the 1–turn signal even if the present block is a thread cutting block.
 G32Z_ F_; (A 1–turn signal is not detected before this block.)
 Z_; (Regarded as threading block.)
 G32; (One turn signal is also not detected.)
7 Because the constant surface speed control is effective during scroll thread or tapered screw cutting and the spindle speed changes, the correct thread lead may not be cut. Therefore, do not use the constant surface speed control during thread cutting. Instead, use G97.
8 A movement block preceding the thread cutting block must not specify chamfering or corner R.
9 A thread cutting block must not specifying chamfering or corner R.
10 The spindle speed override function is disabled during thread cutting. The spindle speed is fixed at 100%.
11 Thread cycle retract function is ineffective to G32.
4.8 VARIABLE–LEAD THREAD CUTTING (G34)

Specifying an increment or a decrement value for a lead per screw revolution enables variable–lead thread cutting to be performed.

Format

```
G34 IP_F_K;

IP : End point
F : Lead in longitudinal axis direction at the start point
K : Increment and decrement of lead per spindle revolution
```

Explanations

Address other than K are the same as in straight/taper thread cutting with G32. Table 4.8 lists a range of values that can be specified as K.

<table>
<thead>
<tr>
<th>Table 4.8 Range of valid K values</th>
</tr>
</thead>
<tbody>
<tr>
<td>Metric input</td>
</tr>
<tr>
<td>± 0.0001 to ± 500.0000 mm/rev</td>
</tr>
<tr>
<td>Inch input</td>
</tr>
<tr>
<td>± 0.000001 to ± 9.999999 inch/rev</td>
</tr>
</tbody>
</table>

P/S alarm (No. 14) is produced, for example, when K such that the value in Table 4.8 is exceeded is directed, the maximum value of lead is exceeded as a result of increase or decrease by K or the lead has a negative value.

WARNING

The “Thread Cutting Cycle Retract” is not effective for G34.

Examples

Lead at the start point: 8.0 mm
Lead increment: 0.3 mm/rev

```
G34 Z–72.0 F8.0 K0.3 ;
```
4.9 CONTINUOUS THREAD CUTTING

This function for continuous thread cutting is such that fractional pulses output to a joint between move blocks are overlapped with the next move for pulse processing and output (block overlap). Therefore, discontinuous machining sections caused by the interruption of move during continuously block machining are eliminated, thus making it possible to continuously direct the block for thread cutting instructions.

Since the system is controlled in such a manner that the synchronism with the spindle does not deviate in the joint between blocks wherever possible, it is possible to performed special thread cutting operation in which the lead and shape change midway.

Even when the same section is repeated for thread cutting while changing the depth of cut, this system allows a correct machining without impairing the threads.

NOTE
1. Block overlap is effective even for G01 command, producing a more excellent finishing surface.
2. When extreme micro blocks continue, no block overlap may function.
4.10 MULTIPLE-THREAD CUTTING

Using the Q address to specify an angle between the one-spindle-rotation signal and the start of threading shifts the threading start angle, making it possible to produce multiple-thread screws with ease.

Format

(constant-lead threading)

G32 IP_ F_ Q_ ;
G32 IP_ Q_ ;

IP_ : End point
F_ : Lead in longitudinal direction
Q_ : Threading start angle

Explanations

- Available thread cutting commands
 - G32: Constant-lead thread cutting
 - G34: Variable-lead thread cutting
 - G76: Multiple-thread cutting cycle
 - G92: Thread cutting cycle

Limitations

- Start angle
 The start angle is not a continuous-state (modal) value. It must be specified each time it is used. If a value is not specified, 0 is assumed.

- Start angle increment
 The start angle (Q) increment is 0.001 degrees. Note that no decimal point can be specified.
 Example:
 For a shift angle of 180 degrees, specify Q180000.
 Q180.000 cannot be specified, because it contains a decimal point.

- Specifiable start angle range
 A start angle (Q) of between 0 and 360000 (in 0.001-degree units) can be specified. If a value greater than 360000 (360 degrees) is specified, it is rounded down to 360000 (360 degrees).

- Multiple-thread cutting (G76)
 For the G76 multiple-thread cutting command, always use the FS15 tape format.
Examples

Program for producing double–threaded screws (with start angles of 0 and 180 degrees)

G00 X40.0;
G32 W–38.0 F4.0 Q0;
G00 X72.0;
W38.0;
X40.0;
G32 W–38.0 F4.0 Q180000;
G00 X72.0;
W38.0;
4.11 SKIP FUNCTION (G31)

Linear interpolation can be commanded by specifying axial move following the G31 command, like G01. If an external skip signal is input during the execution of this command, execution of the command is interrupted and the next block is executed.

The skip function is used when the end of machining is not programmed but specified with a signal from the machine, for example, in grinding. It is used also for measuring the dimensions of a workpiece.

For details of how to use this function, refer to the manual supplied by the machine tool builder.

Format

```
G31 IP_;
```

- **G31**: One–shot G code (If is effective only in the block in which it is specified)

Explanations

The coordinate values when the skip signal is turned on can be used in a custom macro because they are stored in the custom macro system variable #5061 to #5068, as follows:

- #5061 X axis coordinate value
- #5062 Z axis coordinate value
- #5063 3rd axis coordinate value
- #5064 4th axis coordinate value

WARNING

To increase the precision of the tool position when the skip signal is input, feedrate override, dry run, and automatic acceleration/deceleration is disabled for the skip function when the feedrate is specified as a feed per minute value.

To enable these functions, set bit 7 (SKF) of parameter No. 6200 to 1. If the feedrate is specified as a feed per rotation value, feedrate override, dry run, and automatic acceleration/deceleration are enabled for the skip function, regardless of the setting of the SKF bit.

NOTE

1. If G31 command is issued while tool nose radius compensation is applied, an P/S alarm of No.035 is displayed. Cancel the cutter compensation with the G40 command before the G31 command is specified.
2. For the high–speed skip, executing G31 during feed–per–rotation mode causes P/S alarm (No.211) to be generated.
Examples

• The next block to G31 is an incremental command

![Diagram showing an incremental command](image1)

Fig. 4.11(a) The next block is an incremental command

• The next block to G31 is an absolute command for 1 axis

![Diagram showing an absolute command for 1 axis](image2)

Fig. 4.11(b) The next block is an absolute command for 1 axis

• The next block to G31 is an absolute command for 2 axes

![Diagram showing an absolute command for 2 axes](image3)

Fig. 4.11(c) The next block is an absolute command for 2 axes
4.12 MULTISTAGE SKIP

In a block specifying P1 to P4 after G31, the multistage skip function stores coordinates in a custom macro variable when a skip signal (4–point or 8–point; 8–point when a high–speed skip signal is used) is turned on. Parameters No. 6202 to No. 6205 can be used to select a 4–point or 8–point (when a high–speed skip signal is used) skip signal. One skip signal can be set to match multiple Pn or Qn (n=1,2,3,4) as well as to match a Pn or Qn on a one–to–one basis.

A skip signal from equipment such as a fixed–dimension size measuring instrument can be used to skip programs being executed.

In plunge grinding, for example, a series of operations from rough machining to spark–out can be performed automatically by applying a skip signal each time rough machining, semi–fine machining, fine–machining, or spark–out operation is completed.

Format

Move command

G31 IP__ F__ P__ ;

IP__ : End point
F__ : Feedrate
P__ : P1–P4

Dwell

G04 X(U, P)__ (Q__) ;

X(U, P)__ : Dwell time
Q__ : Q1 – Q4

Explanations

Multistage skip is caused by specifying P1, P2, P3, or P4 in a G31 block. For an explanation of selecting (P1, P2, P3, or P4), refer to the manual supplied by the machine tool builder.

Specifying Q1, Q2, Q3, or Q4 in G04 (dwell command) enables dwell skip in a similar way to specifying G31. A skip may occur even if Q is not specified. For an explanation of selecting (Q1, Q2, Q3, or Q4), refer to the manual supplied by the machine tool builder.

Correspondence to skip signals

Parameter Nos. 6202 to 6205 can be used to specify whether the 4–point or 8–point skip signal is used (when a high–speed skip signal is used). Specification is not limited to one–to–one correspondence. It is possible to specify that one skip signal correspond to two or more Pn’s or Qn’s (n=1, 2, 3, 4). Also, bits 0 (DS1) to 7 (DS8) of parameter No. 6206 can be used to specify dwell.

CAUTION

Dwell is not skipped when Qn is not specified and parameters DS1–DS8 (No. 6206#0–#7) are not set.
4.13 TORQUE LIMIT SKIP (G31 P99)

With the motor torque limited (for example, by a torque limit command, issued through the PMC window), a move command following G31 P99 (or G31 P98) can cause the same type of cutting feed as with G01 (linear interpolation).

With the issue of a signal indicating a torque limit has been reached (because of pressure being applied or for some other reason), a skip occurs.

For details of how to use this function, refer to the manuals supplied by the machine tool builder.

Format

G31 P99 IP_ F_;
G31 P98 IP_ F_;
G31: One–shot G code (G code effective only in the block in which it is issued)

Explanations

- **G31 P99**

 If the motor torque limit is reached, or a SKIP signal is received during execution of G31 P99, the current move command is aborted, and the next block is executed.

- **G31 P98**

 If the motor torque limit is reached during execution of G31 P98, the current move command is aborted, and the next block is executed. The SKIP signal <X0004#7/Tool post 2 X0013#7> does not affect G31 P98. Entering a SKIP signal during the execution of G31 P98 does not cause a skip.

- **Torque limit command**

 If a torque limit is not specified before the execution of G31 P99/98, the move command continues; no skip occurs even if a torque limit is reached.

- **Custom macro system variable**

 When G31 P99/98 is specified, the custom macro variables hold the coordinates at the end of a skip. (See Section 4.9.) If a SKIP signal causes a skip with G31 P99, the custom macro system variables hold the coordinates based on the machine coordinate system when it stops, rather than those when the SKIP signal is entered.

Limitations

- **Axis command**

 Only one axis can be controlled in each block with G31 P98/99. If two or more axes are specified to be controlled in such blocks, or no axis command is issued, P/S alarm No. 015 is generated.

- **Degree of servo error**

 When a signal indicating that a torque limit has been reached is input during execution of G31 P99/98, and the degree of servo error exceeds 32767, P/S alarm No. 244 is generated.

- **High–speed skip**

 With G31 P99, a SKIP signal can cause a skip, but not a high–speed skip.
• **Simplified synchronization and slanted axis control**

G31 P99/98 cannot be used for axes subject to simplified synchronization or the X-axis or Z-axis when under slanted axis control.

• **Speed control**

Bit 7 (SKF) of parameter No. 6200 must be set to disable dry run, override, and auto acceleration or deceleration for G31 skip commands.

• **Consecutive commands**

Do not use G31 P99/98 in consecutive blocks.

WARNING

Always specify a torque limit before a G31 P99/98 command. Otherwise, G31 P99/98 allows move commands to be executed without causing a skip.

NOTE

If G31 is issued with tool nose radius compensation specified, P/S alarm No. 035 is generated. Therefore, before issuing G31, execute G40 to cancel tool nose radius compensation.

Examples

```
O0001;
...
M□□;
...
G31 P99 X200. F100;
...
G01 X100. F500;
...
M△△;
...
M30;
%```

The PMC specifies the torque limit through the window.

Torque limit skip command

Move command for which a torque limit is applied

Torque limit canceled by the PMC
5 FEED FUNCTIONS
5.1 GENERAL

• Feed functions

The feed functions control the feedrate of the tool. The following two feed functions are available:

1. Rapid traverse
   When the positioning command (G00) is specified, the tool moves at a rapid traverse feedrate set in the CNC (parameter No. 1420).

2. Cutting feed
   The tool moves at a programmed cutting feedrate.

• Override

Override can be applied to a rapid traverse rate or cutting feedrate using the switch on the machine operator’s panel.

• Automatic acceleration/deceleration

To prevent a mechanical shock, acceleration/deceleration is automatically applied when the tool starts and ends its movement (Fig. 5.1 (a)).

![Diagram of feed functions](image-url)
If the direction of movement changes between specified blocks during cutting feed, a rounded-corner path may result (Fig. 5.1 (b)).

![Fig. 5.1 (b) Example of tool path between two blocks](image)

In circular interpolation, a radial error occurs (Fig. 5.1(c)).

![Fig. 5.1 (c) Example of radial error in circular interpolation](image)

The rounded-corner path shown in Fig. 5.1(b) and the error shown in Fig. 5.1(c) depend on the feedrate. So, the feedrate needs to be controlled for the tool to move as programmed.

### 5.2 RAPID TRAVERSE

**Format**

```
G00 \texttt{IP}__ ;
G00 : G code (group 01) for positioning (rapid traverse)
\texttt{IP}__ ; Dimension word for the end point
```

**Explanations**

The positioning command (G00) positions the tool by rapid traverse. In rapid traverse, the next block is executed after the specified feedrate becomes 0 and the servo motor reaches a certain range set by the machine tool builder (in-position check).

A rapid traverse rate is set for each axis by parameter No. 1420, so no rapid traverse feedrate need be programmed.

The following overrides can be applied to a rapid traverse rate with the switch on the machine operator’s panel:

- F0: Allows a fixed feedrate to be set for each axis by parameter No. 1421.
- For detailed information, refer to the appropriate manual of the machine tool builder.
5.3 CUTTING FEED

Feedrate of linear interpolation (G01), circular interpolation (G02, G03), etc. are commanded with numbers after the F code.

In cutting feed, the next block is executed so that the feedrate change from the previous block is minimized.

Two modes of specification are available:

1. Feed per minute (G98)
   After F, specify the amount of feed of the tool per minute.

2. Feed per revolution (G99)
   After F, specify the amount of feed of the tool per spindle revolution.

Format

```
Feed per minute
G98 ; G code (group 05) for feed per minute
F_ ; Feedrate command (mm/min or inch/min)

Feed per revolution
G99 ; G code (group 05) for feed per revolution
F_ ; Feedrate command (mm/rev or inch/rev)
```

Explanations

- **Tangential speed constant control**
  Cutting feed is controlled so that the tangential feedrate is always set at a specified feedrate.

- **Feed per minute (G98)**
  After specifying G98 (in the feed per minute mode), the amount of feed of the tool per minute is to be directly specified by setting a number after F. G98 is a modal code. Once a G98 is specified, it is valid until G99 (feed per revolution) is specified. At power–on, the feed per revolution mode is set.
  An override from 0% to 254% (in 1% steps) can be applied to feed per minute with the switch on the machine operator’s panel. For detailed information, see the appropriate manual of the machine tool builder.
Feed amount per minute 
(mm/min or inch/min)

Fig. 5.3 (b) Feed per minute

**WARNING**
No override can be used for some commands such as for threading.

**Feed per revolution**

(G99)

After specifying G99 (in the feed per revolution mode), the amount of feed of the tool per spindle revolution is to be directly specified by setting a number after F. G99 is a modal code. Once a G99 is specified, it is valid until G98 (feed per minute) is specified.

An override from 0% to 254% (in 1% steps) can be applied to feed per revolution with the switch on the machine operator’s panel. For detailed information, see the appropriate manual of the machine tool builder.

If bit 0 (NPC) of parameter No. 1402 has been set to 1, feed–per–rotation commands can be specified even when a position coder is not being used. (The CNC converts feed–per–rotation commands to feed–per–minute commands.)

Feed amount per spindle revolution 
(mm/rev or inch/rev)

Fig. 5.3 (c) Feed per revolution

**CAUTION**
1 When the speed of the spindle is low, feedrate fluctuation may occur. The slower the spindle rotates, the more frequently feedrate fluctuation occurs.
2 No override can be used for some commands such as for threading.

**Cutting feedrate clamp**

A common upper limit can be set on the cutting feedrate along each axis with parameter No. 1422. If an actual cutting feedrate (with an override applied) exceeds a specified upper limit, it is clamped to the upper limit.
NOTE
An upper limit is set in mm/min or inch/min. CNC calculation may involve a feedrate error of ±2% with respect to a specified value. However, this is not true for acceleration/deceleration. To be more specific, this error is calculated with respect to a measurement on the time the tool takes to move 500 mm or more during the steady state.

- Reference
See Appendix C for a range of feedrates that can be specified.

5.4 Dwell (G04)

Format

Dwell G04 X_; or G04 U_; or G04 P_;  
X_: Specify a time (decimal point permitted)  
U_: Specify a time (decimal point permitted)  
P_: Specify a time (decimal point not permitted)

Explanations
By specifying a dwell, the execution of the next block is delayed by the specified time.  
Bit 1 (DWL) of parameter No. 3405 can specify dwell for each rotation in feed per rotation mode (G99).

Table 5.4 (a) Command value range of the dwell time (Command by X or U)

<table>
<thead>
<tr>
<th>Increment system</th>
<th>Command value range</th>
<th>Dwell time unit</th>
</tr>
</thead>
<tbody>
<tr>
<td>IS–B</td>
<td>0.001 to 99999.999</td>
<td>s or rev</td>
</tr>
<tr>
<td>IS–C</td>
<td>0.0001 to 9999.999</td>
<td></td>
</tr>
</tbody>
</table>

Table 5.4 (b) Command value range of the dwell time (Command by P)

<table>
<thead>
<tr>
<th>Increment system</th>
<th>Command value range</th>
<th>Dwell time unit</th>
</tr>
</thead>
<tbody>
<tr>
<td>IS–B</td>
<td>1 to 999999999</td>
<td>0.001 s or rev</td>
</tr>
<tr>
<td>IS–C</td>
<td>1 to 999999999</td>
<td>0.0001 s or rev</td>
</tr>
</tbody>
</table>
A CNC machine tool has a special position where, generally, the tool is exchanged or the coordinate system is set, as described later. This position is referred to as a reference position.
6.1 REFERENCE POSITION RETURN

• Reference position

The reference position is a fixed position on a machine tool to which the tool can easily be moved by the reference position return function. For example, the reference position is used as a position at which tools are automatically changed. Up to four reference positions can be specified by setting coordinates in the machine coordinate system in parameters (No. 1240 to 1243).

Fig. 6.1 (a) Machine zero point and reference positions
Tools are automatically moved to the reference position via an intermediate position along a specified axis. When reference position return is completed, the lamp for indicating the completion of return goes on.

![Diagram showing reference position return](image)

**Fig. 6.1 (b) Reference position return**

The reference position return check (G27) is the function which checks whether the tool has correctly returned to the reference position as specified in the program. If the tool has correctly returned to the reference position along a specified axis, the lamp for the axis goes on.

**Format**

**• Reference position return**

G28 IP_; Reference position return  
G30 P2 IP_; 2nd reference position return  
G30 P3 IP_; 3rd reference position return  
G30 P4 IP_; 4th reference position return  

IP_: Command specifying the intermediate position  
(Absolute/incremental command)

**• Reference position return check**

G27 IP_;  

IP_: Command specifying the reference position  
(Absolute/incremental command)
Explanations

- **Reference position return (G28)**
  Positioning to the intermediate or reference positions are performed at the rapid traverse rate of each axis. Therefore, for safety, the tool nose radius compensation, and tool offset should be cancelled before executing this command.

- **2nd, 3rd, and 4th reference position return (G30)**
  In a system without an absolute-position detector, the first, third, and fourth reference position return functions can be used only after the reference position return (G28) or manual reference position return (see III–3.1) is made. The G30 command is generally used when the automatic tool changer (ATC) position differs from the reference position.

- **Reference position return check (G27)**
  G27 command positions the tool at rapid traverse rate. If the tool reaches the reference position, the reference position return lamp lights up. However, if the position reached by the tool is not the reference position, an alarm (No. 092) is displayed.

Restrictions

- **Status the machine lock being turned on**
  The lamp for indicating the completion of return does not go on when the machine lock is turned on, even when the tool has automatically returned to the reference position. In this case, it is not checked whether the tool has returned to the reference position even when a G27 command is specified.

- **First return to the reference position after the power has been turned on (without an absolute position detector)**
  When the G28 command is specified when manual return to the reference position has not been performed after the power has been turned on, the movement from the intermediate point is the same as in manual return to the reference position.
  In this case, the tool moves in the direction for reference position return specified in parameter ZMiX (bit 5 of No. 1006). Therefore the specified intermediate position must be a position to which reference position return is possible.

- **Reference position return check in an offset mode**
  In an offset mode, the position to be reached by the tool with the G27 command is the position obtained by adding the offset value. Therefore, if the position with the offset value added is not the reference position, the lamp does not light up, but an alarm is displayed instead. Usually, cancel offsets before G27 is commanded.

- **Lighting the lamp when the programmed position does not coincide with the reference position**
  When the machine tool is an inch system with metric input, the reference position return lamp may also light up even if the programmed position is shifted from the reference position by least input increment. This is because the least input increment of the machine is smaller than its least command increment.

Reference

- **Manual reference position return**
  See III–3.1.
By teaching the CNC a desired tool position, the tool can be moved to the position. Such a tool position is represented by coordinates in a coordinate system. Coordinates are specified using program axes. When two program axes, the X-axis and Z-axis, are used, coordinates are specified as follows:

\[ X, Z \]

This command is referred to as a dimension word.

Coordinates are specified in one of following three coordinate systems:

1. Machine coordinate system
2. Workpiece coordinate system
3. Local coordinate system

The number of the axes of a coordinate system varies from one machine to another. So, in this manual, a dimension word is represented as IP_.

Fig. 7 Tool position specified by \(X_\alpha Z_\beta\)
7.1 MACHINE COORDINATE SYSTEM

The point that is specific to a machine and serves as the reference of the machine is referred to as the machine zero point. A machine tool builder sets a machine zero point for each machine. A coordinate system with a machine zero point set as its origin is referred to as a machine coordinate system. A machine coordinate system is set by performing manual reference position return after power–on (see III–3.1). A machine coordinate system, once set, remains unchanged until the power is turned off.

Format

```
G53 IP_;
 IP_; Absolute dimension word
```

Explanations

- Selecting a machine coordinate system (G53)

When a position has been specified as a set of machine coordinates, the tool moves to that position by means of rapid traverse. G53, used for selecting the machine coordinate system, is a one–shot G code. Any commands based on the selected machine coordinate system are thus effective only in the block containing G53. The G53 command must be specified using absolute values. If incremental values are specified, the G53 command is ignored. When the tool is to be moved to a machine–specific position such as a tool change position, program the movement in a machine coordinate system based on G53.

Restrictions

- Cancel of the compensation function
- G53 specification immediately after power–on

When the G53 command is specified, cancel the tool nose radius compensation and tool offset.

Since the machine coordinate system must be set before the G53 command is specified, at least one manual reference position return or automatic reference position return by the G28 command must be performed after the power is turned on. This is not necessary when an absolute–position detector is attached.

Reference

When manual reference position return is performed after power–on, a machine coordinate system is set so that the reference position is at the coordinate values of $(\alpha, \beta)$ set using parameter No.1240.
A coordinate system used for machining a workpiece is referred to as a workpiece coordinate system. A workpiece coordinate system is to be set with the NC beforehand (setting a workpiece coordinate system).

A machining program sets a workpiece coordinate system (selecting a workpiece coordinate system).

A set workpiece coordinate system can be changed by shifting its origin (changing a workpiece coordinate system).

A workpiece coordinate system can be set using one of three methods:

1. **Method using G50**
   - A workpiece coordinate system is set by specifying a value after G50 in the program.

2. **Automatic setting**
   - If bit 0 of parameter No. 1201 is set beforehand, a workpiece coordinate system is automatically set when manual reference position return is performed (see Part III–3.1).

3. **Input using the MDI panel**
   - Make settings on the MDI panel to preset six workpiece coordinate systems (see Part III–11.4.10). Then, use program commands G54 to G59 to select which workpiece coordinate system to use.
   - When an absolute command is used, a workpiece coordinate system must be established in any of the ways described above.

### Format

- **Setting a workpiece coordinate system by G50**
  - G50 IP_

### Explanations

A workpiece coordinate system is set so that a point on the tool, such as the tool tip, is at specified coordinates. If IP is an incremental command value, the work coordinate system is defined so that the current tool position coincides with the result of adding the specified incremental value to the coordinates of the previous tool position. If a coordinate system is set using G50 during offset, a coordinate system in which the position before offset matches the position specified in G50 is set.
Examples

Example 1
Setting the coordinate system by the G50X128.7Z375.1; command (Diameter designation)

Example 2
Setting the coordinate system by the G50X1200.0Z700.0; command (Diameter designation)
The user can choose from set workpiece coordinate systems as described below. (For information about the methods of setting, see Subsec. II–7.2.1.)

1) G50 or automatic workpiece coordinate system setting
   Once a workpiece coordinate system is selected, absolute commands work with the workpiece coordinate system.

2) Choosing from six workpiece coordinate systems set using the MDI
   By specifying a G code from G54 to G59, one of the workpiece coordinate systems 1 to 6 can be selected.
   G54  Workpiece coordinate system 1
   G55  Workpiece coordinate system 2
   G56  Workpiece coordinate system 3
   G57  Workpiece coordinate system 4
   G58  Workpiece coordinate system 5
   G59  Workpiece coordinate system 6

   Workpiece coordinate system 1 to 6 are established after reference position return after the power is turned on. When the power is turned on, G54 coordinate system is selected.

   When bit 2 (G50) of parameter No. 1202 is set to 1, executing the G50 command results in the issue of P/S alarm No. 10. This is designed to prevent the user from confusing coordinate systems.

Examples

G55 G00 X100.0 Z40.0 ;

In this example, positioning is made to positions (X=100.0, Z=40.0) in workpiece coordinate system 2.

Fig. 7.2.2
The six workpiece coordinate systems specified with G54 to G59 can be changed by changing an external workpiece zero point offset value or workpiece zero point offset value. Three methods are available to change an external workpiece zero point offset value or workpiece zero point offset value.

1. Inputting from the MDI panel (see III–11.4.10)
2. Programming by G10 or G50
3. Using the external data input function

An external workpiece origin offset can be changed by using a signal input to the CNC. For details, refer to the relevant manual supplied by the machine tool builder.

**Fig. 7.2.3** Changing an external workpiece zero point offset value or workpiece zero point offset value

---

**Format**

- **Changing by G10**

  \[
  \text{G10 L2 Pp IP }_;\]

  
  \[p=0 : \text{External workpiece zero point offset value}\]

  
  \[p=1 \text{ to } 6 : \text{Workpiece zero point offset value correspond to workpiece coordinate system } 1 \text{ to } 6\]

  
  \[IP : \text{For an absolute command (G90), workpiece zero point offset for each axis.}\]

  
  \[\text{For an incremental command (G91), value to be added to the set workpiece zero point offset for each axis (the sum is set as the new offset).}\]

- **Changing by G50**

  \[
  \text{G50 IP }_;\]
Explanations

- **Changing by G10**

  With the G10 command, each workpiece coordinate system can be changed separately.

  By specifying G50IP_;, a workpiece coordinate system (selected with a code from G54 to G59) is shifted to set a new workpiece coordinate system so that the current tool position matches the specified coordinates (IP_).

  If IP is an incremental command value, the work coordinate system is defined so that the current tool position coincides with the result of adding the specified incremental value to the coordinates of the previous tool position. (Coordinate system shift)

  Then, the amount of coordinate system shift is added to all the workpiece zero point offset values. This means that all the workpiece coordinate systems are shifted by the same amount.

- **Changing by G50**

Examples

![Diagram showing coordinate system shift](image)

G50 workpiece coordinate system

If G50X100Z100; is commanded when the tool is positioned at (200, 160) in G54 mode, workpiece coordinate system 1 (X’ – Z’) shifted by vector A is created.

![Diagram showing another coordinate system](image)

Suppose that a G54 workpiece coordinate system is specified. Then, a G55 workpiece coordinate system where the black circle on the tool (figure at the left) is at (600.0,12000.0) can be set with the following command if the relative relationship between the G54 workpiece coordinate system and G55 workpiece coordinate system is set correctly:G50X600.0Z1200.0.Also, suppose that pallets are loaded at two different positions. If the relative relationship of the coordinate systems of the pallets at the two positions is correctly set by handling the coordinate systems as the G54 workpiece coordinate system and G55 workpiece coordinate system, a coordinate system shift with G50 in one pallet causes the same coordinate system shift in the other pallet. This means that workpieces on two pallets can be machined with the same program just by specifying G54 or G55.
The workpiece coordinate system preset function presets a workpiece coordinate system shifted by manual intervention to the pre-shift workpiece coordinate system. The latter system is displaced from the machine zero point by a workpiece zero point offset value.

There are two methods for using the workpiece coordinate system preset function. One method uses a programmed command (G92.1). The other uses MDI operations on the absolute position display screen, relative position display screen, and overall position display screen (III – 11.1.4).

### Format

```
G92.1 IP 0 ; (G50.3 P0 ; for G code system A)
IP 0 ; Specifies axis addresses subject to the workpiece coordinate system preset operation. Axes that are not specified are not subject to the preset operation.
```

### Explanations

When manual reference position return operation is performed in the reset state, a workpiece coordinate system is shifted by the workpiece zero point offset value from the machine coordinate system zero point. Suppose that the manual reference position return operation is performed when a workpiece coordinate system is selected with G54. In this case, a workpiece coordinate system is automatically set which has its zero point displaced from the machine zero point by the G54 workpiece zero point offset value; the distance from the zero point of the workpiece coordinate system to the reference position represents the current position in the workpiece coordinate system.

If an absolute position detector is provided, the workpiece coordinate system automatically set at power-up has its zero point displaced from the machine zero point by the G54 workpiece zero point offset value. The machine position at the time of power-up is read from the absolute position detector and the current position in the workpiece coordinate system is set by subtracting the G54 workpiece zero point offset value from this machine position. The workpiece coordinate system set by these operations is shifted from the machine coordinate system using the commands and operations listed next page.

(a) Manual intervention performed when the manual absolute signal is off
(b) Move command executed in the machine lock state
(c) Movement by handle interrupt
(d) Operation using the mirror image function
(e) Setting the local coordinate system using G52, or shifting the workpiece coordinate system using G92
In the case of (a) above, the workpiece coordinate system is shifted by the amount of movement during manual intervention.

In the operation above, a workpiece coordinate system once shifted can be preset using G code specification or MDI operation to a workpiece coordinate system displaced by a workpiece zero point offset value from the machine zero point. This is the same as when manual reference position return operation is performed on a workpiece coordinate system that has been shifted. In this example, such G code specification or MDI operation has the effect of returning workpiece coordinate system zero point WZn to the original zero point WZo, and the distance from WZo to Pn is used to represent the current position in the workpiece coordinate system.

Bit 3 (PPD) of parameter No. 3104 specifies whether to preset relative coordinates (RELATIVE) as well as absolute coordinates.

Restrictions

- **Tool nose radius compensation, tool length compensation, tool offset**

- **Program restart**

When using the workpiece coordinate system preset function, cancel compensation modes: tool nose radius compensation, tool length compensation, and tool offset. If the function is executed without cancelling these modes, compensation vectors are temporarily cancelled.

The workpiece coordinate system preset function is not executed during program restart.
When the coordinate system actually set by the G50 command or the automatic system setting deviates from the programmed work system, the set coordinate system can be shifted (see III–3.1). Set the desired shift amount in the work coordinate system shift memory.

**7.2.5 Workpiece Coordinate System Shift**

**Explanations**

**Fig. 7.2.5 Workpiece coordinate system shift**

See Section 11.4.5 of Part III for how to specify the distance the work coordinate system is shifted.
7.3 LOCAL COORDINATE SYSTEM

When a program is created in a workpiece coordinate system, a child workpiece coordinate system may be set for easier programming. Such a child coordinate system is referred to as a local coordinate system.

Format

\[
\begin{align*}
G52 \text{ IP } _{-} & : \text{ Setting the local coordinate system} \\
\text{......} & \\
G52 \text{ IP } 0 & : \text{ Canceling of the local coordinate system} \\
\text{IP } _{-} & : \text{ Origin of the local coordinate system}
\end{align*}
\]

Explanations

By specifying G52IP_-, a local coordinate system can be set in all the workpiece coordinate systems (G54 to G59). The origin of each local coordinate system is set at the position specified by IP_- in the workpiece coordinate system.

Once a local coordinate system is established, the coordinates in the local coordinate system are used in an axis shift command. The local coordinate system can be changed by specifying the G52 command with the zero point of a new local coordinate system in the workpiece coordinate system.

To cancel the local coordinate system and specify the coordinate value in the workpiece coordinate system, match the zero point of the local coordinate system with that of the workpiece coordinate system.

\[\text{Fig. 7.3 Setting the local coordinate system}\]
WARNING

1. The local coordinate system setting does not change the workpiece and machine coordinate systems.

2. When G50 is used to define a work coordinate system, if coordinates are not specified for all axes of a local coordinate system, the local coordinate system remains unchanged.
   If coordinates are specified for any axis of a local coordinate system, the local coordinate system is canceled.

3. G52 cancels the offset temporarily in tool nose radius compensation.

4. Command a move command immediately after the G52 block in the absolute mode.

5. Whether the local coordinate system is canceled upon reset depends on the specified parameters. The local coordinate system is canceled upon reset when bit 6 (CLR) of parameter No. 3402 or bit 3 (RLC) of parameter No. 1202 is set to 1.

6. Whether manual reference position return cancels the local coordinate system depends on the setting of ZCL (bit 2 of parameter No. 1201).
7.4 PLANE SELECTION

Select the planes for circular interpolation, tool nose radius compensation, coordinate system rotation, and drilling by G–code. The following table lists G–codes and the planes selected by them.

### Table 7.4 Plane selected by G code

<table>
<thead>
<tr>
<th>G code</th>
<th>Selected plane</th>
<th>Xp</th>
<th>Yp</th>
<th>Zp</th>
</tr>
</thead>
<tbody>
<tr>
<td>G17</td>
<td>Xp Yp plane</td>
<td>X–axis or an axis parallel to it</td>
<td>Y–axis or an axis parallel to it</td>
<td>Z–axis or an axis parallel to it</td>
</tr>
<tr>
<td>G18</td>
<td>Zp Xp plane</td>
<td>X–axis or an axis parallel to it</td>
<td>Y–axis or an axis parallel to it</td>
<td>Z–axis or an axis parallel to it</td>
</tr>
<tr>
<td>G19</td>
<td>Yp Zp plane</td>
<td>X–axis or an axis parallel to it</td>
<td>Y–axis or an axis parallel to it</td>
<td>Z–axis or an axis parallel to it</td>
</tr>
</tbody>
</table>

Xp, Yp, Zp are determined by the axis address appeared in the block in which G17, G18 or G19 is commanded.

When an axis address is omitted in G17, G18 or G19 block, it is assumed that the addresses of basic three axes are omitted.

Parameter No. 1022 specifies whether each axis is a basic axis (X–axis, Y–axis, or Z–axis) or an axis parallel to a basic axis.

The plane is unchanged in the block in which G17, G18 or G19 is not commanded.

When the power is turned on, G18 (ZX plane) is selected .

The movement instruction is irrelevant to the plane selection.

### NOTE

1. U–, V–, and W–axes (parallel to a basic axis) can be used with G–codes B and C.

2. Direct drawing dimension programming, chamfering, corner R, multiple repetitive canned cycle, and simple canned cycle are enabled only for the ZX plane.

Specifying these functions for other planes causes P/S alarm No. 212 to be generated.

### Examples

Plane selection when the X–axis is parallel with the U–axis.

- G17X_Y_; XY plane,
- G17U_Y_; UY plane
- G18X_Z_; ZX plane
- X_Y_; Plane is unchanged (ZX plane)
- G17 ; XY plane
- G18 ; ZX plane
- G17 U_; UY plane
- G18Y_; ZX plane, Y axis moves regardless without any relation to the plane.
This chapter contains the following topics.

8.1  ABSOLUTE AND INCREMENTAL PROGRAMMING (G90, G91)
8.2  INCH/METRIC CONVERSION (G20, G21)
8.3  DECIMAL POINT PROGRAMMING
8.4  DIAMETER AND RADIUS PROGRAMMING
8.1 ABSOLUTE AND INCREMENTAL PROGRAMMING (G90, G91)

There are two ways to command travels of the tool; the absolute command, and the incremental command. In the absolute command, coordinate value of the end position is programmed; in the incremental command, move distance of the position itself is programmed. G90 and G91 are used to command absolute or incremental command, respectively. Absolute programming or incremental programming is used depending on the command used. See following tables.

<table>
<thead>
<tr>
<th>G code system</th>
<th>A</th>
<th>B or C</th>
</tr>
</thead>
<tbody>
<tr>
<td>Command method</td>
<td>Address word</td>
<td>G90, G91</td>
</tr>
</tbody>
</table>

### Format

- **G code system A**

<table>
<thead>
<tr>
<th>X axis move command</th>
<th>Y axis move command</th>
<th>Z axis move command</th>
<th>C axis move command</th>
</tr>
</thead>
<tbody>
<tr>
<td>Absolute command</td>
<td>X</td>
<td>Y</td>
<td>Z</td>
</tr>
<tr>
<td>Incremental command</td>
<td>U</td>
<td>V</td>
<td>W</td>
</tr>
</tbody>
</table>

- **G code system B or C**

<table>
<thead>
<tr>
<th>Absolute command</th>
<th>G90 IP__;</th>
</tr>
</thead>
</table>

### Examples

- **Tool movement from point P to point Q (diameter programming is used for the X-axis)**

<table>
<thead>
<tr>
<th>Absolute command</th>
<th>G code system A</th>
<th>G code system B or C</th>
</tr>
</thead>
<tbody>
<tr>
<td>X400.0 Z50.0 ;</td>
<td>G90 X400.0 Z50.0 ;</td>
<td></td>
</tr>
<tr>
<td>U200.0 W–400.0 ;</td>
<td>G91 X200.0 Z–400.0 ;</td>
<td></td>
</tr>
</tbody>
</table>

### NOTE

1. Absolute and incremental commands can be used together in a block.
   In the above example, the following command can be specified: X400.0 W–400.0 ;
2. When both X and U or W and Z are used together in a block, the one specified later is effective.
3. Incremental commands cannot be used when names of the axes are A and B during G code system A is selected.
Either inch or metric input can be selected by G code.

### 8.2 INCH/METRIC CONVERSION (G20, G21)

#### Format

| G20 ; Inch input |
| G21 ; mm input |

This G code must be specified in an independent block before setting the coordinate system at the beginning of the program. After the G code for inch/metric conversion is specified, the unit of input data is switched to the least inch or metric input increment of increment system IS–B or IS–C (Section II–2.3). The unit of data input for degrees remains unchanged. The unit systems for the following values are changed after inch/metric conversion:

- Feedrate commanded by F code
- Positional command
- Work zero point offset value
- Tool compensation value
- Unit of scale for manual pulse generator
- Movement distance in incremental feed
- Some parameters

When the power is turned on, the G code is the same as that held before the power was turned off.

#### WARNING

1. G20 and G21 must not be switched during a program.
2. When switching inch input (G20) to metric input (G21) and vice versa, the tool compensation value must be re-set according to the least input increment. However, when bit 0 (OIM) of parameter 5006 is 1, tool compensation values are automatically converted and need not be re-set.

#### CAUTION

Movement from the intermediate point is the same as that for manual reference position return. The direction in which the tool moves from the intermediate point is the same as the reference position return direction, as specified with bit 5 (ZMI) of parameter No. 1006.

#### NOTE

1. When the least input increment and the least command increment systems are different, the maximum error is half of the least command increment. This error is not accumulated.
2. The inch and metric input can also be switched using setting of data setting (III–11.4.7).
8.3 DECIMAL POINT PROGRAMMING

Numerical values can be entered with a decimal point. A decimal point can be used when entering a distance, time, or speed. Decimal points can be specified with the following addresses: X, Y, Z, U, V, W, A, B, C, I, J, K, R, and F.

Explanations

There are two types of decimal point notation: calculator–type notation and standard notation.

When calculator–type decimal notation is used, a value without decimal point is considered to be specified in millimeters. When standard decimal notation is used, such a value is considered to be specified in least input increments. Select either calculator–type or standard decimal notation by using the DPI bit (bit 0 of parameter 3401). Values can be specified both with and without decimal point in a single program.

Examples

<table>
<thead>
<tr>
<th>Program command</th>
<th>Pocket calculator type decimal point programming</th>
<th>Standard type decimal point programming</th>
</tr>
</thead>
<tbody>
<tr>
<td>X1000</td>
<td>1000mm Unit : mm</td>
<td>1mm Unit : Least input increment (0.001 mm)</td>
</tr>
<tr>
<td>X1000.0</td>
<td>1000mm Unit : mm</td>
<td>1000mm Unit : mm</td>
</tr>
</tbody>
</table>

WARNING

In a single block, specify a G code before entering a value. The position of decimal point may depend on the command.

Examples:

G20; Input in inches
X1.0 G04; X1.0 is considered to be a distance and processed as X10000. This command is equivalent to G04 X10000. The tool dwells for 10 seconds.
G04 X1.0; Equivalent to G04 X1000. The tool dwells for one second.

NOTE

1 Fractions less than the least input increment are truncated.

Examples:

X1.23456; Truncated to X1.234 when the least input increment is 0.001 mm. Processed as X1.2345 when the least input increment is 0.0001 inch.

2 When more than eight digits are specified, an alarm occurs. If a value is entered with a decimal point, the number of digits is also checked after the value is converted to an integer according to the least input increment.

Examples:

X1.23456789; P/S alarm 003 occurs because more than eight digits are specified.
X123456.7; If the least input increment is 0.001 mm, the value is converted to integer 123456700. Because the integer has more than eight digits, an P/S alarm 003 occurs.
8.4 DIAMETER AND RADIUS PROGRAMMING

Since the work cross section is usually circular in CNC lathe control programming, its dimensions can be specified in two ways:

- **Diameter and Radius**

  When the diameter is specified, it is called diameter programming and when the radius is specified, it is called radius programming.

Radius programming or diameter programming can be specified by parameter DIA (No.1006#3). When using diameter programming, note the conditions listed in the table 8.4.

### Table 8.4 Notes on specifying diameter value

<table>
<thead>
<tr>
<th>Item</th>
<th>Notes</th>
</tr>
</thead>
<tbody>
<tr>
<td>X axis command</td>
<td>Specified with a diameter value</td>
</tr>
<tr>
<td>Incremental command</td>
<td>Specified with a diameter value</td>
</tr>
<tr>
<td></td>
<td>In the above figure, specifies D2 minus D1</td>
</tr>
<tr>
<td></td>
<td>for tool path B to A.</td>
</tr>
<tr>
<td>Coordinate system setting (G50)</td>
<td>Specifies a coordinate value with a diameter value</td>
</tr>
<tr>
<td>Component of tool offset value</td>
<td>Parameter (No.5004#1) determines either</td>
</tr>
<tr>
<td></td>
<td>diameter or radius value</td>
</tr>
<tr>
<td>Parameters in canned cycle, such</td>
<td>Specifies a radius value</td>
</tr>
<tr>
<td>as cutting depth along X axis. (R)</td>
<td></td>
</tr>
<tr>
<td>Radius designation in circular</td>
<td>Specifies a radius value</td>
</tr>
<tr>
<td>interpolation (R, I, K, and etc.)</td>
<td></td>
</tr>
<tr>
<td>Feedrate along axis</td>
<td>Specifies change of radius/rev. or change</td>
</tr>
<tr>
<td></td>
<td>of radius/min.</td>
</tr>
<tr>
<td>Display of axis position</td>
<td>Displayed as diameter value</td>
</tr>
</tbody>
</table>

Explanations

- **Notes on diameter programming/radius programming for each command**

- **Notes on diameter programming/radius programming for each command**
SPINDLE SPEED FUNCTION

The spindle speed can be controlled by specifying a value following address S.
In addition, the spindle can be rotated by a specified angle.
This chapter contains the following topics.

9.1 SPECIFYING THE SPINDLE SPEED WITH A CODE
9.2 SPECIFYING THE SPINDLE SPEED VALUE DIRECTLY (S5—DIGIT COMMAND)
9.3 CONSTANT SURFACE SPEED CONTROL (G96, G97)
9.4 SPINDLE SPEED FLUCTUATION DETECTION FUNCTION (G25, G26)
9.5 SPINDLE POSITIONING FUNCTION
9. SPECIFYING THE SPINDLE SPEED WITH A CODE

Specifying a value following address S sends code and strobe signals to the machine. On the machine, the signals are used to control the spindle speed. A block can contain only one S code. Refer to the appropriate manual provided by the machine tool builder for details such as the number of digits in an S code or the execution order when a move command and an S code command are in the same block.

9.2 SPECIFYING THE SPINDLE SPEED VALUE DIRECTLY (S5–DIGIT COMMAND)

The spindle speed can be specified directly by address S followed by a five-digit value (min⁻¹). The unit for specifying the spindle speed may vary depending on the machine tool builder. Refer to the appropriate manual provided by the machine tool builder for details.
Specify the surface speed (relative speed between the tool and workpiece) following S. The spindle is rotated so that the surface speed is constant regardless of the position of the tool.

**9.3 CONSTANT SURFACE SPEED CONTROL (G96, G97)**

**Format**

- **Constant surface speed control command**

  \[ G96 \text{ S}_{\text{●●●●●}} ; \]
  \[ \uparrow \text{Surface speed (m/min or feet/min)} \]

  Note: This surface speed unit may change according to machine tool builder’s specification.

- **Constant surface speed control cancel command**

  \[ G97 \text{ S}_{\text{●●●●●}} ; \]
  \[ \uparrow \text{Spindle speed (min}^{-1}) \]

  Note: This surface speed unit may change according to machine tool builder’s specification.

- **Clamp of maximum spindle speed**

  \[ G50 \text{ S}_\text{●} ; \]
  The maximum spindle speed (min\(^{-1}\)) follows S.
Explanations

- **Constant surface speed control command (G96)**
  
  G96 (constant surface speed control command) is a modal G code. After a G96 command is specified, the program enters the constant surface speed control mode (G96 mode) and specified S values are assumed as a surface speed. A G96 command must specify the axis along which constant surface speed control is applied. A G97 command cancels the G96 mode. When constant surface speed control is applied, a spindle speed higher than the value specified in G50S_; (maximum spindle speed) is clamped at the maximum spindle speed. When the power is turned on, the maximum spindle speed is not yet set and the speed is not clamped. S (surface speed) commands in the G96 mode are assumed as S = 0 (the surface speed is 0) until M03 (rotating the spindle in the positive direction) or M04 (rotating the spindle in the negative direction) appears in the program.

Fig. 9.3 (a)  Relation between workpiece radius, spindle speed and surface speed

- **Setting the workpiece coordinate system for constant surface speed control**
  
  To execute the constant surface speed control, it is necessary to set the work coordinate system, Z axis, (axis to which the constant surface speed control applies) becomes zero.

Fig. 9.3 (b)  Example of the workpiece coordinate system for constant surface speed control
• Surface speed specified in the G96 mode

<table>
<thead>
<tr>
<th>G96 mode</th>
<th>G97 mode</th>
</tr>
</thead>
<tbody>
<tr>
<td>Specify the surface speed in m/min (or feet/min)</td>
<td>Store the surface speed in m/min (or feet/min)</td>
</tr>
<tr>
<td>G97 command</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Specified</td>
</tr>
<tr>
<td></td>
<td>The specified spindle speed (min⁻¹) is used</td>
</tr>
<tr>
<td></td>
<td>Not specified</td>
</tr>
<tr>
<td></td>
<td>The surface speed (m/min or feet/min) is converted to the spindle speed (min⁻¹)</td>
</tr>
<tr>
<td></td>
<td>Commands other than G96</td>
</tr>
<tr>
<td></td>
<td>G96 command</td>
</tr>
<tr>
<td></td>
<td>Specified</td>
</tr>
<tr>
<td></td>
<td>The specified surface speed is used</td>
</tr>
<tr>
<td></td>
<td>Not specified</td>
</tr>
<tr>
<td></td>
<td>The stored surface speed (m/min or feet/min) is used. If no surface speed is stored, 0 is assumed.</td>
</tr>
</tbody>
</table>

Restrictions

• Constant surface speed control for threading

The constant surface speed control is also effective during threading. Accordingly, it is recommended that the constant surface speed control be invalidated with G97 command before starting the scroll threading and taper threading, because the response problem in the servo system may not be considered when the spindle speed changes.
In a rapid traverse block specified by G00, the constant surface speed control is not made by calculating the surface speed to a transient change of the tool position, but is made by calculating the surface speed based on the position at the end point of the rapid traverse block, on the condition that cutting is not executed at rapid traverse.

**Example**

N8  G00 X1000.0Z1400.0 ;
N9   T33;
N11 X400.0Z1050.0;
N12 G50S3000 ; (Designation of max. spindle speed)
N13 G96S200 ; (Surface speed 200m/min)
N14 G01 Z 700.0F1000 ;
N15 X600.0Z 400.0;
N16 Z ... ;

The CNC calculates the spindle speed which is proportional to the specified surface speed at the position of the programmed coordinate value on the X axis. This is not the value calculated according to the X axis coordinate after offset when offset is valid. At the end point N15 in the example above, the speed at 600 dia. (Which is not the turret center but the tool nose) is 200 m/min. If X axis coordinate value is negative, the CNC uses the absolute value.
With this function, an overheat alarm (No. 704) is raised when the spindle speed deviates from the specified speed due to machine conditions. This function is useful, for example, for preventing the seizure of the guide bushing.

G26 enables spindle speed fluctuation detection. G25 disables spindle speed fluctuation detection.

### Format

<table>
<thead>
<tr>
<th>G26 Pp Qq Rr ;</th>
<th>Spindle fluctuation detection on</th>
</tr>
</thead>
<tbody>
<tr>
<td>G25 ;</td>
<td>Spindle fluctuation detection off</td>
</tr>
</tbody>
</table>

**p**: Time (in ms) from the issue of a new spindle rotation command (S command) to the start of checking whether the actual spindle speed is so fast that an overheat can occur. When a specified speed is reached within the time period of P, spindle speed is checked at that time.

**q**: Tolerance (%) of a specified spindle speed

\[
q = \frac{1 - \text{actual spindle speed}}{\text{specified spindle speed}} \times 100
\]

If a specified spindle speed lies within this range, it is regarded as having reached the specified value. Then, an actual spindle speed is checked.

**r**: Spindle speed fluctuation (%) at which the actual spindle speed is so fast that an overheat can occur

\[
r = \frac{1 - \text{speed that can cause overheat}}{\text{specified spindle speed}} \times 100
\]

G26 enables the spindle speed fluctuation detection function, and G25 disables the spindle speed fluctuation detection. Even if G25 is specified, p, q, and r are not cleared.
Explanations

The fluctuation of the spindle speed is detected as follows:

1. When an alarm is issued after a specified spindle speed is reached

   ![Diagram](image1)

   **Specification of another speed**
   - Check
   - No check
   - Start of check
   - Alarm

   **Time**

   **Specified speed**
   - r
   - q
   - d

   **Actual speed**

   **Check**

   **No check**

   **Check**

   **Specified speed**
   - /C0032
   - Specified speed
   - Actual speed

   **Specified speed**:
   (Speed specified by address S and five-digit value) × (spindle override)

   **Actual speed**: Speed detected with a position coder

   **p**: Time elapses since the specified speed changes until a check starts.

   **q**: (Percentage tolerance for a check to start) × (specified speed)

   **r**: (Percentage fluctuation detected as an alarm condition) × (specified speed)

   **d**: Fluctuation detected as an alarm (specified in parameter 4913)

   An alarm is issued when the difference between the specified speed and the actual speed exceeds both r and d.

2. When an alarm is issued before a specified spindle speed is reached

   ![Diagram](image2)

   **Specification of another speed**
   - Check
   - No check
   - Start of check
   - Alarm

   **Time**

   **Specified speed**
   - r
   - q
   - d

   **Actual speed**

   **Check**

   **No check**

   **Check**

   **Specified speed**
   - /C0032
   - Specified speed
   - Actual speed

   **Specified speed**:
   (Speed specified by address S and five-digit value) × (spindle override)

   **Actual speed**: Speed detected with a position coder

   **p**: Time elapses since the specified speed changes until a check starts.

   **q**: (Percentage tolerance for a check to start) × (specified speed)

   **r**: (Percentage fluctuation detected as an alarm condition) × (specified speed)

   **d**: Fluctuation detected as an alarm (specified in parameter 4913)

   An alarm is issued when the difference between the specified speed and the actual speed exceeds both r and d.
NOTE
1 When an alarm is issued in automatic operation, a single block stop occurs. The spindle overheat alarm is indicated on the CRT screen, and the alarm signal “SPAL” is output (set to 1 for the presence of an alarm). This signal is cleared by resetting.
2 Even when reset operation is performed after an alarm occurs, the alarm is issued again unless the cause of the alarm is corrected.
3 No check is made during spindle stop state (*SSTP = 0).
4 By setting the parameter (No. 4913), an allowable range of speed fluctuations can be set which suppresses the occurrence of an alarm. However, an alarm is issued one second later if the actual speed is found to be 0 min⁻¹.
5 The values of p, q, and r specified in the G26 block are set in the following parameters. If the specification of p, q, or r is omitted, the value set in the corresponding parameter is referenced.
   - p : Parameter No. 4914
   - q : Parameter No. 4911
   - r : Parameter No. 4912
6 Bit 0 (FLR) of parameter No. 4900 can be used to specify 0.1% as the units of the specified q and r values.
In turning, the spindle connected to the spindle motor is rotated at a certain speed to rotate the workpiece mounted on the spindle. The spindle positioning function turns the spindle connected to the spindle motor by a certain angle to position the workpiece mounted on the spindle at a certain angle. The spindle is positioned about the C–axis.

The spindle positioning function involves the following three operations:

1. Canceling the spindle rotation mode and entering the spindle positioning mode (spindle orientation)
2. Positioning the spindle in the spindle positioning mode
3. Canceling the spindle positioning mode, and entering the spindle rotation mode

When spindle positioning is first performed after the spindle motor is used for normal spindle operation, or when spindle positioning is interrupted, the spindle orientation is required. Orientation permits the spindle to stop at a predetermined position. Orientation is directed by the M code set in parameter No. 4960. The direction of orientation can be set with a parameter. For the analog spindle, the direction is set in ZMIx (bit 5 of parameter 1006). For the serial spindle, it is set in RETRN (bit 5 of parameter 4005).

The spindle can be positioned with an arbitrary angle or semi–fixed angle.

Address M is followed by a 2–digit numeric. The specifiable value may be one of the six values from Mα to M(α+5). Value α must be set in parameter No. 4962 beforehand. The positioning angles corresponding to Mα to M(α+5) are listed below. Value β must be set in parameter No. 4963 beforehand.

<table>
<thead>
<tr>
<th>M–code</th>
<th>Positioning angle</th>
<th>(Ex.)β=30°</th>
</tr>
</thead>
<tbody>
<tr>
<td>Mα</td>
<td>β</td>
<td>30°</td>
</tr>
<tr>
<td>M(α+1)</td>
<td>2β</td>
<td>60°</td>
</tr>
<tr>
<td>M(α+2)</td>
<td>3β</td>
<td>90°</td>
</tr>
<tr>
<td>M(α+3)</td>
<td>4β</td>
<td>120°</td>
</tr>
<tr>
<td>M(α+4)</td>
<td>5β</td>
<td>150°</td>
</tr>
<tr>
<td>M(α+5)</td>
<td>6β</td>
<td>180°</td>
</tr>
</tbody>
</table>

Specify the command with incremental values. The direction of rotation can be specified in parameter IDM (bit 1 of parameter 4950).
• Positioning with a given angle specified by address C or H

Specify the position using address C or H followed by a signed numeric value or numeric values. Addresses C and H must be specified in the G00 mode.

(Example) C–1000
H4500

The end point must be specified with a distance from the program reference position (in absolute mode) using address C. Alternatively, the end point must also be specified with a distance from the start point to the end point (in incremental mode) using address H.

A numeric with the decimal point can be entered.

The value must be specified in degrees.

(Example) C35.0=C35 degrees

• Program reference position

The position to which the spindle is oriented is assumed as the program reference position. The program reference position can be changed by setting of a coordinate system (G50) or automatic setting of a coordinate system.

• Feedrate for positioning

![Diagram](image)

<table>
<thead>
<tr>
<th>Command format</th>
<th>G code A</th>
<th>G code B and C</th>
</tr>
</thead>
<tbody>
<tr>
<td>Absolute command</td>
<td>Address used</td>
<td>Command A–B in the</td>
</tr>
<tr>
<td></td>
<td></td>
<td>above figure</td>
</tr>
<tr>
<td></td>
<td>C</td>
<td>C180.0 ;</td>
</tr>
<tr>
<td></td>
<td></td>
<td>G90,C</td>
</tr>
<tr>
<td></td>
<td></td>
<td>G90C180.0 ;</td>
</tr>
<tr>
<td>Incremental command</td>
<td>Address used and</td>
<td>Command A–B in the</td>
</tr>
<tr>
<td></td>
<td>G code</td>
<td>above figure</td>
</tr>
<tr>
<td></td>
<td>H</td>
<td>H90.0 ;</td>
</tr>
<tr>
<td></td>
<td></td>
<td>G91,C</td>
</tr>
<tr>
<td></td>
<td></td>
<td>G90C90.0 ;</td>
</tr>
</tbody>
</table>
• Feedrate during positioning

The feedrate during positioning equals the rapid traverse speed specified in parameter No. 1420. Linear acceleration/deceleration is performed. For the specified speed, an override of 100%, 50%, 25%, and F0 (parameter No. 1421) can be applied.

• Speed during orientation

The tool moves at the rapid traverse speed set in parameter No. 1420 until a sufficient speed for orientation is attained. After the speed for orientation has been attained, orientation is performed at the speed set in parameter No. 1425.

9.5.3 Canceling Spindle Positioning

When modes are to be switched from spindle positioning to normal spindle rotation, the M code set in parameter No. 4961 is specified.

WARNING

1. Feed hold, dry run, machine lock, and auxiliary function lock cannot be performed during spindle positioning.
2. Parameter No. 4962 must always be set even when positioning with a semi-fixed angle specified in an M-code is not performed. If the parameter is not set, M-codes from the M00 to M05 do not function properly.

NOTE

1. Specify spindle positioning alone in a block. A move command for the X or Z axis cannot be specified within the same block.
2. When emergency stop is applied during spindle positioning, spindle positioning stops. To resume it, restart with the orientation step.
3. The serial spindle Cs-axis contour control function and the spindle positioning function cannot be used at a time. If both functions are enabled, the spindle positioning function has priority.
4. The spindle positioning axis is indicated in pulses in the machine coordinate system.
Two tool functions are available. One is the tool selection function, and the other is the tool life management function.
10.1 TOOL SELECTION

By specifying a 2-digit/4-digit numerical value following address T, a code signal and a strobe signal are transmitted to the machine tool. This is mainly used to select tools on the machine.

One T code can be commanded in a block. Refer to the machine tool builder’s manual for the number of digits commandable with address T and the correspondence between the T codes and machine operations.

When a move command and a T code are specified in the same block, the commands are executed in one of the following two ways:

1. Simultaneous execution of the move command and T function commands.
2. Executing T function commands upon completion of move command execution.

The selection of either sequence depends on the machine tool builder’s specifications. Refer to the machine tool builder’s manual for details.

1. Last one digit of T–code designates the offset number.

2. Last two digits of T–code designate the offset number.

---

Explanations

The value after the T code indicates the desired tool. Part of the values is also used as the offset number indicating the compensation amount for tool offset.

Refer to the machine tool builder’s manual for correspondence between the T–code and the tool and the number of digit to specify tool selection.

Example(T2+2)
N1G00X1000Z1400
N2T0313; (Select Tool No. 3 and Offset value No.13)
N3X400Z1050;

Some machines use a 1-digit value to specify tool selection.
10.2
TOOL LIFE
MANAGEMENT

Tools are classified into some groups. For each group, a tool life (time or frequency of use) is specified. Each time a tool is used, the time for which the tool is used is accumulated. When the tool life has been reached, the next tool previously determined in the same group is used. This function is called the tool life management function.

With 2–path control, tool life management is performed for each tool post separately. So tool life management data is also set for each tool post.

10.2.1
Program of Tool Life
Data

Tools used sequentially in each group and their tool life are registered in the CNC as following program format of table 10.2.1(a).

Table 10.2.1(a) Program format of life management

<table>
<thead>
<tr>
<th>Tape format</th>
<th>Meaning</th>
</tr>
</thead>
<tbody>
<tr>
<td>G10L3;</td>
<td>Program number</td>
</tr>
<tr>
<td>P___ L___ ;</td>
<td>Start of setting tool life data</td>
</tr>
<tr>
<td>T___ ;</td>
<td>P___:Group number (1 to 128)</td>
</tr>
<tr>
<td>T___ ;</td>
<td>L___:Tool life (1 to 9999)</td>
</tr>
<tr>
<td>P___ L___ ;</td>
<td>T_n: Tool number</td>
</tr>
<tr>
<td>T___ ;</td>
<td>(1) Tools are selected from</td>
</tr>
<tr>
<td>T___ ;</td>
<td>(2) (1) to (2) to ... to (n).</td>
</tr>
<tr>
<td>T___ ;</td>
<td>(n) Data for the next group</td>
</tr>
<tr>
<td>G11;</td>
<td>End of setting tool life data</td>
</tr>
<tr>
<td>M02(M30);</td>
<td>End of program</td>
</tr>
</tbody>
</table>

For the method of registering tool life data in CNC, refer to Subsec. III–11.4.14.
Explanations

- **Specification by duration or number of times the tool has been used**
  A tool life is specified either as the time of use (in minutes) or the frequency of use, which depends on the parameter setting parameter No. 6800#2(LTM).
  Up to 4300 minutes in time or 9999 times in frequency can be specified for a tool life.

- **Maximum number of groups and tools**
  The number of groups to be registered and the number of tools registered per group can be combined in three ways. One of the three combinations is set by a parameter No.6800#0,#1(Each GS1 and GS2).

<table>
<thead>
<tr>
<th>GS2 (No.6800#1)</th>
<th>GS1 (No.6800#0)</th>
<th>The Max. number of groups and tools without optional function of 128 tool pairs</th>
</tr>
</thead>
<tbody>
<tr>
<td>0</td>
<td>0</td>
<td>Number of group: 16 Number of tool: 16</td>
</tr>
<tr>
<td>0</td>
<td>1</td>
<td>Number of group: 32 Number of tool: 8</td>
</tr>
<tr>
<td>1</td>
<td>0</td>
<td>Number of group: 64 Number of tool: 4</td>
</tr>
<tr>
<td>1</td>
<td>1</td>
<td>Number of group: 16 Number of tool: 16</td>
</tr>
</tbody>
</table>

In each of the cases listed above, the maximum number of tools which can be registered is 512 or 256 depending, respectively, on whether the option for 128 tool life control groups is used or not. When the option is not used, set the parameters as follows: For up to 16 groups, with up to 16 tools in each group, set GS1 = 0 and GS2 = 0. For up to 32 groups, with up to 8 tools in each group, set GS1 = 0 and GS2 = 1. To change the combination, change the parameter, then set program is executed with the old tool group combination set in the NC. Whenever the parameter is changed, be sure to reexecute the group setting program.

- **A T code for registering tools**
  The same tool number may appear anywhere any times in the program of tool life data.
  A T code for registering tools can usually consist of up to four digits. When the option for 128 tool life control groups is used, however, it can consist of up to six digits.

When using the tool life control function, do not use tool position offset parameters LD1 and LGN (bits 0 and 1 of parameter No. 5002).
Example

```
O0001 ;
G10L3 ;
P001L0150 ;
T0011 ;
T0132 ;
T0068 ;
P002L1400 ;
T0061 ;
T0241 ;
T0134 ;
T0074 ;
P003L0700 ;
T0012 ;
T0202 ;
G11 ;
M02 ;
```

Data of group 1

Data of group 2

Data of group 3

Explanations

The group numbers specified in P need not be serial. They need not be assigned to all groups, either. When using two or more offset numbers for the same tool in the same process, set as follows:

<table>
<thead>
<tr>
<th>Tape format</th>
<th>Meaning</th>
</tr>
</thead>
<tbody>
<tr>
<td>P004L0500;</td>
<td>The tools in group 4 are used from (1) to (2) to (3).</td>
</tr>
<tr>
<td>T0101;</td>
<td>(1) Each tool is used 500 times (or for 500 minutes).</td>
</tr>
<tr>
<td>T0105;</td>
<td>When this group is specified three times in one process, the offset numbers are selected in the following orders:</td>
</tr>
<tr>
<td>T0108;</td>
<td>Tools (1): 01→05→08</td>
</tr>
<tr>
<td>T0206;</td>
<td>Tools (2): 06→03→02→09</td>
</tr>
<tr>
<td>T0203;</td>
<td>Tools (3): 04→09</td>
</tr>
<tr>
<td>T0202;</td>
<td></td>
</tr>
<tr>
<td>T0209;</td>
<td></td>
</tr>
<tr>
<td>T0304;</td>
<td></td>
</tr>
<tr>
<td>T0309;</td>
<td></td>
</tr>
<tr>
<td>P005L1200;</td>
<td></td>
</tr>
<tr>
<td>T0405;</td>
<td></td>
</tr>
</tbody>
</table>
10.2.2 Counting a Tool Life

Explanation

- **When a tool life is specified as the time of use (in minutes)**

  Between TΔΔ99(ΔΔ=Tool group number ) and TΔΔ88 in a machining program, the time for which the tool is used in the cutting mode is counted at intervals of 4 seconds. The time taken for single-block stoppage, feed hold, rapid traverse, dwelling, and FIN wait is ignored. Up to 4300 minutes can be specified for a life.

- **When a tool life is specified as the frequency of use**

  Counting is performed for each process that is initiated by the cycle start of a machining program and ended when the NC is reset by the M02 or M03 command. The counters for tool groups used in a process are incremented by one. Even when the same group is specified more than once in one process, the counter is incremented only by one. Up to 9999 can be set for a tool life.

  Counting of a tool life is performed for each group. The life counter contents are not erased even when the power of CNC is cut off. When a life is specified as the frequency of use, apply an external reset (ERS) signal to the CNC when M02 or M30 is executed.
In machining programs, T codes are used to specify tool groups as follows:

<table>
<thead>
<tr>
<th>Tape format</th>
<th>Meaning</th>
</tr>
</thead>
<tbody>
<tr>
<td>( T\Delta \Delta 99 );</td>
<td>Ends the tool used by now, and starts to use the tool of the ( \Delta \Delta ) group. &quot;99&quot; distinguishes this specification from ordinary specification.</td>
</tr>
<tr>
<td>( T\Delta \Delta 88 );</td>
<td>Cancels the offset of the tool of the group. &quot;88&quot; distinguishes this specification from ordinary specification.</td>
</tr>
<tr>
<td>M02(M300);</td>
<td>Ends the machining program.</td>
</tr>
</tbody>
</table>

### 10.2.3 Specifying a Tool Group in a Machining Program

**Explanations**

<table>
<thead>
<tr>
<th>Tape format</th>
<th>Meaning</th>
</tr>
</thead>
<tbody>
<tr>
<td>T0199;</td>
<td>Ends the previous tool, and starts to use the tool of the 01 group.</td>
</tr>
<tr>
<td>T0188;</td>
<td>Cancels the offset of the tool of the 01 group.</td>
</tr>
<tr>
<td>T0508;</td>
<td>Ends the tool of the 01 group. Selects tool number 05 and offset number 08.</td>
</tr>
<tr>
<td>T0500;</td>
<td>Cancels the offset of tool number 05.</td>
</tr>
<tr>
<td>T0299;</td>
<td>Ends tool number 05, and starts to use the tool of the 02 group.</td>
</tr>
<tr>
<td>T0199;</td>
<td>Ends the tool of the 02 group, and starts to use the tool of the 01 group. If more than one offset number is specified for the tool, the second offset number is selected. Otherwise, the previous offset number is used.</td>
</tr>
</tbody>
</table>
There are two types of auxiliary functions: miscellaneous function (M code) for specifying spindle start, spindle stop program end, and so on, and secondary auxiliary function (B code).

When a move command and miscellaneous function are specified in the same block, the commands are executed in one of the following two ways:

i) Simultaneous execution of the move command and miscellaneous function commands.

ii) Executing miscellaneous function commands upon completion of move command execution.

The selection of either sequence depends on the machine tool builder’s specification. Refer to the manual issued by the machine tool builder for details.
When address M followed by a number is specified, a code signal and strobe signal are transmitted. These signals are used for turning on/off the power to the machine.

In general, only one M code is valid in a block but up to three M codes can be specified in a block (although some machines may not allow that). The correspondence between M codes and functions is up to the machine tool builder.

All M codes are processed in the machine except for M98, M99, M198, M codes for calling a subprogram (parameters Nos. 6071 to 6079), and M codes for calling a custom macro (parameters Nos. 6080 to 6089). Refer to the appropriate manual issued by the machine tool builder.

The following M codes have special meanings.

- **M02, M03** (End of program)

  This indicates the end of the main program. Automatic operation is stopped and the CNC unit is reset. This differs with the machine tool builder. After a block specifying the end of the program is executed, control returns to the start of the program. Bit 5 of parameter No.3404 (M02) or bit 4 of parameter No.3404 (M03) can be used to disable M02 or M03 from returning control to the start of the program.

- **M00** (Program stop)

  Automatic operation is stopped after a block containing M00 is executed. When the program is stopped, all existing modal information remains unchanged. The automatic operation can be restarted by actuating the cycle operation. This differs with the machine tool builder.

- **M01** (Optional stop)

  Similarly to M00, automatic operation is stopped after a block containing M01 is executed. This code is only effective when the Optional Stop switch on the machine operator’s panel has been pressed.

- **M98** (Calling of subprogram)

  This code is used to call a subprogram. The code and strobe signals are not sent. See the subprogram section II–13.3 for details.

- **M99** (End of subprogram)

  This code indicates the end of a subprogram. M99 execution returns control to the main program. No code or strobe signal is sent. See the subprogram section II–13.3 for details.

- **M198** (Calling a subprogram)

  This code is used to call a subprogram of a file in the external input/output function. See the description of the subprogram call function (III–4.5) for details.

**NOTE**

A block immediately after an M00, M01, M02, or M03 block is not buffered. Similarly, ten M codes which do not buffer can be set by parameters (Nos. 3411 to 3421). Refer to the machine tool builder’s instruction manual for these M codes.
11.2 MULTIPLE M COMMANDS IN A SINGLE BLOCK

So far, one block has been able to contain only one M code. Up to three M codes can be specified in a single block when bit 7 (M3B) of parameter No. 3404 is set to 1. Up to three M codes specified in a block are simultaneously output to the machine. This means that compared with the conventional method of a single M command in a single block, a shorter cycle time can be realized in machining.

CNC allows up to three M codes to be specified in one block. However, some M codes cannot be specified at the same time due to mechanical operation restrictions. For detailed information about the mechanical operation restrictions on simultaneous specification of multiple M codes in one block, refer to the manual of each machine tool builder. M00, M01, M02, M30, M98, M99, or M198 must not be specified together with another M code. Some M codes other than M00, M01, M02, M30, M98, M99, and M198 cannot be specified together with other M codes; each of those M codes must be specified in a single block. Such M codes include those which direct the CNC to perform internal operations in addition to sending the M codes themselves to the machine. To be specified, such M codes are M codes for calling program numbers 9001 to 9009 and M codes for disabling advance reading (buffering) of subsequent blocks. Meanwhile, multiple of M codes that direct the CNC only to send the M codes themselves (without performing internal operations) can be specified in a single block.

Examples

<table>
<thead>
<tr>
<th>One M command in a single block</th>
<th>Multiple M commands in a single block</th>
</tr>
</thead>
</table>
| M40 ; M50 ; M60 ; G28G91X0Z0 ; | M40M50M60 ; G28G91X0Z0 ; :
| :                            | :                                   |
| :                            | :                                   |
| :                            | :                                   |
Indexing of the table is performed by address B and a following 8-digit number. The relationship between B codes and the corresponding indexing differs between machine tool builders. Refer to the manual issued by the machine tool builder for details.

1. The decimal point can be used for input.
   Command       Output value
   B10.    10000
   B10    10

2. It is possible to change over the scale factor of B output, 1000 or 1 when the decimal point input is omitted, using the parameter DPI (No.3401#0).
   Command       Output value
   When DPI is 1: B1   1000
   When DPI is 0: B1    1

3. It is possible to change over the scale factor of B output 1000 or 10000 when the decimal point input is omitted in the inch input system, using the parameter AUX (No.3405#0) When DPI=1.
   Command       Output value
   When AUX is 1: B1   10000
   When AUX is 0: B1   1000

Restrictions
When this functions is used, the B address specifying an axis movement disabled.
There are two program types, main program and subprogram. Normally, the CNC operates according to the main program. However, when a command calling a subprogram is encountered in the main program, control is passed to the subprogram. When a command specifying a return to the main program is encountered in a subprogram, control is returned to the main program.

The CNC memory can hold up to 200 main programs and subprograms. A main program can be selected from the stored main programs to operate the machine. See Chapter III–9 and Chapter III–10 for the methods of registering and selecting programs.
A program consists of the following components:

Table 12 Program components

<table>
<thead>
<tr>
<th>Components</th>
<th>Descriptions</th>
</tr>
</thead>
<tbody>
<tr>
<td>Tape start</td>
<td>Symbol indicating the start of a program file</td>
</tr>
<tr>
<td>Leader section</td>
<td>Used for the title of a program file, etc.</td>
</tr>
<tr>
<td>Program start</td>
<td>Symbol indicating the start of a program</td>
</tr>
<tr>
<td>Program section</td>
<td>Commands for machining</td>
</tr>
<tr>
<td>Comment section</td>
<td>Comments or directions for the operator</td>
</tr>
<tr>
<td>Tape end</td>
<td>Symbol indicating the end of a program file</td>
</tr>
</tbody>
</table>

Fig. 12(b) Program configuration

A program section consists of several blocks. A program section starts with a program number and ends with a program end code.

Program section configuration

<table>
<thead>
<tr>
<th>Program section</th>
<th>Program section</th>
</tr>
</thead>
<tbody>
<tr>
<td>Program number</td>
<td>O0001</td>
</tr>
<tr>
<td>Block 1</td>
<td>N1 G91 G00 X120.0 Y80.0 ;</td>
</tr>
<tr>
<td>Block 2</td>
<td>N2 G43 Z–32.0 H01 ;</td>
</tr>
<tr>
<td>:</td>
<td>:</td>
</tr>
<tr>
<td>Block n</td>
<td>Nn Z0 ;</td>
</tr>
<tr>
<td>Program end</td>
<td>M30 ;</td>
</tr>
</tbody>
</table>

A block contains information necessary for machining, such as a move command or coolant on/off command. Specifying a value following a slash (/) at the start of a block disables the execution of some blocks (see “optional block skip” in Section II–12.2).
12.1 PROGRAM COMPONENTS OTHER THAN PROGRAM SECTIONS

This section describes program components other than program sections. See Section II–12.2 for a program section.

![Diagram of program configuration]

**Explanations**

- **Tape start**
  
  The tape start indicates the start of a file that contains CNC programs. The mark is not required when programs are entered using SYSTEM P or ordinary personal computers. The mark is not displayed on the program display screen. However, if the file is output, the mark is automatically output at the start of the file.

<table>
<thead>
<tr>
<th>Table 12.1(a) Code of a tape start</th>
</tr>
</thead>
<tbody>
<tr>
<td>Name</td>
</tr>
<tr>
<td>Tape start</td>
</tr>
</tbody>
</table>

- **Leader section**
  
  Data entered before the programs in a file constitutes a leader section. When machining is started, the label skip state is usually set by turning on the power or resetting the system. In the label skip state, all information is ignored until the first end–of–block code is read. When a file is read into the CNC unit from an I/O device, leader sections are skipped by the label skip function.

A leader section generally contains information such as a file header. When a leader section is skipped, even a TV parity check is not made. So a leader section can contain any codes except the EOB code.

- **Program start**
  
  The program start code is to be entered immediately after a leader section, that is, immediately before a program section. This code indicates the start of a program, and is always required to disable the label skip function. With SYSTEM P or ordinary personal computers, this code can be entered by pressing the return key.

<table>
<thead>
<tr>
<th>Table 12.1(b) Code of a program start</th>
</tr>
</thead>
<tbody>
<tr>
<td>Name</td>
</tr>
<tr>
<td>Program start</td>
</tr>
</tbody>
</table>
NOTE
If one file contains multiple programs, the EOB code for label skip operation must not appear before a second or subsequent program number. However, an program start is required at the start of a program if the preceding program ends with %.

• Comment section

Any information enclosed by the control–out and control–in codes is regarded as a comment and skipped by the CNC. The user can enter a header, comments, directions to the operator, etc. There is no limit on the length of a comment section.

Table 12.1(c) Codes of a control–in and a control–out

<table>
<thead>
<tr>
<th>Name</th>
<th>ISO code</th>
<th>EIA code</th>
<th>Notation in this manual</th>
<th>Meaning</th>
</tr>
</thead>
<tbody>
<tr>
<td>Control–out</td>
<td>(2–4–5)</td>
<td></td>
<td>(                      )</td>
<td>Start of comment section</td>
</tr>
<tr>
<td>Control–in</td>
<td>(2–4–7)</td>
<td></td>
<td>)</td>
<td>End of comment section</td>
</tr>
</tbody>
</table>

When a program is read into memory for memory operation, comment sections, if any, are not ignored but are also read into memory. Note, however, that codes other than those listed in the code table in Appendix F are ignored, and thus are not read into memory. When the program in this memory is output to an external input/output device (see Section III–8), any comments are also output.

When a program is displayed on the screen, its comment sections are also displayed. However, those codes that were ignored when read into memory are not outputted or displayed.

During memory operation or DNC operation, all comment sections are ignored.

The TV check function can be used for a comment section by setting parameter CTV (bit 1 of No. 0100).

CAUTION
If a long comment section appears in the middle of a program section, a move along an axis may be suspended for a long time because of such a comment section. So a comment section should be placed where movement suspension may occur or no movement is involved.

NOTE
1 If only a control–in code is read with no matching control–out code, the read control–in code is ignored.
2 The EOB code cannot be used in a comment.
A tape end is to be placed at the end of a file containing NC programs. If programs are entered using the automatic programming system, the mark need not be entered. The mark is not displayed on the CRT display screen. However, when a file is output, the mark is automatically output at the end of the file.

If an attempt is made to execute `%` when M02 or M03 is not placed at the end of the program, the P/S alarm (No. 5010) is occurred.

**Table 12.1(d) Code of a tape end**

<table>
<thead>
<tr>
<th>Name</th>
<th>ISO code</th>
<th>EIA code</th>
<th>Notation in this manual</th>
</tr>
</thead>
<tbody>
<tr>
<td>Tape end</td>
<td><code>%</code></td>
<td><code>ER</code></td>
<td><code>%</code></td>
</tr>
</tbody>
</table>
12.2 PROGRAM SECTION CONFIGURATION

This section describes elements of a program section. See Section II–12.1 for program components other than program sections.

Fig. 12.2 (a) Program configuration

- Program number

A program number consisting of address O followed by a four-digit number is assigned to each program at the beginning registered in memory to identify the program.

When the 8-digit program number option is used, however, specify eight digits for the program number (see Section II.12.4).

In ISO code, the colon (:) can be used instead of O.

When no program number is specified at the start of a program, the sequence number (N....) at the start of the program is regarded as its program number. If a five-digit sequence number is used, the lower four digits are registered as a program number. If the lower four digits are all 0, the program number registered immediately before added to 1 is registered as a program number. Note, however, that N0 cannot be used for a program number.

If there is no program number or sequence number at the start of a program, a program number must be specified using the MDI panel when the program is stored in memory (See Section 8.4 or 10.1 in Part III.).

NOTE

Program numbers 8000 to 9999 may be used by machine tool builders, and the user may not be able to use these numbers.
A program consists of several commands. One command unit is called a block. One block is separated from another with an EOB of end of block code.

### Table 12.2(a) EOB code

<table>
<thead>
<tr>
<th>Name</th>
<th>ISO code</th>
<th>EIA code</th>
<th>Notation in this manual</th>
</tr>
</thead>
<tbody>
<tr>
<td>End of block (EOB)</td>
<td>LF</td>
<td>CR</td>
<td>;</td>
</tr>
</tbody>
</table>

At the head of a block, a sequence number consisting of address N followed by a number not longer than five digits (1 to 99999) can be placed. Sequence numbers can be specified in a random order, and any numbers can be skipped. Sequence numbers may be specified for all blocks or only for desired blocks of the program. In general, however, it is convenient to assign sequence numbers in ascending order in phase with the machining steps (for example, when a new tool is used by tool replacement, and machining proceeds to a new surface with table indexing.)

N300 X200.0 Z300.0 ; A sequence number is underlined.

**Fig. 12.2(b) Sequence number and block (example)**

**NOTE**

N0 must not be used for the reason of file compatibility with other CNC systems. Program number 0 cannot be used. So 0 must not be used for a sequence number regarded as a program number.

### TV check (Vertical parity check along tape)

A parity check is made for a block on input tape vertically. If the number of characters in one block (starting with the code immediately after an EOB and ending with the next EOB) is odd, an P/S alarm (No.002) is output. No TV check is made only for those parts that are skipped by the label skip function. Bit 1 (CTV) of parameter No. 0100 can be used to specify whether the characters constituting comments, enclosed in “(” and “)”, are counted when obtaining the number of characters for TV check. The TV check function can be enabled or disabled by setting on the MDI unit (See subsec. 11.4.7 in Part III.).
A block consists of one or more words. A word consists of an address followed by a number some digits long. (The plus sign (+) or minus sign (–) may be prefixed to a number.)

**Word = Address + number (Example : X–1000)**

For an address, one of the letters (A to Z) is used; an address defines the meaning of a number that follows the address. Table 12.2 (b) indicates the usable addresses and their meanings.

The same address may have different meanings, depending on the preparatory function specification.

### Table 12.2(b) Major functions and addresses

<table>
<thead>
<tr>
<th>Function</th>
<th>Address</th>
<th>Meaning</th>
</tr>
</thead>
<tbody>
<tr>
<td>Program number</td>
<td>O</td>
<td>Program number</td>
</tr>
<tr>
<td>Sequence number</td>
<td>N</td>
<td>Sequence number</td>
</tr>
<tr>
<td>Preparatory function</td>
<td>G</td>
<td>Specifies a motion mode (linear, arc, etc.)</td>
</tr>
<tr>
<td>Dimension word</td>
<td>X, Y, Z, U, V, W, A, B, C</td>
<td>Coordinate axis move command</td>
</tr>
<tr>
<td></td>
<td>I, J, K</td>
<td>Coordinate of the arc center</td>
</tr>
<tr>
<td></td>
<td>R</td>
<td>Arc radius</td>
</tr>
<tr>
<td>Feed function</td>
<td>F</td>
<td>Rate of feed per minute, Rate of feed per revolution</td>
</tr>
<tr>
<td>Spindle speed function</td>
<td>S</td>
<td>Spindle speed</td>
</tr>
<tr>
<td>Tool function</td>
<td>T</td>
<td>Tool number</td>
</tr>
<tr>
<td>Auxiliary function</td>
<td>M</td>
<td>On/off control on the machine tool</td>
</tr>
<tr>
<td></td>
<td>B</td>
<td>Table indexing, etc.</td>
</tr>
<tr>
<td>Dwell</td>
<td>P, X, U</td>
<td>Dwell time</td>
</tr>
<tr>
<td>Program number designation</td>
<td>P</td>
<td>Subprogram number</td>
</tr>
<tr>
<td>Number of repetitions</td>
<td>P</td>
<td>Number of subprogram repetitions</td>
</tr>
<tr>
<td>Parameter</td>
<td>P, Q</td>
<td>Canned cycle parameter</td>
</tr>
</tbody>
</table>

**NOTE**

In ISO code, the colon (:) can also be used as the address of a program number.

---

Fig. 12.2 (c) 1 block (example)
Major addresses and ranges of values specified for the addresses are shown below. Note that these figures represent limits on the CNC side, which are totally different from limits on the machine tool side. For example, the CNC allows a tool to traverse up to about 100 m (in millimeter input) along the X axis. However, an actual stroke along the X axis may be limited to 2 m for a specific machine tool.

Similarly, the CNC may be able to control a cutting federate of up to 240 m/min, but the machine tool may not allow more than 3 m/min. When developing a program, the user should carefully read the manuals of the machine tool as well as this manual to be familiar with the restrictions on programming.

Table 12.2(c) Major addresses and ranges of command values

<table>
<thead>
<tr>
<th>Function</th>
<th>Address</th>
<th>Input in mm</th>
<th>Input in inch</th>
</tr>
</thead>
<tbody>
<tr>
<td>Program number</td>
<td>O (1)</td>
<td>1–9999</td>
<td>1–9999</td>
</tr>
<tr>
<td>Sequence number</td>
<td>N</td>
<td>1–99999</td>
<td>1–99999</td>
</tr>
<tr>
<td>Preparatory function</td>
<td>G</td>
<td>0–99</td>
<td>0–99</td>
</tr>
<tr>
<td>Feed per minute</td>
<td>F</td>
<td>1 to 240000 mm/min</td>
<td>0.01 to 9600.00 inch/min</td>
</tr>
<tr>
<td>Feed per revolution</td>
<td>F</td>
<td>1 to 100000 mm/min</td>
<td>0.01 to 4000.00 inch/min</td>
</tr>
<tr>
<td>Spindle speed function</td>
<td>S</td>
<td>0 to 20000</td>
<td>0 to 20000</td>
</tr>
<tr>
<td>Tool function</td>
<td>T</td>
<td>0 to 999999999</td>
<td>0 to 999999999</td>
</tr>
<tr>
<td>Auxiliary function</td>
<td>M</td>
<td>0 to 999999999</td>
<td>0 to 999999999</td>
</tr>
<tr>
<td></td>
<td>B</td>
<td>0 to 999999999</td>
<td>0 to 999999999</td>
</tr>
<tr>
<td>Dwell</td>
<td>P, X, U</td>
<td>0 to 99999.999s</td>
<td>0 to 99999.999s</td>
</tr>
<tr>
<td></td>
<td>P</td>
<td>0 to 999999999s</td>
<td>0 to 999999999s</td>
</tr>
<tr>
<td>Designation of a program number</td>
<td>P</td>
<td>1 to 9999</td>
<td>1 to 9999</td>
</tr>
<tr>
<td>Number of repetitions</td>
<td>P</td>
<td>1 to 999</td>
<td>1 to 999</td>
</tr>
</tbody>
</table>

**NOTE**

In ISO code, the colon (: ) can also be used as the address of a program number.
• **Optional block skip**

When a slash followed by a number (/n (n=1 to 9)) is specified at the head of a block, and optional block skip switch n on the machine operator panel is set to on, the information contained in the block for which /n corresponding to switch number n is specified is ignored in tape operation or memory operation.

When optional block skip switch n is set to off, the information contained in the block for which /n is specified is valid. This means that the operator can determine whether to skip the block containing /n.

Number 1 for /1 can be omitted. However, when two or more optional block skip switches are used for one block, number 1 for /1 cannot be omitted.

**Example**

(Incorrect)  (Correct)

```
//3 G00X10.0; /1/3 G00X10.0;
```

This function is ignored when programs are loaded into memory. Blocks containing /n are also stored in memory, regardless of how the optional block skip switch is set.

Programs held in memory can be output, regardless of how the optional block skip switches are set.

Optional block skip is effective even during sequence number search operation.

Depending on the machine tool, all optional block skip switches (1 to 9) may not be usable. Refer to manuals of the machine tool builder to find which switches are usable.

---

**WARNING**

1 **Position of a slash**
   
   A slash (/) must be specified at the head of a block. If a slash is placed elsewhere, the information from the slash to immediately before the EOB code is ignored.

2 **Disabling an optional block skip switch**
   
   Optional block skip operation is processed when blocks are read from memory or tape into a buffer. Even if a switch is set to on after blocks are read into a buffer, the blocks already read are not ignored.

---

**NOTE**

**TV and TH check**

When an optional block skip switch is on, TH and TV checks are made for the skipped portions in the same way as when the optional block skip switch is off.
• **Program end**

The end of a program is indicated by punching one of the following codes at the end of the program:

<table>
<thead>
<tr>
<th>Code</th>
<th>Meaning usage</th>
</tr>
</thead>
<tbody>
<tr>
<td>M02</td>
<td>For main program</td>
</tr>
<tr>
<td>M30</td>
<td></td>
</tr>
<tr>
<td>M99</td>
<td>For subprogram</td>
</tr>
</tbody>
</table>

If one of the program end codes is executed in program execution, the CNC terminates the execution of the program, and the reset state is set. When the subprogram end code is executed, control returns to the program that called the subprogram.

**WARNING**

A block containing an optional block skip code such as /M02 ; , /M30 ; , or /M99 ; is not regarded as the end of a program, if the optional block skip switch on the machine operator’s panel is set to on. (See item “Optional block skip”.)
12.3 SUBPROGRAM (M98, M99)

If a program contains a fixed sequence or frequently repeated pattern, such a sequence or pattern can be stored as a subprogram in memory to simplify the program.

A subprogram can be called from the main program.

A called subprogram can also call another subprogram.

Format

- **Subprogram configuration**

```
O<subprogram number> ;
.......
M99 ;
```

Subprogram number (or the colon (:)) optionally in the case of ISO

Program end

M99 need not constitute a separate block as indicated below.

Example) `X100.0 Y100.0 M99 ;`

- **Subprogram call (M98)**

```
M98 P<subprogram number><times called> ;
```

Number of times the subprogram is called repeatedly

When no repetition data is specified, the subprogram is called just once.

Explanations

When the main program calls a subprogram, it is regarded as a one–level subprogram call. Thus, subprogram calls can be nested up to four levels as shown below.

<table>
<thead>
<tr>
<th>Main program</th>
<th>Subprogram</th>
<th>Subprogram</th>
<th>Subprogram</th>
<th>Subprogram</th>
</tr>
</thead>
<tbody>
<tr>
<td>O0001 ;</td>
<td>O1000 ;</td>
<td>O2000 ;</td>
<td>O3000 ;</td>
<td>O4000 ;</td>
</tr>
<tr>
<td>M98P1000 ;</td>
<td>M98P2000 ;</td>
<td>M98P3000 ;</td>
<td>M98P4000 ;</td>
<td></td>
</tr>
<tr>
<td>M30 ;</td>
<td>M99 ;</td>
<td>M99 ;</td>
<td>M99 ;</td>
<td></td>
</tr>
</tbody>
</table>

(One–level nesting) (Two–level nesting) (Three–level nesting) (Four–level nesting)

A single call command can repeatedly call a subprogram up to 9999 times. For compatibility with automatic programming systems, in the first block, Nxxxx can be used instead of a subprogram number that follows O (or :). A sequence number after N is registered as a subprogram number.

Reference item

See Chapter 10 in Part III for the method of registering a subprogram.
NOTE
1. The M98 and M99 signals are not output to the machine tool.
2. If the subprogram number specified by address P cannot be found, an alarm (No. 078) is output.

Examples

☆ M98 P51002 ;
This command specifies “Call the subprogram (number 1002) five times in succession.” A subprogram call command (M98P_ ) can be specified in the same block as a move command.

☆ X1000.0 M98 P1200 ;
This example calls the subprogram (number 1200) after an X movement.

☆ Execution sequence of subprograms called from a main program

<table>
<thead>
<tr>
<th>Main program</th>
<th>Subprogram</th>
</tr>
</thead>
<tbody>
<tr>
<td>N0010 ;</td>
<td>O1010 ;</td>
</tr>
<tr>
<td>N0020 ;</td>
<td>N1020 ;</td>
</tr>
<tr>
<td>N0030 M98 P21010 ;</td>
<td>N1030 ;</td>
</tr>
<tr>
<td>N0040 ;</td>
<td>N1040 ;</td>
</tr>
<tr>
<td>N0050 M98 P1010 ;</td>
<td>N1050 ;</td>
</tr>
<tr>
<td>N0060 ;</td>
<td>N1060 M99 ;</td>
</tr>
</tbody>
</table>

A subprogram can call another subprogram in the same way as a main program calls a subprogram.

Special Usage

- **Specifying the sequence number for the return destination in the main program**

If P is used to specify a sequence number when a subprogram is terminated, control does not return to the block after the calling block, but returns to the block with the sequence number specified by P. Note, however, that P is ignored if the main program is operating in a mode other than memory operation mode.

This method consumes a much longer time than the normal return method to return to the main program.
• Using M99 in the main program

If M99 is executed in a main program, control returns to the start of the main program. For example, M99 can be executed by placing /M99 ; at an appropriate location of the main program and setting the optional block skip function to off when executing the main program. When M99 is executed, control returns to the start of the main program, then execution is repeated starting at the head of the main program. Execution is repeated while the optional block skip function is set to off. If the optional block skip function is set to on, the /M99 ; block is skipped; control is passed to the next block for continued execution. If/M99PN ; is specified, control returns not to the start of the main program, but to sequence number n. In this case, a longer time is required to return to sequence number n.

```
N0010 ... ;
N0020 ... ;
N0030 ... ;
N0040 ... ;
N0050 ... ;
N0060 M99 P0030 ;
N0070 ... ;
N0080 M02 ;
```

• Using a subprogram only

A subprogram can be executed just like a main program by searching for the start of the subprogram with the MDI. (See Section 9.3 in Part III for information about search operation.) In this case, if a block containing M99 is executed, control returns to the start of the subprogram for repeated execution. If a block containing M99PN is executed, control returns to the block with sequence number n in the subprogram for repeated execution. To terminate this program, a block containing /M02 ; or /M30 ; must be placed at an appropriate location, and the optional block switch must be set to off; this switch is to be set to on first.

```
N1010 ... ;
N1020 ... ;
N1030 ... ;
N1040 M02 ;
N1050 M99 P1020 ;
```

Optional block skip

OFF

ON

Optional block skip
13. FUNCTIONS TO SIMPLIFY PROGRAMMING

This chapter explains the following items:

13.1 CANNED CYCLE (G90, G92, G94)
13.2 MULTIPLE REPETITIVE CYCLE (G70 – G76)
13.3 CANNED CYCLE FOR DRILLING (G80 – G89)
13.4 CANNED GRINDING CYCLE
   (FOR GRINDING MACHINE)
13.5 CHAMFERING AND CORNER R
13.6 MIRROR IMAGE FOR DOUBLE TURRET (G68, G69)
13.7 DIRECT DRAWING DIMENSIONS PROGRAMMING
13.8 RIGID TAPPING

NOTE
Explanatory diagrams in this chapter uses diameter programming in X axis.
In radius programming, changes U/2 with U and X/2 with X.
There are three canned cycles: the outer diameter/internal diameter cutting canned cycle (G90), the thread cutting canned cycle (G92), and the end face turning canned cycle (G94).

13.1 CANNED CYCLE (G90, G92, G94)

13.1.1 Outer Diameter / Internal Diameter Cutting Cycle (G90)

- Straight cutting cycle

In incremental programming, the sign of the numbers following address U and W depends on the direction of paths 1 and 2. In the cycle of Fig. 13.1.1(a), the signs of U and W are negative.

In single block mode, operations 1, 2, 3 and 4 are performed by pressing the cycle start button once.
• Taper cutting cycle

G90X(U) Z(W) R__ F__ ;

X axis

R__

F__ Specified by F code

Rapid traverse

X/2

Z

Z axis

4(R)

3(F)

1(R)

2(F)

R

W

Fig. 13.1.1(b) Taper cutting cycle

• Signs of numbers specified in the taper cutting cycle

In incremental programming, the relationship between the signs of the numbers following address U, W, and R, and the tool paths are as follows:

<table>
<thead>
<tr>
<th>1. U &lt; 0, W &lt; 0, R &lt; 0</th>
<th>2. U &gt; 0, W &lt; 0, R &gt; 0</th>
</tr>
</thead>
<tbody>
<tr>
<td><img src="image1" alt="Diagram 1" /></td>
<td><img src="image2" alt="Diagram 2" /></td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>3. U &lt; 0, W &lt; 0, R &gt; 0</th>
<th>4. U &gt; 0, W &lt; 0, R &lt; 0</th>
</tr>
</thead>
<tbody>
<tr>
<td><img src="image3" alt="Diagram 3" /></td>
<td><img src="image4" alt="Diagram 4" /></td>
</tr>
</tbody>
</table>
13.1.2 Thread Cutting Cycle (G92)

In incremental programming, the sign of numbers following addresses U and W depends on the direction of paths 1 and 2. That is, if the direction of path 1 is the negative along the X axis, the value of U is negative.

The range of thread leads, limitation of spindle speed, etc. are the same as in G32 (thread cutting). Thread chamfering can be performed in this thread cutting cycle. A signal from the machine tool, initiates thread chamfering. The chamfering distance is specified in a range from 0.1L to 12.7L in 0.1L increments by parameter (No. 5130). (In the above expression, L is the thread lead.)

In the single block mode, operations 1, 2, 3, and 4 are performed by pressing cycle start button once.
WARNING
Notes on this thread cutting are the same as in thread cutting in G32. However, a stop by feed hold is as follows;
; Stop after completion of path 3 of thread cutting cycle.

CAUTION
The tool retreats while chamfering and returns to the start point on the X axis then the Z axis, as soon as the feed hold status is entered during thread cutting (motion 2).

---

Ordinary cycle
- - - - Motion at feed hold

Stop point

Rapid traverse

Feed hold is effected here.

Another feed hold cannot be made during retreat. The chamfered amount is the same as that at the end point.
13. FUNCTIONS TO SIMPLIFY PROGRAMMING

- Taper thread cutting cycle

G92 X(U) Z(W) R__ F__ ; Lead (L) is specified.

X axis

Z

W

U/2

R

X/2

Z axis

(The chamfered angle in the left figure is 45 degrees or less because of the delay in the servo system.)

Approx. 45°

Detailed chamfered thread

Fig. 13.1.2 (b) Taper thread cutting cycle
13.1.3
End Face Turning
Cycle (G94)

- Face cutting cycle

In incremental programming, the sign of numbers following addresses U and W depends on the direction of paths 1 and 2. That is, if the direction of the path is in the negative direction of the Z axis, the value of W is negative.

In single block mode, operations 1, 2, 3, and 4 are performed by pressing the cycle start button once.
Taper face cutting cycle

In incremental programming, the relationship between the signs of the numbers following address U, W, and R, and the tool paths are as follows:

<table>
<thead>
<tr>
<th>Case</th>
<th>Condition</th>
<th>Diagram</th>
</tr>
</thead>
<tbody>
<tr>
<td>1.</td>
<td>U &lt; 0, W &lt; 0, R &lt; 0</td>
<td><img src="image1.png" alt="Diagram" /></td>
</tr>
<tr>
<td>2.</td>
<td>U &gt; 0, W &lt; 0, R &lt; 0</td>
<td><img src="image2.png" alt="Diagram" /></td>
</tr>
<tr>
<td>3.</td>
<td>U &lt; 0, W &lt; 0, R &gt; 0 at</td>
<td><img src="image3.png" alt="Diagram" /></td>
</tr>
<tr>
<td>4.</td>
<td>U &gt; 0, W &lt; 0, R &lt; 0 at</td>
<td><img src="image4.png" alt="Diagram" /></td>
</tr>
</tbody>
</table>
NOTE

1. Since data values of X (U), Z (W) and R during canned cycle are modal, if X (U), Z (W), or R is not newly commanded, the previously specified data is effective. Thus, when the Z axis movement amount does not vary as in the example below, a canned cycle can be repeated only by specifying the movement commands for the X–axis.

However, these data are cleared, if a one–shot G code expect for G04 (dwell) or a G code in the group 01 except for G90, G92, G94 is commanded.

(Example)

The cycle in the above figure is executed by the following program.

N030  G90 U–8.0 W–66.0 F0.4 ;
N031  U–16.0 ;
N032  U–24.0 ;
N033  U–32.0 ;

2. The following two applications can be performed.

   (1) If an EOB or zero movement commands are specified for the block following that specified with a canned cycle, the same canned cycle is repeated.

   (2) If the M, S, T function is commanded during the canned cycle mode, both the canned cycle and M, S, or T function can be performed simultaneously. If this is inconvenient, cancel the canned cycle once as in the program examples below (specify G00 or G01) and execute the M, S, or T command. After the execution of M, S, or T terminates, command the canned cycle again.

(Example)

N003  T0101 ;
   :
   :
N010  G90 X20.0 Z10.0 F0.2 ;
N011  G00 T0202 ;
N012  G90 X20.5 Z10.0 ;
13. FUNCTIONS TO SIMPLIFY PROGRAMMING

13.1.4 How to Use Canned Cycles (G90, G92, G94)

- Straight cutting cycle (G90)

An appropriate canned cycle is selected according to the shape of the material and the shape of the product.

- Taper cutting cycle (G90)
• **Face cutting cycle (G94)**

![Face cutting cycle diagram]

- Shape of material
- Shape of product

• **Face taper cutting cycle (G94)**

![Face taper cutting cycle diagram]

- Shape of material
- Shape of product
13. FUNCTIONS TO SIMPLIFY

PROGRAMMING

13.2
MULTIPLE
REPETITIVE CYCLE
(G70 – G76)

There are several types of predefined canned cycles that make programming easier. For instance, the data of the finish work shape describes the tool path for rough machining. And also, a canned cycles for the thread cutting is available.

13.2.1
Stock Removal in
Turning (G71)

There are two types of stock removals in turning: Type I and II.

- Type I

If a finished shape of A to A’ to B is given by a program as in the figure below, the specified area is removed by $\Delta d$ (depth of cut), with finishing allowance $\Delta u/2$ and $\Delta w$ left.

**Fig. 13.2.1 (a) Cutting path in stock removal in turning (Type I)**
NOTE
1 While both \( \Delta d \) and \( \Delta u \), are specified by address \( U \), the meanings of them are determined by the presence of addresses \( P \) and \( Q \).
2 The cycle machining is performed by G71 command with \( P \) and \( Q \) specification. F, S, and T functions which are specified in the move command between points A and B are ineffective and those specified in G71 block or the previous block are effective.

When constant surface speed control is enabled, G96 or G97 command specified in the move command between points A and B are ineffective, and that specified in G71 block or the previous block is effective.
The following four cutting patterns are considered. All of these cutting cycles are made paralleled to Z axis and the sign of \( \Delta u \) and \( \Delta w \) are as follows:

The tool path between A and A' is specified in the block with sequence number “ns” including G00 or G01, and in this block, a move command in the Z axis cannot be specified. The tool path between A' and B must be steadily increasing or decreasing pattern in both X and Z axis. When the tool path between A and A' is programmed by G00/G01, cutting along AA' is performed in G00/G01 mode respectively.
3 The subprogram cannot be called from the block between sequence number “ns” and “nf”.

Both linear and circular interpolation are possible
- **Type II**

Type II differs from type I in the following: The profile need not show monotone increase or monotone decrease along the X axis, and it may have up to 10 concaves (pockets). A P/S alarm (No. 068) is issued if 11 or more concaves are set.

![Fig. 13.2.1 (b) Number of pockets in stock removal in turning (Type II)](image)

Note that, however, the profile must have monotone decrease or increase along the Z axis. The following profile cannot be machined:

![Fig. 13.2.1 (c) Figure which cannot be machined in stock removal in turning (Type II)](image)

The first cut portion need not be vertical; any profile is permitted if monotone change is shown along the Z axis.

![Fig. 13.2.1 (d) Figure which can be machined (Monotonic change) in stock removal in turning (Type II)](image)

After turning, a clearance is provided by cutting along the workpiece profile.
The clearance $e$ (specified in R) to be provided after cutting can also be set in parameter No. 5133.

A sample cutting path is given below:

```
G71 V10.0 R5.0 ;
G71 P100 Q200....;
N100X (U)___ ;
N200..............;
```

### Distinction between type I and type II

When only one axis is specified in the first block of a repetitive portion

--- Type I

When two axes are specified in the first block of a repetitive portion

--- Type II

When the first block does not include Z motion and type II is to be used, W0 must be specified.

(Example)

<table>
<thead>
<tr>
<th>TYPEI</th>
<th>TYPEII</th>
</tr>
</thead>
<tbody>
<tr>
<td>G71 V10.0 R5.0 ;</td>
<td>G71 V10.0 R5.0 ;</td>
</tr>
<tr>
<td>G71 P100 Q200....;</td>
<td>G71 P100 Q200....;</td>
</tr>
<tr>
<td>N100X (U)___ ;</td>
<td>N100X (U)___ Z(W)___ ;</td>
</tr>
<tr>
<td>:</td>
<td>:</td>
</tr>
<tr>
<td>:</td>
<td>:</td>
</tr>
<tr>
<td>N200..............;</td>
<td>N200..............;</td>
</tr>
</tbody>
</table>
13.2.2
Stock Removal in Facing (G72)

As shown in the figure below, this cycle is the same as G71 except that cutting is made by an operation parallel to X axis.

![Diagram of G72 tool path](image)

**Program command**

\[ \text{G72 } W(\Delta d) \text{ R}(e) ; \]
\[ \text{G72 } P(n_{s}) \text{ Q(n_{f}) } U(\Delta u) \text{ W(} \Delta w \text{) } F(f) \text{ S(s) T(t) ;} \]

The meanings of \( \Delta d, e, n_{s}, n_{f}, \Delta u, \Delta w, f, s, \) and \( t \) are the same as those in G71.

**Fig. 13.2.2 (a) Cutting path in stock removal in facing**

- **Signs of specified numbers**

The following four cutting patterns are considered. All of these cutting cycles are made parallel to X axis and the sign of \( \Delta u \) and \( \Delta w \) are as follows :

![Diagram showing signs of specified numbers](image)

**Fig. 13.2.2 (b) Signs of numbers specified with \( u \) and \( w \) in stock removal in facing**

The tool path between \( A \) and \( A' \) is specified in the block with sequence number “ns” including G00 or G01, and in this block, a move command in the X axis cannot be specified. The tool path between \( A' \) and \( B \) must be steadily increasing and decreasing pattern in both X and Z axes. Whether the cutting along AA’ is G00 or G01 mode is determined by the command between \( A \) and \( A' \), as described in item 13.2.1.
13.2.3 Pattern Repeating (G73)

This function permits cutting a fixed pattern repeatedly, with a pattern being displaced bit by bit. By this cutting cycle, it is possible to efficiently cut work whose rough shape has already been made by a rough machining, forging or casting method, etc.

The pattern commanded in the program should be as follows.

A→A′→B

G73 U (Δi) W (Δk) R (d) ;

G73 P (ns) Q (nf) U (Δu) W (Δw) F (f) S (s) T (t) ;

N (ns).......... The move command between A and B is specified in the blocks from sequence number ns to nf.

............

F____

S____

T____

N (nf)..........;

Δi : Distance and direction of relief in the X axis direction (Radius designation).
This designation is modal and is not changed until the other value is designated. Also this value can be specified by the parameter No. 5135, and the parameter is changed by the program command.

Δk : Distance and direction of relief in the Z axis direction.
This designation is modal and is not changed until the other value is designated. Also this value can be specified by the parameter No. 5136, and the parameter is changed by the program command.

d : The number of division
This value is the same as the repetitive count for rough cutting. This designation is modal and is not changed until the other value is designated. Also, this value can be specified by the parameter No. 5137, and the parameter is changed by the program command.

ns : Sequence number of the first block for the program of finishing shape.

nf : Sequence number of the last block for the program of finishing shape.

Δu : Distance and direction of finishing allowance in X direction (diameter/radius designation)

Δw : Distance and direction of finishing allowance in Z direction

f,s,t : Any F, S, and T function contained in the blocks between sequence number “ns” and “nf” are ignored, and the F, S, and T functions in this G73 block are effective.

Fig. 13.2.3 Cutting path in pattern repeating
NOTE
1 While the values $\Delta i$ and $\Delta k$, or $\Delta u$ and $\Delta w$ are specified by address $U$ and $W$ respectively, the meanings of them are determined by the presence of addresses $P$ and $Q$ in G73 block. When $P$ and $Q$ are not specified in a same block, addresses $U$ and $W$ indicates $\Delta i$ and $\Delta k$ respectively. When $P$ and $Q$ are specified in a same block, addresses $U$ and $W$ indicates $\Delta u$ and $\Delta w$ respectively.
2 The cycle machining is performed by G73 command with $P$ and $Q$ specification. The four cutting patterns are considered. Take care of the sign of $\Delta u$, $\Delta w$, $\Delta k$, and $\Delta i$. When the machining cycle is terminated, the tool returns to point A.

13.2.4 Finishing Cycle (G70)

After rough cutting by G71, G72 or G73, the following command permits finishing.

Format

```
G70 P (ns) Q (nf) ;
```

(ns) : Sequence number of the first block for the program of finishing shape.
(nf) : Sequence number of the last block for the program of finishing shape.

NOTE
1 F, S, and T functions specified in the block G71, G72, G73 are not effective but those specified between sequence numbers “ns” and “nf” are effective in G70.
2 When the cycle machining by G70 is terminated, the tool is returned to the start point and the next block is read.
3 In blocks between “ns” and “nf” referred in G70 through G73, the subprogram cannot be called.
Examples

Stock Removal In Facing (G72)

(Diameter designation, metric input)
N010 G50 X220.0 Z190.0 ;
N011 G00 X176.0 Z132.0 ;
N012 G72 W7.0 R1.0 ;
N013 G72 P014 Q019 U4.0 W2.0 F0.3 S550 ;
N014 G00 Z58.0 S700 ;
N015 G01 X120.0 W12.0 F0.15 ;
N016 W10.0 ;
N017 X80.0 W10.0 ;
N018 W20.0 ;
N019 X36.0 W22.0 ;
N020 G70 P014 Q019 ;
(Diameter designation, metric input)
N010 G50 X260.0 Z220.0;
N011 G00 X220.0 Z160.0;
N012 G73 U14.0 W14.0 R3;
N013 G73 P014 Q019 U4.0 W2.0 F0.3 S0180;
N014 G00 X80.0 W–40.0;
N015 G01 W–20.0 F0.15 S0600;
N017 W–20.0 S0400;
N018 G02 X160.0 W–20.0 R20.0;
N019 G01 X180.0 W–10.0 S0280;
N020 G70 P014 Q019;
13.2.5 End Face Peck Drilling Cycle (G74)

The following program generates the cutting path shown in Fig. 13.2.5. Chip breaking is possible in this cycle as shown below. If X (U) and P are omitted, operation only in the Z axis results, to be used for drilling.

G74R (e) ;
G74X(U) Z(W) P(Δi) Q(Δk) R(Δd) F (f) ;

- e : Return amount
- This designation is modal and is not changed until the other value is designated. Also this value can be specified by the parameter No. 5139, and the parameter is changed by the program command.
- X : X component of point B
- U : Incremental amount from A to B
- Z : Z component of point C
- W : Increment amount from A to C
- Δi : Movement amount in X direction (without sign)
- Δk : Depth of cut in Z direction (without sign)
- Δd : Relief amount of the tool at the cutting bottom. The sign of Δd is always plus (+). However, if address X (U) and Δi are omitted, the relief direction can be specified by the desired sign.
- f : Feed rate

Fig. 13.2.5 Cutting path in end face peek drilling cycle

NOTE
1 While both e and Δd are specified by address R, the meanings of them are determined by the present of address X (U). When X(U) is specified, Δd is used.
2 The cycle machining is performed by G74 command with X (U) specification.
13.2.6 Outer Diameter / Internal Diameter Drilling Cycle (G75)

The following program generates the cutting path shown in Fig. 13.2.6. This is equivalent to G74 except that X is replaced by Z. Chip breaking is possible in this cycle, and grooving in X axis and peck drilling in X axis (in this case, Z, W, and Q are omitted) are possible.

G75R (e) ;
G75X(U) Z(W) P(Δi) Q(Δk) R(Δd) F(f) ;

Fig. 13.2.6 Cutting path in outer diameter/ internal diameter drilling cycle

Both G74 and G75 are used for grooving and drilling, and permit the tool to relief automatically. Four symmetrical patterns are considered, respectively.
The thread cutting cycle as shown in Fig.13.2.7 (a) is programmed by the G76 command.

**Fig. 13.2.7 (a) Cutting path in multiple thread cutting cycle**
13. FUNCTIONS TO SIMPLIFY

PROGRAMMING

G76P (m) (r) (a) Q (∆d min) R(d);
G76X (u) _ Z(W) _ R(i) P(k) Q(∆d) F(L) ;

m : Repetitive count in finishing (1 to 99)
   This designation is modal and is not changed until the other value is
designated. Also this value can be specified by the parameter No.
5142, and the parameter is changed by the program command.

r : Chamfering amount
   When the thread lead is expressed by L, the value of L can be set from
0.0L to 9.9L in 0.1L increment (2-digit number from 00 to 90).
   This designation is modal and is not changed until the other value is
designated. Also this value can be specified by the parameter No.
5130, and the parameter is changed by the program command.

a : Angle of tool tip
   One of six kinds of angle, 80°, 60°, 55°, 30°, 29°, and 0°, can be selected,
and specified by 2-digit number.
   This designation is modal and is not changed until the other value is
designated. Also this value can be specified by the parameter No.
5143, and the parameter is changed by the program command.

m, r, and a are specified by address P at the same time.
(Example)
When m=2, r=1.2L, a=60°, specify as shown below (L is lead of thread).

P 02 12 60
m r a

∆dmin : Minimum cutting depth (specified by the radius value)
   When the cutting depth of one cycle operation (∆d – ∆d –1) becomes
smaller than this limit, the cutting depth is clamped at this value. This
designation is modal and is not changed until the other value is
designated. Also this value can be specified by parameter No.
5140, and the parameter is changed by the program command.

d : Finishing allowance
   This designation is modal and is not changed until the other value
is designated. Also this value can be specified by parameter No.
5141, and the parameter is changed by the program command.

i : Difference of thread radius If i = 0, ordinary straight thread cutting
can be made.

k : Height of thread
   This value is specified by the radius value.

∆d : Depth of cut in 1st cut (radius value)
L : Lead of thread (same as G32).

Fig. 13.2.7 (b) Detail of cutting
Thread cutting cycle retract

When feed hold is applied during threading in the multiple thread cutting cycle (G76), the tool quickly retracts in the same way as in chamfering performed at the end of the thread cutting cycle. The tool goes back to the start point of the cycle. When cycle start is triggered, the multiple thread cutting cycle resumes.

See notes in 13.1.2.

**NOTE**

1. The meanings of the data specified by address P, Q, and R determined by the presence of X (U) and X (W).
2. The cycle machining is performed by G76 command with X (U) and Z (W) specification. By using this cycle, one edge cutting is performed and the load on the tool tip is reduced. Making the cutting depth $\Delta d$ for the first path, and $\Delta d_n$ for the nth path, cutting amount per one cycle is held constant.
   
   Four symmetrical patterns are considered corresponding to the sign of each address.
   
   The internal thread cutting is available. In the above figure, the feed rate between C and D is specified by address F, and in the other path, at rapid traverse. The sign of incremental dimensions for the above figure is as follows:
   
   U, W : minus (determined by the direction of the tool path AC and CD.)
   R : minus (determined by the direction of the tool path AC.)
   P : plus (always)
   Q : plus (always)
3. Notes on thread cutting are the same as those on G32 thread cutting and G92 thread cutting cycle.
4. The designation of chamfering is also effective for G92 thread cutting cycle.
5. The tool returns to the cycle start point (cutting depth $\Delta d_n$) as soon as the feed hold status is entered during thread cutting. ($\Delta d_n$ : cutting depth in nth cut)

6. If start point of thread cutting cycle is close to a workpiece, tool may interfere with the workpiece during retract cycle because of passing along the retract cycle route described at Note 5. Therefore start point of thread cutting cycle must be at least k(height of thread) away from the top of thread.
Examples

Multiple repetitive cycle (G76)

- **Staggered thread cutting**

Specifying P2 can perform staggered thread cutting with a constant depth of cut.
Example: G76 X60640 Z25000 K3680 D1800 F6.0 A60 P2;
For staggered thread cutting, always use the FS15 tape format (see Section 17.5).
When command P instructing a cutting method is not specified or a command other than P2 is specified, one–tool cutting is performed by a constant amount.
If the depth of cut in one cycle is less than \( d_{\text{min}} \) (specified in parameter No. 5140), the depth of cut is clamped at \( \Delta d_{\text{min}} \).
13.2.8 Notes on Multiple Repetitive Cycle (G70 – G76)

1. In the blocks where the multiple repetitive cycle are commanded, the addresses P, Q, X, Z, U, W, and R should be specified correctly for each block.

2. In the block which is specified by address P of G71, G72, or G73, G00 or G01 group should be commanded. If it is not commanded, P/S alarm No. 65 is generated.

3. In MDI mode, G70, G71, G72, or G73 cannot be commanded. If it is commanded, P/S alarm No. 67 is generated. G74, G75, and G76 can be commanded in MDI mode.

4. In the blocks in which G70, G71, G72, or G73 are commanded and between the sequence number specified by P and Q, M98 (subprogram call) and M99 (subprogram end) cannot be commanded.

5. In the blocks between the sequence number specified by P and Q, the following commands cannot be specified.
   - One shot G code except for G04 (dwell)
   - 01 group G code except for G00, G01, G02, and G03
   - 06 group G code
   - M98 / M99

6. While a multiple repetitive cycle (G70AG76) is being executed, it is possible to stop the cycle and to perform manual operation. But, when the cycle operation is restarted, the tool should be returned to the position where the cycle operation is stopped.

   If the cycle operation is restarted without returning to the stop position, the movement in manual operation is added to the absolute value, and the tool path is shifted by the movement amount in manual operation.

7. When G70, G71, G72, or G73 is executed, the sequence number specified by address P and Q should not be specified twice or more in the same program.

8. The blocks between the sequence number specified by P and Q on the multiple repetitive cycle must not be programmed by using “Direct Drawing Dimensions Programming” or “Chamfering and Corner R”.

9. G74, G75, and G76 also do not support the input of a decimal point for P or Q. The least input increments are used as the units in which the amount of travel and depth of cut are specified.

10. When #1 = 2500 is executed using a custom macro, 2500.000 is assigned to #1. In such a case, P#1 is equivalent to P2500.

11. Tool nose radius compensation cannot be applied to G71, G72, G73, G74, G75, G76, or G78.

12. The multiple repetitive cycle cannot be executing during DNC operation.

13. Interruption type custom macro cannot be executed during executing the multiple repetitive cycle.

14. The multiple repetitive cycle cannot be executing during Advanced Preview Control mode.
13.3 CANNED CYCLE FOR DRILLING (G80 – G89)

The canned cycle for drilling simplifies the program normally by directing the machining operation commanded with a few blocks, using one block including G code. Following is the canned cycle table.

<table>
<thead>
<tr>
<th>G code</th>
<th>Drilling axis</th>
<th>Hole machining operation (− direction)</th>
<th>Operation in the bottom hole position</th>
<th>Retraction operation (+ direction)</th>
<th>Applications</th>
</tr>
</thead>
<tbody>
<tr>
<td>G80</td>
<td></td>
<td>____</td>
<td>____</td>
<td>____</td>
<td>Cancel</td>
</tr>
<tr>
<td>G83</td>
<td>Z axis</td>
<td>Cutting feed / intermittent</td>
<td>Dwell</td>
<td>Rapid traverse</td>
<td>Front drilling cycle</td>
</tr>
<tr>
<td>G84</td>
<td>Z axis</td>
<td>Cutting feed</td>
<td>Dwell→spindle CCW</td>
<td>Cutting feed</td>
<td>Front tapping cycle</td>
</tr>
<tr>
<td>G85</td>
<td>Z axis</td>
<td>Cutting feed</td>
<td>____</td>
<td>Cutting feed</td>
<td>Front boring cycle</td>
</tr>
<tr>
<td>G87</td>
<td>X axis</td>
<td>Cutting feed / intermittent</td>
<td>Dwell</td>
<td>Rapid traverse</td>
<td>Side drilling cycle</td>
</tr>
<tr>
<td>G88</td>
<td>X axis</td>
<td>Cutting feed</td>
<td>Dwell→Spindle CCW</td>
<td>Cutting feed</td>
<td>Side tapping cycle</td>
</tr>
<tr>
<td>G89</td>
<td>X axis</td>
<td>Cutting feed</td>
<td>Dwell</td>
<td>Cutting feed</td>
<td>Side boring cycle</td>
</tr>
</tbody>
</table>

In general, the drilling cycle consists of the following six operation sequences.

Operation 1  Positioning of X (Z) and C axis
Operation 2  Rapid traverse up to point R level
Operation 3  Hole machining
Operation 4  Operation at the bottom of a hole
Operation 5  Retraction to point R level
Operation 6  Rapid traverse up to the initial point

![Fig. 13.3 Drilling cycle operation sequence](image-url)
13. FUNCTIONS TO SIMPLIFY
PROGRAMMING

A drilling G code specifies positioning axes and a drilling axis as shown below. The C-axis and X- or Z-axis are used as positioning axes. The X- or Z-axis, which is not used as a positioning axis, is used as a drilling axis.

Although canned cycles include tapping and boring cycles as well as drilling cycles, in this chapter, only the term drilling will be used to refer to operations implemented with canned cycles.

<table>
<thead>
<tr>
<th>G code</th>
<th>Positioning plane</th>
<th>Drilling axis</th>
</tr>
</thead>
<tbody>
<tr>
<td>G83, G84, G85</td>
<td>X axis, C axis</td>
<td>Z axis</td>
</tr>
<tr>
<td>G87, G88, G89</td>
<td>Z axis, C axis</td>
<td>X axis</td>
</tr>
</tbody>
</table>

G83 and G87, G84 and G88, and G85 and G89 have the same function respectively except for axes specified as positioning axes and a drilling axis.

**Drilling mode**

G83 to G85 / G87 to 89 are modal G codes and remain in effect until canceled. When in effect, the current state is the drilling mode.

Once drilling data is specified in the drilling mode, the data is retained until modified or canceled.

Specify all necessary drilling data at the beginning of canned cycles; when canned cycles are being performed, specify data modifications only.

A cutting feedrate with an F code is retained even after the drilling cycle is canceled.

For blocks requiring a Q code, a Q code must be specified for each of the blocks. Once specified, C-axis clamping and unclamping M codes function in modal mode, and are canceled by G80.
13. FUNCTIONS TO SIMPLIFY PROGRAMMING

- **Return point level**
  
  **G98/G99**

  In G code system A, the tool returns to the initial level from the bottom of a hole. In G code system B or C, specifying G98 returns the tool to the initial level from the bottom of a hole and specifying G99 returns the tool to the point–R level from the bottom of a hole.

  The following illustrates how the tool moves when G98 or G99 is specified. Generally, G99 is used for the first drilling operation and G98 is used for the last drilling operation.

  The initial level does not change even when drilling is performed in the G99 mode.

  ![Diagram of G98 and G99](Image)

- **Number of repeats**

  To repeat drilling for equally-spaced holes, specify the number of repeats in K_.

  K is effective only within the block where it is specified.

  Specify the first hole position in incremental mode.

  If it is specified in absolute mode, drilling is repeated at the same position.

<table>
<thead>
<tr>
<th>Number of repeats K</th>
<th>The maximum command value = 9999</th>
</tr>
</thead>
</table>

  When K0 is specified with parameter K0E (parameter No. 5102 #4) set to 0, drilling is performed once.

  When K0 is specified with parameter K0E (parameter No. 5102 #4) set to 1, drilling data is just stored without drilling being performed.

- **M code used for C–axis clamp/unclamp**

  When an M code specified in parameter No. 5110 for C–axis clamp/unclamp is coded in a program, the CNC issues the M code for C–axis clamp after the tool is positioned and before the tool is fed in rapid traverse to the point–R level. The CNC also issues the M code (the M code for C–axis clamp +1) for C–axis unclamp after the tool retracts to the point–R level. The tool dwells for the time specified in parameter No. 5111.

- **Cancel**

  To cancel a canned cycle, use G80 or a group 01 G code.

  **Group 01 G codes**

  | G00 : Positioning (rapid traverse) |
  | G01 : Linear interpolation |
  | G02 : Circular interpolation (CW) |
  | G03 : Circular interpolation (CCW) |
Symbols in figures

Subsequent sections explain the individual canned cycles. Figures in these explanations use the following symbols:

- - - - -  Positioning (rapid traverse G00)
      -  Cutting feed (linear interpolation G01)
      ~ ~ ~  Manual feed

P1  Dwell specified in the program
P1  Dwell specified in parameter No.5111
Mα  Issuing the M code for C-axis clamp
     (The value of α is specified with parameter No. 5110.)
M (α+1)  Issuing the M code for C-axis unclamp

CAUTION
1  In each canned cycle,
   R_ (distance between the initial level and point R) is always handled as a radius.
   Z_ or X_ (distance between point R and the bottom of the hole) is, however, handled either as a diameter or radius, depending on the specification.
2  For the B or C G-code system, G90 or G91 can be used to select an incremental or absolute command for hole position data (X, C or Z, C), the distance from point R to the bottom of the hole (Z or X), and the distance from the initial level to the point R level (R).
13.3.1 Front Drilling Cycle (G83) / Side Drilling Cycle (G87)

- High-speed peck drilling cycle (G83, G87) (parameter RTR (No. 5101#2) = 0)

The peck drilling cycle or high-speed peck drilling cycle is used depending on the setting in RTR, bit 2 of parameter No. 5101. If depth of cut for each drilling is not specified, the normal drilling cycle is used.

This cycle performs high-speed peck drilling. The drill repeats the cycle of drilling at the cutting feedrate and retracting the specified retraction distance intermittently to the bottom of a hole. The drill draws cutting chips out of the hole when it retracts.

Format

| G83 X(U)_ C(H)_ Z(W)_ R_ Q_ P_ F_ K_ M_ ; |
| or |
| G87 Z(W)_ C(H)_ X(U)_ R_ Q_ P_ F_ K_ M_ ; |

- `X_ or Z_ C_` : Hole position data
- `Z_ or X_` : The distance from point R to the bottom of the hole
- `R_` : The distance from the initial level to point R level
- `Q_` : Depth of cut for each cutting feed
- `P_` : Dwell time at the bottom of a hole
- `F_` : Cutting feedrate
- `K_` : Number of repeats (When it is needed)
- `M_` : M code for C-axis clamp (When it is needed.)

<table>
<thead>
<tr>
<th>G83 or G87 (G98 mode)</th>
<th>G83 or G87 (G99 mode)</th>
</tr>
</thead>
<tbody>
<tr>
<td>( M_{\alpha} )</td>
<td>( M_{(\alpha+1)} )</td>
</tr>
<tr>
<td>Point R</td>
<td>Point R</td>
</tr>
<tr>
<td>( q )</td>
<td>( q )</td>
</tr>
<tr>
<td>( d )</td>
<td>( d )</td>
</tr>
<tr>
<td>( P_1 )</td>
<td>( P_2 )</td>
</tr>
<tr>
<td>( P_1 )</td>
<td>( P_2 )</td>
</tr>
<tr>
<td>( d )</td>
<td>( d )</td>
</tr>
</tbody>
</table>

\( M_{\alpha} \) : M code for C-axis clamp
\( M_{(\alpha+1)} \) : M code for C-axis unclamp
\( P_1 \) : Dwell specified in the program
\( P_2 \) : Dwell specified in parameter No. 5111
\( d \) : Retraction distance specified in parameter No. 5114
• Peck drilling cycle
  (G83, G87)
  (parameter No. 5101#2 =1)

Format

G83 X(U)_ C(H)_ Z(W)_ R_ Q_ P_ F_ K_ M_; or
G87 Z(W)_ C(H)_ X(U)_ R_ Q_ P_ F_ K_ M_;  

X_ C_ or Z_ C_ : Hole position data
Z_ or X_ : The distance from point R to the bottom of the hole
R_ : The distance from the initial level to point R level
Q_ : Depth of cut for each cutting feed
P_ : Dwell time at the bottom of a hole
F_ : Cutting feedrate
K_ : Number of repeats (When it is needed.)
M_ : M code for C–axis clamp (When it is needed.)

<table>
<thead>
<tr>
<th>G83 or G87 (G98 mode)</th>
<th>G83 or G87 (G99 mode)</th>
</tr>
</thead>
<tbody>
<tr>
<td><img src="image1" alt="Diagram" /></td>
<td><img src="image2" alt="Diagram" /></td>
</tr>
</tbody>
</table>

Mα : M code for C–axis clamp
M(α+1) : M code for C–axis unclamp
P1 : Dwell specified in the program
P2 : Dwell specified in parameter No.5111
d : Retraction distance specified in parameter No. 5114

Examples

M51 ; Setting C–axis index mode ON
M3 S2000 ; Rotating the drill
G00 X50.0 C0.0 ; Positioning the drill along the X– and C–axes
G83 Z–40.0 R–5.0 Q5000 F5.0 M31 ; Drilling hole 1
C90.0 M31 ; Drilling hole 2
C180.0 M31 ; Drilling hole 3
C270.0 M31 ; Drilling hole 4
G80 M05 ; Canceling the drilling cycle and stopping drill rotation
M50 ; Setting C–axis index mode off

NOTE
If the depth of cut for each cutting feed (Q) is not commanded, normal drilling is performed. (See the description of the drilling cycle.)
Drilling cycle (G83 or G87)

If depth of cut is not specified for each drilling, the normal drilling cycle is used. The tool is then retracted from the bottom of the hole in rapid traverse.

Format

<table>
<thead>
<tr>
<th>G83 or G87 (G98 mode)</th>
<th>G83 or G87 (G99 mode)</th>
</tr>
</thead>
<tbody>
<tr>
<td>G83 X(U) C(H) Z(W) R_ P_ F_ K_ M_ ;</td>
<td>or</td>
</tr>
<tr>
<td>X_, C_ or Z_, C_ : Hole position data</td>
<td>or</td>
</tr>
<tr>
<td>R_ : The distance from the initial level to point R level</td>
<td>P_ : Dwell time at the bottom of a hole</td>
</tr>
<tr>
<td>K_ : Number of repeats (When it is needed.)</td>
<td>M_ : M code for C–axis clamp (When it is needed.)</td>
</tr>
</tbody>
</table>

Examples

- M51 ; Setting C–axis index mode ON
- M3 S2000 ; Rotating the drill
- G00 X50.0 C0.0 ; Positioning the drill along the X– and C–axes
- G83 Z–40.0 R–5.0 P500 F5.0 M31 ; Drilling hole 1
- C90.0 M31 ; Drilling hole 2
- C180.0 M31 ; Drilling hole 3
- C270.0 M31 ; Drilling hole 4
- G80 M05 ; Canceling the drilling cycle and stopping drill rotation
- M50 ; Setting C–axis index mode off
13.3.2  
**Front Tapping Cycle (G84) / Side Tapping Cycle (G88)**

This cycle performs tapping.  
In this tapping cycle, when the bottom of the hole has been reached, the spindle is rotated in the reverse direction.

**Format**

```
G84 X(U)_ C(H)_ Z(W)_ R_ P_ F_ K_ M_ ;
or
G88 Z(W)_ C(H)_ X(U)_ R_ P_ F_ K_ M_ ;
```

- **X_ C_ or Z_ C_**: Hole position data
- **Z_ or X_**: The distance from point R to the bottom of the hole
- **R_**: The distance from the initial level to point R level
- **P_**: Dwell time at the bottom of a hole
- **F_**: Cutting feedrate
- **K_**: Number of repeats (When it is needed.)
- **M_**: M code for C-axis clamp (when it is needed.)

**G84 or G88 (G98 mode)**

1. Initial level
2. Point R
3. Spindle CW
4. M(α+1), P2
5. Point Z
6. Spindle CCW

**G84 or G88 (G99 mode)**

1. Initial level
2. Point R
3. Spindle CW
4. M(α+1), P2
5. Point R level
6. Spindle CCW

**Explanations**

Tapping is performed by rotating the spindle clockwise. When the bottom of the hole has been reached, the spindle is rotated in the reverse direction for retraction. This operation creates threads.

Feedrate overrides are ignored during tapping. A feed hold does not stop the machine until the return operation is completed.
NOTE
Bit 6 (M5T) of parameter No. 5101 specifies whether the spindle stop command (M05) is issued before the direction in which the spindle rotates is specified with M03 or M04. For details, refer to the operator’s manual created by the machine tool builder.

Examples

M51 ; Setting C-axis index mode ON
M3 S2000 ; Rotating the drill
G00 X50.0 C0.0 ; Positioning the drill along the X- and C- axes
G83 Z–40.0 R–5.0 P500 F5.0 M31 ; Drilling hole 1
C90.0 M31 ; Drilling hole 2
C180.0 M31 ; Drilling hole 3
C270.0 M31 ; Drilling hole 4
G80 M05 ; Canceling the drilling cycle and stopping drill rotation
M50 ; Setting C-axis index mode off
This cycle is used to bore a hole.

### Front Boring Cycle
(G85) / Side Boring Cycle (G89)

#### Format

<table>
<thead>
<tr>
<th>Format</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>G85 X(U)_ C(H)_ Z(W)_ R_ P_ F_ K_ M_ ; or G89 Z(W)_ C(H)_ X(U)_ R_ P_ F_ K_ M_ ;</td>
<td> </td>
</tr>
</tbody>
</table>

- X_, C_, or Z_, C_: Hole position data
- Z_ or X_: The distance from point R to the bottom of the hole
- R_: The distance from the initial level to point R level
- P_: Dwell time at the bottom of a hole
- F_: Cutting feedrate
- K_: Number of repeats (When it is needed.)
- M_: M code for C-axis clamp (When it is needed.)

#### Explanations

After positioning, rapid traverse is performed to point R. Drilling is performed from point R to point Z. After the tool reaches point Z, it returns to point R at a feedrate twice the cutting feedrate.

#### Examples

<table>
<thead>
<tr>
<th>Command</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>M51 ;</td>
<td>Setting C-axis index mode ON</td>
</tr>
<tr>
<td>M3 S2000 ;</td>
<td>Rotating the drill</td>
</tr>
<tr>
<td>G00 X50.0 C0.0 ;</td>
<td>Positioning the drill along the X- and C-axes</td>
</tr>
<tr>
<td>G83 Z–40.0 R–5.0 P500 F5.0 M31 ;</td>
<td>Drilling hole 1</td>
</tr>
<tr>
<td>C90.0 M31 ;</td>
<td>Drilling hole 2</td>
</tr>
<tr>
<td>C180.0 M31 ;</td>
<td>Drilling hole 3</td>
</tr>
<tr>
<td>C270.0 M31 ;</td>
<td>Drilling hole 4</td>
</tr>
<tr>
<td>G80 M05 ;</td>
<td>Canceling the drilling cycle and stopping drill rotation</td>
</tr>
<tr>
<td>M50 ;</td>
<td>Setting C-axis index mode off</td>
</tr>
</tbody>
</table>
13.3.4 Canned Cycle for Drilling Cancel (G80)

Format

G80 ;

Explanations

Canned cycle for drilling is canceled to perform normal operation. Point R and point Z are cleared. Other drilling data is also canceled (cleared).

Examples

<table>
<thead>
<tr>
<th>Command</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>M51 ;</td>
<td>Setting C–axis index mode ON</td>
</tr>
<tr>
<td>M3 S2000 ;</td>
<td>Rotating the drill</td>
</tr>
<tr>
<td>G00 X50.0 C0.0 ;</td>
<td>Positioning the drill along the X– and C–axes.</td>
</tr>
<tr>
<td>G83 Z–40.0 R–5.0 P500 F5.0 M31 ;</td>
<td>Drilling hole 1</td>
</tr>
<tr>
<td>C90.0 M31 ;</td>
<td>Drilling hole 2</td>
</tr>
<tr>
<td>C180.0 M31 ;</td>
<td>Drilling hole 3</td>
</tr>
<tr>
<td>C270.0 M31 ;</td>
<td>Drilling hole 4</td>
</tr>
<tr>
<td>G80 M05 ;</td>
<td>Canceling the drilling cycle and stopping drill rotation</td>
</tr>
<tr>
<td>M50 ;</td>
<td>Setting C–axis index mode off</td>
</tr>
</tbody>
</table>
13.3.5
Precautions to be Taken by Operator

- **Reset and emergency stop**
  Even when the controller is stopped by resetting or emergency stop in the course of drilling cycle, the drilling mode and drilling data are saved; with this mind, therefore, restart operation.

- **Single block**
  When drilling cycle is performed with a single block, the operation stops at the end points of operations 1, 2, 6 in Fig. 13.3 (a). Consequently, it follows that operation is started up 3 times to drill one hole. The operation stops at the end points of operations 1, 2 with the feed hold lamp ON. The operation stops in the feed hold conditions at the end point of operation 6 if the repeat remains, and it stops in stop conditions in other cases.

- **Feed hold**
  When “Feed Hold” is applied between operations 3 and 5 by G84/G88, the feed hold lamp lights up immediately if the feed hold is applied again to operation 6.

- **Override**
  During operation with G84 and G88, the feedrate override is 100%.
13.4
CANNED GRINDING CYCLE
(FOR GRINDING MACHINE)

There are four grinding canned cycles: the traverse grinding cycle (G71), traverse direct fixed–dimension grinding cycle, oscillation grinding cycle, and oscillation direct fixed–dimension grinding cycle. With a machine tool that allows canned cycles for grinding to be used, the multiple repetitive canned cycle for turning cannot be used.

13.4.1
Traverse Grinding Cycle (G71)

Format

G71 A_ B_ W_ U_ I_ K_ H_

A : First depth of cut
B : Second depth of cut
W : Grinding range
U : Dwell time Maximum specification time : 99999.999 seconds
I : Feedrate of A and B
K : Feedrate of W
H : Number of repetitions Setting value : 1 to 9999

Explanations

The specification ranges and units of the canned cycle for grinding are described below.
Move command Range : ±8 digits
Units : 1 µm/0.0001 inch
Feedrate Range
Feed per minute : 0.001 to 240000 mm/min
0.0001 to 9600 inch/min
(for 1 µm/0.0001 inch)
Feed per revolution : 0.00001 to 500 mm/rev
0.00001 to 9 inch/rev

A, B, and W are to be specified in an incremental mode.
In the case of a single block, the operations 1, 2, 3, 4, 5, and 6 are performed with one cycle start operation.
A=B=0 results in a spark–out.
13.4.2 Traverse Direct
Fixed–dimension
Grinding Cycle (G72)

Format

```
G72 P_A_B_W_U_I_K_H;
```

- P: Gauge number (1 to 4)
- A: First depth of cut
- B: Second depth of cut
- W: Grinding range
- U: Dwell time  Maximum specification time : 99999.999 seconds
- I: Feedrate of A and B
- K: Feedrate of W
- H: Number of repetitions  Setting value : 1 to 9999

Explanations

When the multistage skip operation is used, a gauge number can be specified. The method of gauge number specification is the same as the method of multistage skip function. When the multistage skip operation is not used, the conventional skip signal is valid.

The same specifications as G71 apply except for gauge number specification.

- **Operation at the time of skip signal input**

1. When the tool moves along the Z–axis to grind a workpiece, if a skip signal is input, the tool returns to the Z coordinate where the cycle started after the tool reaches the end of the specified grinding area.

2. When the tool cuts a workpiece along the X–axis, if a skip signal is input, the tool stops cutting immediately and returns to the Z coordinate where the cycle started.

3. The skip signal is valid during dwell, without being affected by parameters DS1 to DS8 (No. 6206#0 to #7). Dwell is immediately stopped for return to the Z axis coordinate where the cycle started.
13.4.3 Oscillation Grinding Cycle (G73)

**Format**

```
g73 A_(B_) W_ U_ K_ H_;
```

- **A**: Depth of cut
- **B**: Depth of cut
- **W**: Grinding range
- **U**: Dwell time
- **K**: Feedrate
- **H**: Number of repetitions  Setting value : 1A9999

**Explanations**

A, B, and W are to be specified in an incremental mode. In the case of a single block, the operations 1, 2, 3, and 4 are performed with one cycle start operation. The specification of B is valid only for a specified block. This is not associated with B of the G71 or G72 cycle.
13.4.4 Oscillation Direct Fixed–Dimension Grinding Cycle

Format

G74 P_ A_ (B_) W_ U_ K_ H_;  
P : Gauge number (1 to 4)  
A : Depth of cut  
B : Depth of cut  
W : Grinding range  
U : Dwell time  
K : Feedrate of W  
H : Number of repetitions Setting value : 1 to 9999

Explanations

When the multistage skip operation is used, a gauge number can be specified. The method of gauge number specification is the same as the method of multistage skip function. When the multistage skip operation is not used, the conventional skip signal is valid. The same specifications as G73 apply to the other items.

Operation at the time of skip signal input

1. When the tool moves along the Z-axis to grind a workpiece, if a skip signal is input, the tool returns to the Z coordinate where the cycle started after the tool reaches the end of the specified grinding area.

2. The skip signal is valid during dwell, without being affected by parameters DS1 to DS8 (No. 6206#0 to #7). Dwell is immediately stopped for return to the Z axis coordinate where the cycle started.

NOTE

1. The data items A, B, W, I, and K in a canned cycle are modal values common to G71 through G74. The data items A, B, W, U, I and K are cleared when a one–shot G code other than G04 or a 01 group G code other than G71 to G74 is specified.

2. No B code can be specified in the canned cycle mode.
13.5 CHAMFERING AND CORNER R

- Chamfering
  \( Z \rightarrow X \)

A chamfer or corner can be inserted between two blocks which intersect at a right angle as follows:

\[
\begin{align*}
\text{Format} & : \quad G01 \ Z(W) \_ \ L \ (C) \pm i ; \\
\text{Tool movement} & : +x \\
\end{align*}
\]

Specifies movement to point b with an absolute or incremental command in the figure on the right.

Fig. 13.5(a) Chamfering \( Z \rightarrow X \)

- Chamfering
  \( X \rightarrow Z \)

\[
\begin{align*}
\text{Format} & : \quad G01 \ X(U) \_ \ K \ (C) \pm k ; \\
\text{Tool movement} & : +z \\
\end{align*}
\]

Specifies movement to point b with an absolute or incremental command in the figure on the right.

Fig. 13.5(b) Chamfering \( X \rightarrow Z \)

- Corner R
  \( Z \rightarrow X \)

\[
\begin{align*}
\text{Format} & : \quad G01 \ Z(W) \_ \ R \pm r ; \\
\text{Tool movement} & : +x \\
\end{align*}
\]

Specifies movement to point b with an absolute or incremental command in the figure on the right.

Fig. 13.5(c) Corner R \( Z \rightarrow X \)
• Corner R  
  \( X \rightarrow Z \)

<table>
<thead>
<tr>
<th>Format</th>
<th>Tool movement</th>
</tr>
</thead>
<tbody>
<tr>
<td>\textbf{G01 X(U)} _ _ \textbf{R} \pm r ;</td>
<td>\begin{align*} \text{Start point} &amp; \quad a \ \text{(For ( -x ) movement,} &amp; \quad \text{Moves as} \ &amp; \quad -r} \ &amp; \quad \text{a} \rightarrow \text{d} \rightarrow \text{c} \end{align*}</td>
</tr>
</tbody>
</table>

\text{Fig. 13.5(d) Corner R (X→Z)}

\textbf{Explanations}

The movement for chamfering or corner R must be a single movement along the X or Z axis in G01 mode. The next block must be a single movement along the X or Z axis perpendicular to the former block. I or K, and R always specify a radius value.

Note that the start point for a command specified in a block following a chamfering or corner-R block is not point c but point b shown in Figs. 13.5 (a) to (d). In incremental programming, specify a distance from point b.

\textbf{Examples}

\begin{align*}
\text{N1Z270.0R6.0;} \\
\text{N2X860.0K}^{-3.0}; \\
\text{N3Z0;} \\
\end{align*}
NOTE
1 The following commands cause an alarm.
   1) One of I, K, or R is commanded when X and Z axes are
      specified by G01. (P/S alarm No. 054)
   2) Move amount of X or Z is less than chamfering value and
      corner R value in the block where chamfering and corner
      R are specified. (P/S alarm No. 055)
   3) Next block to the block where chamfering and corner R
      were specified, has not G01 command. (P/S alarm No.
      051, 052)
   4) If more than one of I, K, and R are specified in G01, P/S
      alarm No. 053 is issued.
2 A single block stops at point c in Fig. 13.4 (a) and (d), not at
   point d.
3 Chamfering and corner R cannot be applied to a thread
   cutting block.
4 C can be used instead of I or K as an address for chamfering
   on the system which does not use C as an axis name. To
   use C for an address for chamfering, fix parameter CCR No.
   3405#4 to 1.
5 If both C and R are specified with G01 in a block, the
   address specified last is valid.
6 Neither chamfering nor corner–R machining can be
   specified in direct drawing dimension programming.
13.6 MIRROR IMAGE FOR DOUBLE TURRET (G68, G69)

Format

G68 : Double turret mirror image on
G69 : Mirror image cancel

Explanations

Mirror image can be applied to X–axis with G code. When G68 is designated, the coordinate system is shifted to the mating turret side, and the X–axis sign is reversed from the programmed command to perform symmetrical cutting. To use this function, set the distance between the two turrets to a parameter (No. 1290).

Examples

- Double turret programming

X40.0 Z180.0 T0101 ; Position turret A at (1)
G68 ; Shift the coordinate system by the distance A to B (120mm), and turn mirror image on.
X80.0 Z120.0 T0202 ; Position turret B at (2)
G69 ; Shift the coordinate system by the distance B to A, and turn mirror image cancel.
X120.0 Z60.0 T0101 ; Position turret A at (3)
Angles of straight lines, chamfering value, corner rounding values, and other dimensional values on machining drawings can be programmed by directly inputting these values. In addition, the chamfering and corner rounding can be inserted between straight lines having an optional angle. This programming is only valid in memory operation mode.

### Format

Table 13.7 Commands table

<table>
<thead>
<tr>
<th>Commands</th>
<th>Movement of tool</th>
</tr>
</thead>
<tbody>
<tr>
<td>$X_2(Z_2), A_1$;</td>
<td><img src="image1" alt="Diagram 1" /></td>
</tr>
<tr>
<td>$X_3Z_3, A_2$;</td>
<td><img src="image2" alt="Diagram 2" /></td>
</tr>
<tr>
<td>$X_2 Z_2, R_1$; $X_3 Z_3$; or $A_1; R_1$; $X_3 Z_3, A_2$;</td>
<td><img src="image3" alt="Diagram 3" /></td>
</tr>
<tr>
<td>$X_2 Z_2, C_1$; $X_3 Z_3$; or $A_1; C_1$; $X_3 Z_3, A_2$;</td>
<td><img src="image4" alt="Diagram 4" /></td>
</tr>
<tr>
<td>Commands</td>
<td>Movement of tool</td>
</tr>
<tr>
<td>--------------------------------------------------------------------------------------------</td>
<td>------------------</td>
</tr>
<tr>
<td>$X_2_ \cdot Z_2_ \cdot R_1_;$ $X_3_ \cdot Z_3_ \cdot R_2_;$ $X_4_ \cdot Z_4_;$ or $A_1_;$ $R_1_;$ $X_3_ \cdot Z_3_;$ $A_2_;$ $R_2_;$ $X_4_ \cdot Z_4_;$</td>
<td><img src="image1" alt="Diagram 5" /></td>
</tr>
<tr>
<td>$X_2_ \cdot Z_2_ \cdot C_1_;$ $X_3_ \cdot Z_3_ \cdot C_2_;$ $X_4_ \cdot Z_4_;$ or $A_1_;$ $C_1_;$ $X_3_ \cdot Z_3_;$ $A_2_;$ $C_2_;$ $X_4_ \cdot Z_4_;$</td>
<td><img src="image2" alt="Diagram 6" /></td>
</tr>
<tr>
<td>$X_2_ \cdot Z_2_;$ $R_1_;$ $X_3_ \cdot Z_3_;$ $C_2_;$ $X_4_ \cdot Z_4_;$ or $A_1_;$ $R_1_;$ $X_3_ \cdot Z_3_;$ $A_2_;$ $C_2_;$ $X_4_ \cdot Z_4_;$</td>
<td><img src="image3" alt="Diagram 7" /></td>
</tr>
<tr>
<td>$X_2_ \cdot Z_2_;$ $C_1_;$ $X_3_ \cdot Z_3_;$ $R_2_;$ $X_4_ \cdot Z_4_;$ or $A_1_;$ $C_1_;$ $X_3_ \cdot Z_3_;$ $A_2_;$ $R_2_;$ $X_4_ \cdot Z_4_;$</td>
<td><img src="image4" alt="Diagram 8" /></td>
</tr>
</tbody>
</table>
A program for machining along the curve shown in Fig. 13.7 is as follows:

\[
\begin{align*}
\text{X}(x_2)\ Z(z_2)\ ,\ C(c_1)\ ; \\
\text{X}(x_3)\ Z(z_3)\ ,\ R(r_2)\ ; \\
\text{X}(x_4)\ Z(z_4)\ ;
\end{align*}
\]

\( (x_3, z_3) \quad (x_4, z_4) \)

For command a straight line, specify one or two out of X, Z, and A. If only one is specified, the straight line must be primarily defined by a command in the next block.

To command the degree of a straight line or the value of chamfering or corner R, command with a comma (,) as follows:

\[
\text{A} , \ A_1 , \ C , \ C_1 , \ R , \ R_1
\]

By specifying 1 to parameter CCR No. 3405#4 on the system which does not use A or C as an axis name, the degree of a straight line or the value of chamfering or corner R can be commanded without a comma (,) as follows:

\[
\text{A} , \ C , \ R
\]
NOTE

1 The following G codes are not applicable to the same block as commanded by direct input of drawing dimensions or between blocks of direct input of drawing dimensions which define sequential figures.
   1) G codes (other than G04) in group 00.
   2) G02, G03, G90, G92, and G94 in group 01.

2 Corner rounding cannot be inserted into a threading block.

3 Chamfering and corner R using the direct input of drawing dimensions cannot be used simultaneously with the chamfering and corner R.

4 When the end point of the previous block is determined in the next block according to sequential commands of direct input of drawing dimensions, the single block stop is not done, but the feed hold stop is done at the end point of the previous block.

5 The angle allowance in calculating the point of intersection in the program below is $\pm 1^\circ$.
   (Because the travel distance to be obtained in this calculation is too large.)
   1) X_, A_; (If a value within $0^\circ \pm 1^\circ$ or $180^\circ \pm 1^\circ$ is specified for the angle instruction, the P/S alarm No.057 occurs.)
   2) Z_, A_; (If a value within $90^\circ \pm 1^\circ$ or $270^\circ \pm 1^\circ$ is specified for the angle instruction, the P/S alarm No. 057 occurs.)

6 An alarm occurs if the angle made by the 2 lines is within $\pm 1^\circ$ when calculating the point of intersection.

7 Chamfering or corner % is ignored if the angle made by the 2 lines is within $\pm 1^\circ$.

8 Both a dimensional command (absolute programming) and angle instruction must be specified in the block following a block in which only the angle instruction is specified.
   (Example)
   N1 X_, A_, R_;  
   N2, A_;  
   N3 X_, Z_, A_;  
   (In addition to the dimensional command, angle instruction must be specified in block No. 3.)
Examples

(Diameter specification, metric input)

N001 G50 X0.0 Z0.0 ;
N002 G01 X60.0, A90.0, C1.0 F80 ;
N003 Z–30.0, A180.0, R6.0 ;
N004 X100.0, A90.0 ;
N005 A170.0, R20.0 ;
N006 X300.0 Z–180.0, A112.0, R15.0 ;
N007 Z–230.0, A180.0 ;
...
13.8 RIGID TAPPING

Front face tapping cycles (G84) and side face tapping cycles (G88) can be performed either in conventional mode or rigid mode.

In conventional mode, the spindle is rotated or stopped, in synchronization with the motion along the tapping axis according to miscellaneous functions M03 (spindle CW rotation), M04 (spindle CCW rotation), and M05 (spindle stop).

In rigid mode, the spindle motor is controlled in the same way as a control motor, by the application of compensation to both motion along the tapping axis and that of the spindle.

For rigid tapping, each turn of the spindle corresponds to a certain amount of feed (screw lead) along the spindle axis. This also applies to acceleration/deceleration. This means that rigid tapping does not demand the use of float tappers as in the case of conventional tapping, thus enabling high-speed, high-precision tapping.

When the multispindle control function is enabled, the second spindle can be used for rigid tapping.
13. FUNCTIONS TO SIMPLIFY PROGRAMMING

13.8.1
Front Face Rigid Tapping Cycle (G84) / Side Face Rigid Tapping Cycle (G88)

Format

G84 X(U)_ C(H)_ Z(W)_ R_ P_ F_ K_ M_ ;
or
G88 Z(W)_ C(H)_ X(U)_ R_ P_ F_ K_ M_ ;

- X_ C_ or Z_ C_ : Hole position data
- Z_ or X_ : The distance from point R to the bottom of the hole
- R_ : The distance from the initial level to point R level
- P_ : Dwell time at the bottom of a hole
- F_ : Cutting feedrate
- K_ : Number of repeats (When it is needed.)
- M_ : M code for C–axis clamp (when it is needed.)

Explanations

Once positioning for the X–axis (G84) or Z–axis (G88) has been completed, the spindle is moved, by rapid traverse, to point R. Tapping is performed from point R to point Z, after which the spindle stops and observes a dwell time. Then, the spindle starts reverse rotation, retracts to point R, stops rotating, then moves to the initial level by rapid traverse. During tapping, the feedrate override and spindle override are assumed to be 100%. For retraction (operation 5), however, a fixed override of up to 2000% can be applied by setting parameter No. 5211 (RGOVR), bit 3 (OVU) of parameter No. 5201, and bit 4 (DOV) of parameter No. 5200.

- **Rigid mode**

  Rigid mode can be specified by applying any of the following methods:
  - Specifying M29S***** before a tapping block
  - Specifying M29S***** within a tapping block
  - Handling G84 or G88 as a G code for rigid tapping (Set bit 0 (G84) of parameter No. 5200 to 1.)
In feed per minute mode, the feedrate divided by the spindle speed is equal to the screw lead. In feed per rotation mode, the feedrate is equal to the screw lead.

Limitations

- **S commands**
  When a value exceeding the maximum rotation speed for the gear being used is specified, P/S alarm No. 200 is issued. For an analog spindle, when a command is specified such that more than 4095 pulses are generated during 8 ms (detection unit), P/S alarm No. 202 is issued. For a serial spindle, when a command is specified such that more than 32767 pulses are generated during 8 ms (detection unit), P/S alarm No. 202 is issued.

  <Example>
  For a built-in motor equipped with a detector having a resolution of 4095 pulses per rotation, the maximum spindle speed during rigid tapping is as follows:
  - For an analog spindle
    \[(4095 \times 1000 + 8 \times 60) / 4095 = 7500 \text{ (rpm)}\]
  - For a serial spindle
    \[(32767 \times 1000 + 8 \times 60) / 4095 = 60012 \text{ (rpm)} \text{ [Note: Ideal value]}\]

  The S command, which is specified at rigid tapping, is cleared at commanding Rigid Tapping Cancel and the condition is the same that S0 is commanded.

- **F commands**
  Specifying a value larger than the upper limit for cutting feed will cause P/S alarm No. 201 to be issued.

- **M29**
  Specifying an S command or axis movement between M29 and M84 will cause P/S alarm No. 203 to be issued. Specifying M29 during a tapping cycle will cause P/S alarm No. 204 to be issued.

- **Rigid tapping command**
  The M code used to specify rigid tapping mode is usually set in parameter No. 5210. To set a value of more than 255, however, use parameter No. 5212.

- **Maximum position deviation during movement along the tapping axis**
  The maximum position deviation during movement along the tapping axis in rigid tapping mode is usually set in parameter No. 5310. Use parameter No. 5314, however, when setting a value of more than 32767, for example, according to the resolution of the detector being used.

- **R**
  The value of R must be specified in a block which performs drilling. If the value is specified in a block which does not perform drilling, it is not stored as modal data.

- **Cancellation**
  G00 to G03 (G codes in group 01) must not be specified in a block containing G84 or G88. If specified, G84 or G88 in that block is canceled.

- **Tool position offset**
  Any tool position offset is ignored in canned cycle mode.
Units for F

<table>
<thead>
<tr>
<th></th>
<th>Metric input</th>
<th>Inch input</th>
<th>Remark</th>
</tr>
</thead>
<tbody>
<tr>
<td>G98</td>
<td>1 mm/min</td>
<td>0.01inch/min</td>
<td>Decimal point allowed</td>
</tr>
<tr>
<td>G99</td>
<td>0.01mm/rev</td>
<td>0.0001inch/rev</td>
<td>Decimal point allowed</td>
</tr>
</tbody>
</table>

Examples

Tapping axis feedrate: 1000 mm/min
Spindle speed: 1000 min⁻¹
Screw lead: 1.0 mm

<Programming for feed per minute>
G98 ; Command for feed per minute
G00 X100.0 ; Positioning
M29 S1000 ; Command for specifying rigid mode
G84 Z–100.0 R–20.0 F1000 ; Rigid tapping

<Programming for feed per rotation>
G99 ; Command for feed per rotation
G00 X100.0 ; Positioning
M29 S1000 ; Command for specifying rigid mode
G84 Z–100.0 R–20.0 F1.0 ; Rigid tapping

13.8.2 Rigid Tapping Cancel (G80)

The rigid tapping cycle is canceled.
For how to cancel this cycle, please see II–13.3.4.

NOTE
When Rigid Tapping Cancel is commanded, the S command, which is used at rigid tapping, is also cleared. (It is the same that S0 is commanded.) Therefore, the S command, which is specified for rigid tapping, can not be used at blocks after Rigid Tapping Cancel. Please re-specify S command after Rigid Tapping Cancel if necessary.
14. COMPENSATION FUNCTION

This chapter describes the following compensation functions:

14.1 TOOL OFFSET
14.2 OVERVIEW OF TOOL NOSE RADIUS COMPENSATION
14.3 DETAILS OF TOOL NOSE RADIUS COMPENSATION
14.4 TOOL COMPENSATION VALUES, NUMBER OF COMPENSATION VALUES, AND ENTERING VALUES FROM THE PROGRAM (G10)
14.5 AUTOMATIC TOOL OFFSET (G36, G37)
14.1 TOOL OFFSET

Tool offset is used to compensate for the difference when the tool actually used differs from the imagined tool used in programming (usually, standard tool).

![Fig. 14.1 Tool offset]

In this unit, there is no G code to specify tool offset. The tool offset is specified by T code.

14.1.1 Tool Geometry Offset and Tool Wear Offset

Tool geometry offset and tool wear offset are possible to divide the tool offset to the tool geometry offset for compensating the tool shape or tool mounting position and the tool wear offset for compensating the tool nose wear.

![Fig. 14.1.1 Tool geometry offset and tool wear offset]
14.1.2 
T Code for Tool Offset

There are two methods for specifying a T code as shown in Table 14.1.2(a) and Table 14.1.2(b).

Table 14.1.2(a)

<table>
<thead>
<tr>
<th>Kind of T code</th>
<th>Meaning of T code</th>
<th>Parameter setting for specifying of offset No.</th>
</tr>
</thead>
<tbody>
<tr>
<td>2-digit command</td>
<td>T ○ ○</td>
<td>When LD1, bit 0 of parameter No.5002, is set to 1, a tool wear offset number is specified with the last digit of a T code.</td>
</tr>
<tr>
<td>Tool wear and tool geometry offset number</td>
<td>Tool selection</td>
<td></td>
</tr>
<tr>
<td>4-digit command</td>
<td>T ○ ○ ○ ○</td>
<td>When LD1, bit 0 of parameter No.5002, is set to 0, a tool wear offset number is specified with the last two digits of a T code.</td>
</tr>
<tr>
<td>Tool wear and tool geometry offset number</td>
<td>Tool selection</td>
<td></td>
</tr>
</tbody>
</table>

- Lower digit of T code specifies geometry and wear offset number
- Lower digit of T code specifies wear offset number and higher digit number specifies tool selection number and geometry offset number

Table 14.1.2(b)

<table>
<thead>
<tr>
<th>Kind of T code</th>
<th>Meaning of T code</th>
<th>Parameter setting for specifying of offset No.</th>
</tr>
</thead>
<tbody>
<tr>
<td>2-digit command</td>
<td>T ○ ○</td>
<td>When LD1, bit 0 of parameter No.5002, is set to 1, a tool wear offset number is specified with the last digit of a T code.</td>
</tr>
<tr>
<td>Tool wear offset number</td>
<td>Tool selection and tool geometry offset number</td>
<td></td>
</tr>
<tr>
<td>4-digit command</td>
<td>T ○ ○ ○ ○</td>
<td>When LD1, bit 0 of parameter No.5002, is set to 0, a tool wear offset number is specified with the last two digits of a T code.</td>
</tr>
<tr>
<td>Tool wear offset number</td>
<td>Tool selection and tool geometry offset number</td>
<td></td>
</tr>
</tbody>
</table>

14.1.3 
Tool Selection

Tool selection is made by specifying the T code corresponding to the tool number. Refer to the machine tool builder’s manual for the relationship between the tool selection number and the tool.

14.1.4 
Offset Number

Tool offset number has two meanings.
It is specifies the offset distance corresponding to the number that is selected to begin the offset function. A tool offset number of 0 or 00 indicates that the offset amount is 0 and the offset is cancelled.
14.1.5 Offset

Explanations

• Tool wear offset

There are two types of offset. One is tool wear offset and the other is tool geometry offset.

The tool path is offset by the X, Y, and Z wear offset values for the programmed path. The offset distance corresponding to the number specified by the T code is added to or subtracted from the and position of each programmed block.

![Fig. 14.1.5(a) Movement of offset (1)](image)

- Offset vector

In Fig. 14.1.5(a), the vector with offset X, Y, and Z is called the offset vector. Compensation is the same as the offset vector.

- Offset cancel

Offset is cancelled when T code offset number 0 or 00 is selected. At the end of the cancelled block, the offset vector becomes 0.

```
N1 X50.0 Z100.0 T0202 ; Creates the offset vector corresponding to offset number 02
N2 X200.0 ;
N3 X100.0 Z250.0 T0200 ; Specifying offset number 00 deletes the offset vector.
```

![Fig. 14.1.5(b) Movement of offset (2)](image)

With parameter LVC (No. 5003#6) set to 1, the offset is canceled when:
1) The initial time after power is turned on.
2) The reset key on the MDI unit is pressed.
3) The a reset signal is input from the machine to the CNC.
Parameter LVC (No.5003#6) can be set so that offset will not be cancelled by pressing the reset key or by reset input.

**Only T code**

When only a T code is specified in a block, the tool is moved by the wear offset value without a move command. The movement is performed at rapid traverse rate in the G00 mode. It is performed at feedrate in other modes.

When a T code with offset number 0 or 00 is specified by itself, movement is performed to cancel the offset.

**WARNING**

When G50 X_Z_T_ ; is specified

Tool is not moved.

The coordinate system in which the coordinate value of the tool position is (X,Z) is set. The tool position is obtained by subtracting the wear offset value corresponding to the offset number specified in the T code.

**Tool geometry offset**

With the tool geometry offset, the work coordinate system is shifted by the X, Y, and Z geometry offset amounts. Namely, the offset amount corresponding to the number designated with the code is added to or subtracted from the current position.

**NOTE**

As well as wear offset, the tool can be compensated by parameter setting LGT(No.5002#4) to add or subtract the programmed end point of each block.

**Offset cancel**

Specifying offset number 0, 00, or 0000 cancels offset.

**NOTE**

When the tool figure offset number having the same value as the tool wear offset number is specified (parameter No. 5002#1 (LGN) is 0), a specified T code having offset number 2 does not cancel the tool figure offset. When parameter No. 5002#5 (LGC) is set, however, offset number 0 can be used to cancel the tool figure offset too.

When parameter TGC (No. 5003#7) is set to 1, a reset can also cancel the tool figure offset.
1. When a tool geometry offset number and tool wear offset number are specified with the last two digits of a T code (when LGN, bit 1 of parameter No.5002, is set 0),
   \[
   \text{N1} \ X50.0 \ Z100.0 \ \text{T0202} \ ; \text{specifies offset number 02}
   \]
   \[
   \text{N2} \ Z200.0 \ ;
   \]
   \[
   \text{N3} \ X100.0 \ Z250.0 \ \text{T0200} \ ; \text{cancels offset}
   \]

2. Assume that geometry offset is not cancelled with offset No.0 (when LGN, bit 1 of parameter No.5002, is set 1),
   \[
   \text{N1} \ X50.0 \ Z100.0 \ \text{T0202} \ ; \text{tool selection number (specified tool geometry offset number 02)}
   \]
   \[
   \text{N2} \ Z200.0 \ ;
   \]
   \[
   \text{N3} \ X100.0 \ Z250.0 \ \text{T0000} \ ; \text{cancels offset}
   \]
This section describes the following operations when tool position offset is applied: G53, G28, and G30 commands, manual reference position return, and the canceling of tool position offset with a T00 command.

Explanations

- **Reference position return (G28) and G53 command when tool position offset is applied**

  Executing reference position return (G28) or a G53 command when tool position offset is applied does not cancel the tool position offset vector. The absolute position display is as follows, however, according to the setting of bit 4 (LGT) of parameter No. 5002.

<table>
<thead>
<tr>
<th>LGT = 0 (Tool geometry compensation is based on shift of the coordinate system.)</th>
<th>Tool geometry compensation</th>
<th>Tool wear compensation</th>
</tr>
</thead>
<tbody>
<tr>
<td>Absolute position coordinate display</td>
<td>Block for reference position return or G53 command</td>
<td>The shift is reflected. Coordinates shifted according to the tool geometry compensation are displayed.</td>
</tr>
<tr>
<td></td>
<td>Next block</td>
<td>Coordinates shifted according to the tool geometry compensation are displayed.</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>LGT = 1 (Tool geometry compensation is based on tool movement.)</th>
<th>Tool geometry compensation</th>
<th>Tool wear compensation</th>
</tr>
</thead>
<tbody>
<tr>
<td>Absolute position coordinate display</td>
<td>Block for reference position return or G53 command</td>
<td>The vector is not reflected. The coordinates are displayed as if the offset had been temporarily canceled.</td>
</tr>
<tr>
<td></td>
<td>Next block</td>
<td>The vector is reflected.</td>
</tr>
</tbody>
</table>

**NOTE**

Bit 6 (DAL) of parameter No. 3104 is set to 0 (the actual positions to which the tool position offset is applied are displayed in the absolute position display).
• **Manual reference position return when tool offset is applied**

Executing manual reference position return when tool offset is applied does not cancel the tool position offset vector. The absolute position display is as follows, however, according to the setting of bit 4 (LGT) of parameter No. 5002.

**LGT = 0 (Tool geometry compensation is based on shift of the coordinate system.)**

<table>
<thead>
<tr>
<th>Absolute position coordinate display</th>
<th>Tool geometry compensation</th>
<th>Tool wear compensation</th>
</tr>
</thead>
<tbody>
<tr>
<td>Upon manual reference position return</td>
<td>The shift is reflected. Coordinates shifted according to tool geometry compensation are displayed.</td>
<td>The vector is not reflected. The coordinates are displayed as if the offset had been temporarily canceled.</td>
</tr>
<tr>
<td>Next block</td>
<td>Coordinates shifted according to tool geometry compensation are displayed.</td>
<td>The vector is reflected.</td>
</tr>
</tbody>
</table>

**LGT = 1 (Tool geometry compensation is based on tool movement.)**

<table>
<thead>
<tr>
<th>Absolute position coordinate display</th>
<th>Tool geometry compensation</th>
<th>Tool wear compensation</th>
</tr>
</thead>
<tbody>
<tr>
<td>Upon manual reference position return</td>
<td>The vector is not reflected. The coordinates are displayed as if the offset had been temporarily canceled.</td>
<td>The vector is not reflected. The coordinates are displayed as if the offset had been temporarily canceled.</td>
</tr>
<tr>
<td>Next block</td>
<td>The vector is reflected.</td>
<td>The vector is reflected.</td>
</tr>
</tbody>
</table>

**NOTE**

Bit 6 (DAL) of parameter No. 3104 is set to 0 (the actual positions to which the tool position offset is applied are displayed in the absolute position display).
### Canceling tool position offset with T00

Whether specifying T00 alone, while tool position offset is applied, cancels the offset depends on the settings of the following parameters:

<table>
<thead>
<tr>
<th>LGN (No.5002#1)</th>
<th>LGT (No.5002#4)</th>
<th>LGC (No.5002#5)</th>
<th>Result</th>
</tr>
</thead>
<tbody>
<tr>
<td>0: Same as the wear offset number</td>
<td>Geometry compensation is applied: 0: Based on shift of the coordinate system 1: Based on movement of the tool</td>
<td>The geometry offset is: 0: Not canceled with T00 1: Canceled with T00</td>
<td>Not canceled Canceled</td>
</tr>
<tr>
<td>1: Same as the tool selection number</td>
<td>LGM=0 LGC=1</td>
<td>LWM (No.5002#6) Tool position offset is applied: 0: By means of T code 1: By means of movement along axis</td>
<td></td>
</tr>
<tr>
<td>LGT=1</td>
<td>LWM=0 LWM=1</td>
<td>Canceled Not canceled</td>
<td></td>
</tr>
</tbody>
</table>

#### NOTE
1. When LGT=0, LWM is unrelated.
2. When LGT=1, LGC is unrelated, even when LGN = 0.

<table>
<thead>
<tr>
<th>LGN (No.5002#1)</th>
<th>LGT (No.5002#4)</th>
<th>LGC (No.5002#5)</th>
<th>Result</th>
</tr>
</thead>
<tbody>
<tr>
<td>0: Same as the wear offset number</td>
<td>Geometry compensation is applied: 0: Based on shift of the coordinate system 1: Based on movement of the tool</td>
<td>The geometry offset is: 0: Not canceled with T00 1: Canceled with T00</td>
<td>Canceled</td>
</tr>
<tr>
<td>1: Same as the tool selection number</td>
<td>LGM=0 LGC=1</td>
<td>LWM (No.5002#6) Tool position offset is applied: 0: By means of T code 1: By means of movement along axis</td>
<td></td>
</tr>
<tr>
<td>LGT=1</td>
<td>LWM=0 LWM=1</td>
<td>Canceled Not canceled</td>
<td></td>
</tr>
</tbody>
</table>

#### NOTE
1. When LGT = 0, LWM is unrelated.
2. When LGT = 1, LGC is unrelated.
14.2
OVERVIEW OF TOOL NOSE RADIUS COMPENSATION

It is difficult to produce the compensation necessary to form accurate parts when using only the tool offset function due to tool nose roundness in taper cutting or circular cutting. The tool nose radius compensation function compensates automatically for the above errors.

![Fig 14.2 Tool path of tool nose radius compensation](image)

14.2.1
Imaginary Tool Nose

The tool nose at position A in following figure does not actually exist. The imaginary tool nose is required because it is usually more difficult to set the actual tool nose radius center to the start position than the imaginary tool nose (Note). Also when imaginary tool nose is used, the tool nose radius need not be considered in programming. The position relationship when the tool is set to the start position is shown in the following figure.

![Fig. 14.2.1(a) Tool nose radius center and imaginary tool nose](image)
**CAUTION**

In a machine with reference positions, a standard position like the turret center can be placed over the start position. The distance from this standard position to the nose radius center or the imaginary tool nose is set as the tool offset value. Setting the distance from the standard position to the tool nose radius center as the offset value is the same as placing the tool nose radius center over the start position, while setting the distance from the standard position to the imaginary tool nose is the same as placing the imaginary tool nose over the standard position. To set the offset value, it is usually easier to measure the distance from the standard position to the imaginary tool nose than from the standard position to the tool nose radius center.

**Fig 14.2.1(b) Tool offset value when the turret center is placed over the start position**

Unless tool nose radius compensation is performed, the tool nose center path is the same as the programmed path. If tool nose radius compensation is used, accurate cutting will be performed.

**Fig 14.2.1(c) Tool path when programming using the tool nose center**

Without tool nose radius compensation, the imaginary tool nose path is the same as the programmed path. With tool nose radius compensation, accurate cutting will be performed.

**Fig 14.2.1(d) Tool path when programming using the imaginary tool nose**
14.2.2 Direction of Imaginary Tool Nose

The direction of the imaginary tool nose viewed from the tool nose center is determined by the direction of the tool during cutting, so it must be set in advance as well as offset values.

The direction of the imaginary tool nose can be selected from the eight specifications shown in the Fig. 14.2.2 below together with their corresponding codes.

This Fig 14.2.2 illustrates the relation between the tool and the start position. The following apply when the tool geometry offset and tool wear offset option are selected.

![Fig. 14.2.2 Direction of imaginary tool nose](image-url)
Imaginary tool nose numbers 0 and 9 are used when the tool nose center coincides with the start position. Set imaginary tool nose number to address OFT for each offset number. Bit 7 (WNP) of parameter No. 5002 is used to determine whether the tool geometry offset number or the tool wear offset number specifies the direction of the virtual tool nose for tool nose radius compensation.

Limitations

- **Plane selection**
  
  Virtual tool nose directions 1 to 8 can be used only in the G18 (Z–X) plane. For virtual tool nose 0 or 9, compensation is applied in both the G17 and G19 planes.

### 14.2.3 Offset Number and Offset Value

#### Explanations

- **Offset number and offset value**

#### Table 14.2.3(a) Tool geometry offset

<table>
<thead>
<tr>
<th>Geometry offset number</th>
<th>OFGX (X-axis geometry offset amount)</th>
<th>OFGZ (Z-axis geometry offset amount)</th>
<th>OFGR (Tool nose radius geometry offset value)</th>
<th>OFT (Imaginary tool nose direction)</th>
<th>OFGY (Y–axis geometry offset amount)</th>
</tr>
</thead>
<tbody>
<tr>
<td>G01</td>
<td>10.040</td>
<td>50.020</td>
<td>2</td>
<td>70.020</td>
<td></td>
</tr>
<tr>
<td>G02</td>
<td>20.060</td>
<td>30.030</td>
<td>0.20</td>
<td>90.030</td>
<td></td>
</tr>
<tr>
<td>G03</td>
<td>0</td>
<td>0</td>
<td>0.20</td>
<td>0</td>
<td></td>
</tr>
<tr>
<td>G04</td>
<td>:</td>
<td>:</td>
<td>:</td>
<td>:</td>
<td>:</td>
</tr>
<tr>
<td>G05</td>
<td>:</td>
<td>:</td>
<td>:</td>
<td>:</td>
<td>:</td>
</tr>
<tr>
<td>:</td>
<td>:</td>
<td>:</td>
<td>:</td>
<td>:</td>
<td>:</td>
</tr>
</tbody>
</table>
Table 14.2.3(b) Tool wear offset

<table>
<thead>
<tr>
<th>Wear offset number</th>
<th>OFGX (X-axis wear offset amount)</th>
<th>OFGZ (Z-axis wear offset amount)</th>
<th>OFGR (Tool nose radius wear offset value)</th>
<th>OFT (Imaginary tool nose direction)</th>
<th>OFGY (Y-axis wear offset amount)</th>
</tr>
</thead>
<tbody>
<tr>
<td>W01</td>
<td>0.040</td>
<td>0.020</td>
<td>0</td>
<td>1</td>
<td>0.010</td>
</tr>
<tr>
<td>W02</td>
<td>0.060</td>
<td>0.030</td>
<td>0</td>
<td>2</td>
<td>0.020</td>
</tr>
<tr>
<td>W03</td>
<td>0</td>
<td>0.20</td>
<td>6</td>
<td>0</td>
<td></td>
</tr>
<tr>
<td>W04</td>
<td>:</td>
<td>:</td>
<td>:</td>
<td>:</td>
<td>:</td>
</tr>
<tr>
<td>W05</td>
<td>:</td>
<td>:</td>
<td>:</td>
<td>:</td>
<td>:</td>
</tr>
</tbody>
</table>

- **Tool nose radius compensation**

  The tool nose radius compensation value during execution is the sum of the geometry offset and the wear offset.

  \[ \text{OFR} = \text{OFGR} + \text{OFWR} \]

- **Imaginary tool nose direction**

  The imaginary tool nose direction may be set for either the geometry offset or the wear offset.
  However, the last designated direction later is effective.

- **Command of offset value**

  A offset number is specified with the same T code as that used for tool offset. For details, see Subsec. II–14.1.2.

**NOTE**

When the geometry offset number is made common to the tool selection by the parameter LGT(No.5002#1)setting and a T code for which the geometry offset and wear offset number differ from each other is designated, the imaginary tool nose direction specified by the geometry offset number is valid.

Example) \( T0102 \)

\( \text{OFR} = \text{RFGR}01 + \text{OFWR}02 \)
\( \text{OFT} = \text{OFT}01 \)

However, the direction specified by the wear offset number becomes enabled depending on the parameter WNP (No.5002#7) setting.

- **Setting range of offset value**

  The range of the offset value is as follows:

<table>
<thead>
<tr>
<th>Increment system</th>
<th>metric system</th>
<th>Inch system</th>
</tr>
</thead>
<tbody>
<tr>
<td>IS–B</td>
<td>0 to ± 999.999 mm</td>
<td>0 to ± 99.9999 inch</td>
</tr>
<tr>
<td>IS–C</td>
<td>0 to ± 999.9999 mm</td>
<td>0 to ± 99.9999 inch</td>
</tr>
</tbody>
</table>

The offset value corresponding to the offset number 0 is always 0.
No offset value can be set to offset number 0.
14.2.4 Work Position and Move Command

In tool nose radius compensation, the position of the workpiece with respect to the tool must be specified.

<table>
<thead>
<tr>
<th>G code</th>
<th>Workpiece position</th>
<th>Tool path</th>
</tr>
</thead>
<tbody>
<tr>
<td>G40</td>
<td>(Cancel)</td>
<td>Moving along the programmed path</td>
</tr>
<tr>
<td>G41</td>
<td>Right side</td>
<td>Moving on the left side the programmed path</td>
</tr>
<tr>
<td>G42</td>
<td>Left side</td>
<td>Moving on the right side the programmed path</td>
</tr>
</tbody>
</table>

The tool is offset to the opposite side of the workpiece.
The workpiece position can be changed by setting the coordinate system as shown below.

G40, G41, and G42 are modal. Don’t specify G41 while in the G41 mode. If you do, compensation will not work properly. Don’t specify G42 while in the G42 mode for the same reason. G41 or G42 mode blocks in which G41 or G42 are not specified are expressed by (G41) or (G42) respectively.

- **Tool movement when the workpiece position does not change**

When the tool is moving, the tool nose maintains contact with the workpiece.
• Tool movement when the workpiece position changes

The workpiece position against the tool changes at the corner of the programmed path as shown in the following figure.

Although the workpiece does not exist on the right side of the programmed path in the above case, the existence of the workpiece is assumed in the movement from A to B. The workpiece position must not be changed in the block next to the start–up block. In the above example, if the block specifying motion from A to B were the start–up block, the tool path would not be the same as the one shown.

• Start–up

The block in which the mode changes to G41 or G42 from G40 is called the start–up block.

\[
\begin{align*}
G40 & \ ; \\
G41 & \ ; \quad \text{(Start–up block)}
\end{align*}
\]

Transient tool movements for offset are performed in the start–up block. In the block after the start–up block, the tool nose center is positioned vertically to the programmed path of that block at the start position.
• Offset cancel

The block in which the mode changes to G40 from G41 or G42 is called the offset cancel block.

\[ \text{G41 } \_ ; \]
\[ \text{G40 } \_ ; \] (Offset cancel block)

The tool nose center moves to a position vertical to the programmed path in the block before the cancel block. The tool is positioned at the end position in the offset cancel block (G40) as shown below.

![Offset cancel block diagram]

• Specification of G41/G42 in G41/G42 mode

When is specified again in G41/G42 mode, the tool nose center is positioned vertical to the programmed path of the preceding block at the end position of the preceding block.

\[ \text{G42 W–500.0 U–500.0 } ; \]

In the block that first specifies G41/G42, the above positioning of the tool nose center is not performed.

• Tool movement when the moving direction of the tool in a block which includes a G40 command is different from the direction of the workpiece

When you wish to retract the tool in the direction specified by X(U) and Z(W) cancelling the tool nose radius compensation at the end of machining the first block in the figure below, specify the following:

\[ \text{G40 X(U) } \_ \text{ Z(W) } \_ \_ \_ \_ I \_ \_ K \_ ; \]

where I and K are the direction of the blank figure of the next block, and must be specified in incremental mode.

![Tool movement diagram]
The workpiece position specified by addresses I and K is the same as that in the preceding block.

<table>
<thead>
<tr>
<th>Command</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>G40 X_ Z_ I_ K_ ;</td>
<td>Tool nose radius compensation</td>
</tr>
<tr>
<td>G40 G02 X_ Z_ I_ K_ ;</td>
<td>Circular interpolation</td>
</tr>
</tbody>
</table>

If I and/or K is specified with G40 in the cancel mode, the I and/or K is ignored. The numeral s followed I and K should always be specified as radius values.

**Examples**

(G40 mode)

1. G42 G00 X60.0 ;
2. G01 X120.0 W–150.0 F10 ;
3. G40 G00 X300.0 W150.0 I40.0 K–30.0 ;
14.2.5 Notes on Tool Nose Radius Compensation

**Explanations**

- **Tool movement when two or more blocks without a move command should not be programmed consecutively**
  
  1. M05 ; M code output
  2. S210 ; S code output
  3. G04 X1000 ; Dwell
  4. G01 U0 ; Feed distance of zero
  5. G98 ; G code only
  6. G10 P01 X10.0 Z20.0 R0.5 Q2 ; Offset change

  If two or more of the above blocks are specified consecutively, the tool nose center comes to a position vertical to the programmed path of the preceding block at the end of the preceding block. However, if the no movement commands is 4 above, the above tool motion is attained only with one block.

  ![Diagram of tool movement](image)

- **Tool nose radius compensation with G90 or G94**

  Tool nose radius compensation with G90 (outer diameter/internal diameter cutting cycle) or G94 (end face turning cycle) is as follows:

  1. **Motion for imaginary tool nose numbers**
     
     For each path in the cycle, the tool nose center path is generally parallel to the programmed path.

  ![Diagram of tool nose path](image)
2. **Direction of the offset**

The offset direction is indicated in the figure below regardless of the G41/G42 mode.

- **Tool nose radius compensation with G71 to G76 or G78**

  When one of following cycles is specified, the cycle deviates by a tool nose radius compensation vector. During the cycle, no intersection calculation is performed.
  - G71 (Stock removal in turning or traverse grinding cycle)
  - G72 (Stock removal in facing or traverse direct constant-dimension grinding cycle)
  - G73 (Pattern repeating or Oscillation grinding cycle)
  - G74 (End face peck drilling)
  - G75 (Outer diameter/internal diameter drilling)
  - G76 (Multiple threading cycle)
  - G78 (Threading cycle)

- **Tool nose radius compensation when chamfering is performed**

  Movement after compensation is shown below.

- **Tool nose radius compensation when a corner arc is inserted**

  Movement after compensation is shown below.
Tool nose radius compensation when the block is specified from the MDI

In this case, tool nose radius compensation is not performed.
14.3 DETAILS OF TOOL NOSE RADIUS COMPENSATION

This section provides a detailed explanation of the movement of the tool for tool nose radius compensation outlined in Section 14.2. This section consists of the following subsections:

14.3.1 General
14.3.2 Tool Movement in Start–up
14.3.3 Tool Movement in Offset Mode
14.3.4 Tool Movement in Offset Mode Cancel
14.3.5 Interference Check
14.3.6 Overcutting by Tool Nose Radius Compensation
14.3.7 Correction in Chamfering and Corner Arcs
14.3.8 Input Command from MDI
14.3.9 General Precautions for Offset Operations
14.3.10 G53, G28, and G30 Commands in Tool–tip Radius Compensation Mode

14.3.1 General

The tool nose radius center offset vector is a two dimensional vector equal to the offset value specified in a T code, and the is calculated in the CNC. Its dimension changes block by block according to tool movement. This offset vector (simply called vector herein after) is internally created by the control unit as required for proper offsetting and to calculate a tool path with exact offset (by tool nose radius) from the programmed path. This vector is deleted by resetting. The vector always accompanies the tool as the tool advances. Proper understanding of vector is essential to accurate programming. Read the description below on how vectors are created carefully.

G40, G41, or G42 is used to delete or generate vectors. These codes are used together with G00, G01, G02, G03 or G33 to specify a mode for tool motion (Offsetting).

<table>
<thead>
<tr>
<th>G code</th>
<th>Function</th>
<th>Workpiece position</th>
</tr>
</thead>
<tbody>
<tr>
<td>G40</td>
<td>Tool nose radius compensation cancel</td>
<td>Neither</td>
</tr>
<tr>
<td>G41</td>
<td>Left offset along tool path</td>
<td>Right</td>
</tr>
<tr>
<td>G42</td>
<td>Right offset along tool path</td>
<td>Left</td>
</tr>
</tbody>
</table>

G41 and G42 specify an off mode, while G40 specifies cancellation of the offset.

The system enters the cancel mode immediately after the power is turned on, when the RESET button on the MDI is pushed or a program is forced to end by executing M02 or M30. (the system may not enter the cancel mode depending on the machine tool.) In the cancel mode, the vector is set to zero, and the path of the center of tool nose coincides with the programmed, path. A program must end in cancel mode. If it ends in the offset mode, the tool cannot be positioned at the end point, and the tool stops at a location the vector length away from the end point.
• Start–up

When a block which satisfies all the following conditions is executed in cancel mode, the system enters the offset mode. Control during this operation is called start–up.

- G41 or G42 is contained in the block, or has been specified to set the system enters the offset mode. Control during this operation is called start–up.
- The offset number for tool nose radius compensation is not 00.
- X or Z moves is specified in the block and the move distance is not zero.

A circular command (G02 or G03) is not allowed in start–up. If specified, P/S alarm (PS34) will occur. Two blocks are read in during start–up. The first block is executed, and the second block is entered into the tool nose radius compensation buffer. In the single block mode, two blocks are read and the first block is executed, then the machine stops. In subsequent operations, two blocks are read in advance, so the CNC has the block currently being executed, and the next two blocks.

• Inner side and outer side

When an angle of intersection created by tool paths specified with move commands for two blocks is over 180°, it is referred to as “inner side.” When the angle is between 0° and 180°, it is referred to as “outer side.”

• Meaning of symbols

The following symbols are used in subsequent figures:
- S indicates a position at which a single block is executed once.
- SS indicates a position at which a single block is executed twice.
- SSS indicates a position at which a single block is executed three times.
- L indicates that the tool moves along a straight line.
- C indicates that the tool moves along an arc.
- r indicates the tool nose radius compensation value.
- An intersection is a position at which the programmed paths of two blocks intersect with each other after they are shifted by r.
- indicates the center of the tool nose radius.
14.3.2 Tool Movement in Start–up

Explanations

- Tool movement around an inner side of a corner (180° ≤ α)

- Tool movement around the outside of a corner at an obtuse angle (90° ≤ α < 180°)

When the offset cancel mode is changed to offset mode, the tool moves as illustrated below (start–up):
• Tool movement around the outside of an acute angle ($\alpha<90^\circ$)

![Diagram of Linear→Linear movement](image)

![Diagram of Linear→Circular movement](image)

• Tool movement around the outside linear→linear at an acute angle less than 1 degree ($\alpha<1^\circ$)

![Diagram of Tool movement](image)

• A block without tool movement specified at start-up

If the command is specified at start-up, the offset vector is not created.

```
G91 G40 ... ;
N6 U100.0 W100.0 ;
N7 G41 U0 ;
N8 U–100.0 ;
N9 U–100.0 W100.0 ;
```

![Diagram of Tool movement](image)

NOTE
For the definition of blocks that do not move the tool, see Subsec. II–14.3.3.
14.3.3 Tool Movement in Offset Mode

Explanations

- Tool movement around the inside of a corner ($180^\circ \leq \alpha$)

In the offset mode, the tool moves as illustrated below:
Tool movement around the inside \((\alpha<1^\circ)\) with an abnormally long vector, linear \(\rightarrow\) linear

Also in case of arc to straight line, straight line to arc and arc to arc, the reader should infer in the same procedure.
• Tool movement around the outside corner at an obtuse angle \((90^{\circ} \leq \alpha < 180^{\circ})\)
• Tool movement around the outside corner at an acute angle ($\alpha<90^\circ$)
• When it is exceptional
  • End position for the arc is not on the arc

If the end of a line leading to an arc is programmed as the end of the arc by mistake as illustrated below, the system assumes that tool nose radius compensation has been executed with respect to an imaginary circle that has the same center as the arc and passes the specified end position. Based on this assumption, the system creates a vector and carries out compensation. The resulting tool nose radius center path is different from that created by applying tool nose radius compensation to the programmed path in which the line leading to the arc is considered straight.

The same description applies to tool movement between two circular paths.
If the tool nose radius compensation value is sufficiently small, the two circular Tool nose radius center paths made after compensation intersect at a position (P). Intersection P may not occur if an excessively large value is specified for tool nose radius compensation. When this is predicted, P/S alarm (No.33) occurs at the end of the previous block and the tool is stopped. In the example shown below, Tool nose radius center paths along arcs A and B intersect at P when a sufficiently small value is specified for tool nose radius compensation. If an excessively large value is specified, this intersection does not occur.

- **There is no inner intersection**

- **The center of the arc is identical with the start position or the end position**

If the center of the arc is identical with the start position or end point, P/S alarm (No. 038) is displayed, and the tool will stop at the end position of the preceding block.
The offset direction is decided by G codes (G41 and G42) for tool nose radius and the sign of tool nose radius compensation value as follows.

<table>
<thead>
<tr>
<th>G code</th>
<th>Sign of offset value</th>
<th>+</th>
<th>–</th>
</tr>
</thead>
<tbody>
<tr>
<td>G41</td>
<td>Left side offset</td>
<td>Right side offset</td>
<td></td>
</tr>
<tr>
<td>G42</td>
<td>Right side offset</td>
<td>Left side offset</td>
<td></td>
</tr>
</tbody>
</table>

The offset direction can be changed in the offset mode. If the offset direction is changed in a block, a vector is generated at the intersection of the tool nose radius center path of that block and the tool nose radius center path of a preceding block. However, the change is not available in the start–up block and the block following it.
• Tool nose radius center path with an intersection

Linear → Linear

Linear → Circular

Circular → Linear

Circular → Circular
- Tool nose radius center path without an intersection

When changing the offset direction in block A to block B using G41 and G42, if intersection with the offset path is not required, the vector normal to block B is created at the start point of block B.

![Diagram of programming concepts](image-url)

**Linear→Linear**

**Linear→Circular**

**Circular→Circular**

An arc whose end position is not on the arc
If the following command is specified in the offset mode, the offset mode is temporarily canceled then automatically restored. The offset mode can be canceled and started as described in Subsections II–14.3.2 and II–14.3.4.

If G28 is specified in the offset mode, the offset mode is canceled at an intermediate position. If the vector still remains after the tool is returned to the reference position, the components of the vector are reset to zero with respect to each axis along which reference position return has been made.

The offset vector can be set to form a right angle to the moving direction in the previous block, irrespective of machining inner or outer side, by commanding the tool nose radius compensation G code (G41, G42) in the offset mode, independently. If this code is specified in a circular command, correct circular motion will not be obtained.

When the direction of offset is expected to be changed by the command of tool nose radius compensation G code (G41, G42), refer to “Change in the offset direction in the offset mode” in Subsec.14.3.3.
• Command cancelling the offset vector temporality

During offset mode, if G50 is commanded, the offset vector is temporarily cancelled and thereafter offset mode is automatically restored. In this case, without movement of offset cancel, the tool moves directly from the intersecting point to the commanded point where offset vector is canceled. Also when restored to offset mode, the tool moves directly to the intersecting point.

• Workpiece coordinate system setting (G50)

![Diagram]

(G41)
N5 G91 G01 U700.0 W300.0 ;
N6 U600.0 W–300.0 ;
N7 G50 X200.0 Z100.0 ;
N8 G01 X800.0 Z400.0 ;

• Canned cycles (G90, G92, G94) and Multiple repetitive cycles (G71 to G76)

See Sections II–14.1 (G90, G92, G94) and II–14.2 (G70 to G76) for the tool nose radius compensation is related canned cycles.

![Diagram]

(G42)
N5 G01 U50.0 W–60.0 ;
N6 W–80.0 ;
N7 G90 U–60.0 W–80.0 R–30.0 ;
N8 G01 U120.0 W50.0 ;
N9 W50.0 ;
• A block without tool movement

The following blocks have no tool movement. In these blocks, the tool will not move even if tool nose radius compensation is effected.

1. M05 ; M code output
2. S21 ; S code output
3. G04 X10.0 ; Dwell
4. G10 P01 X10 Z20 R10.0 ; tool nose radius compensation value setting
5. (G17) Z200.0 ; Move command not included in the offset plane.
6. G98 ; G code only
7. X0 ; Move distance is zero.

Commands 1 to 6 are of no movement.

• A block without tool movement specified in offset mode

When a single block without tool movement is commanded in the offset mode, the vector and Tool nose radius center path are the same as those when the block is not commanded. This block is executed at the single block stop point.

N6 U100.0 W100.0 ;
N7 G04 Z100.0 ;
N8 U100.0 ;

N6 G91 U100.0 W100.0 ;
N7 S21 ;
N8 G04 X10.0 ;
N9 W100.0 ;

However, when the move distance is zero, even if the block is commanded singly, tool motion becomes the same as that when more than one block of without tool movement are commanded, which will be described subsequently.
• Corner movement

When two or more vectors are produced at the end of a block, the tool moves linearly from one vector to another. This movement is called the corner movement.

If these vectors almost coincide with each other, the corner movement isn’t performed and the latter vector is ignored.

If ΔVx ≤ ΔV limit and ΔVy ≤ ΔV limit, the latter vector is ignored. The ΔV limit is set in advance by parameter (No. 5010). If these vectors do not coincide, a move is generated to turn around the corner. This move belongs to the latter block.

For manual operation during the tool nose radius compensation, refer to Section III–3.5, “Manual Absolute ON and OFF.”
14.3.4 Tool Movement in Offset Mode Cancel

Explanations

- Tool movement around an inside corner \((180^\circ \leq \alpha)\)

- Tool movement around an outside corner at an obtuse angle \((90^\circ \leq \alpha < 180^\circ)\)
• Tool movement around an outside corner at an acute angle ($\alpha < 90^\circ$)

![Linear→Linear Diagram]

![Circular→Linear Diagram]

• Tool movement around the outside linear→linear at an acute angle less than 1 degree ($\alpha < 1^\circ$)

• A block without tool movement specified together with offset cancel

When a block without tool movement is commanded together with an offset cancel, a vector whose length is equal to the offset value is produced in a normal direction to tool motion in the earlier block, the vector is cancelled in the next move command.

```
N6 G91 U100.0 W100.0 ;
N7 G40 ;
N8 U0 W100.0 ;
```

![Programmed path Diagram]
• Block containing G40 and \( I_-, J_-, K_- \)

• The previous block contains G41 or G42

If a G41 or G42 block precedes a block in which G40 and \( I_-, J_-, K_- \) are specified, the system assumes that the path is programmed as a path from the end position determined by the former block to a vector determined by (IJ), (IK), or (JK). The direction of compensation in the former block is inherited.

\[
\begin{align*}
\text{N1 (G42 mode)} &; \\
\text{N2 G40 Xa Yb I_- J_- ;} \\
\end{align*}
\]

In this case, note that the CNC obtains an intersection of the tool path irrespective of whether inner or outer side machining is specified.

When an intersection is not obtainable, the tool comes to the normal position to the previous block at the end of the previous block.
14.3.5 Interference Check

Tool overcutting is called interference. The interference check function checks for tool overcutting in advance. However, all interference cannot be checked by this function. The interference check is performed even if overcutting does not occur.

Explanations

- Criteria for detecting interference

(1) The direction of the tool nose radius path is different from that of the programmed path (from 90 degrees to 270 degrees between these paths).

![Diagram showing interference conditions](image-url)
(2) In addition to the condition (1), the angle between the start point and end point on the Tool nose radius center path is quite different from that between the start point and end point on the programmed path in circular machining (more than 180 degrees).

```
(G41)
N5 G01 U200.0 W800.0 T1 ;
N6 G02 U–160.0 W320.0 I–800.0 K–200.0 T2 ;
N7 G01 U–500.0 W200.0 ;
```

(Tool compensation value corresponding to T1 : r1 = 200.0)
(Tool compensation value corresponding to T2 : r2 = 600.0)

In the above example, the arc in block N6 is placed in the one quadrant. But after tool nose radius compensation, the arc is placed in the four quadrants.
**Correction of interference in advance**

(1) Removal of the vector causing the interference
When tool nose radius compensation is performed for blocks A, B and C and vectors V₁, V₂, V₃ and V₄ between blocks A and B, and V₅, V₆, V₇ and V₈ between B and C are produced, the nearest vectors are checked first. If interference occurs, they are ignored. But if the vectors to be ignored due to interference are the last vectors at the corner, they cannot be ignored.

**Check between vectors V₄ and V₅**  
Interference V₄ and V₅ are ignored.

**Check between V₃ and V₆**  
Interference V₃ and V₆ are ignored

**Check between V₂ and V₇**  
Interference V₂ and V₇ are ignored

**Check between V₁ and V₈**  
Interference V₁ and V₈ are cannot be ignored
If while checking, a vector without interference is detected, subsequent vectors are not checked. If block B is a circular movement, a linear movement is produced if the vectors are interfered.

*(Example 1) The tool moves linearly from V₁ to V₈*
(Example 2) The tool moves linearly from V₁, V₂, V₇, to V₈

(2) If the interference occurs after correction (1), the tool is stopped with an alarm.
If the interference occurs after correction (1) or if there are only one pair of vectors from the beginning of checking and the vectors interfere, the P/S alarm (No.41) is displayed and the tool is stopped immediately after execution of the preceding block. If the block is executed by the single block operation, the tool is stopped at the end of the block.

After ignoring vectors V₂ and V₅ because of interference, interference also occurs between vectors V₁ and V₆. The alarm is displayed and the tool is stopped.
• When interference is assumed although actual interference does not occur

(1) Depression which is smaller than the tool nose radius compensation value

There is no actual interference, but since the direction programmed in block B is opposite to that of the path after tool nose radius compensation the tool stops and an P/S alarm (No.041) is displayed.

(2) Groove which is smaller than the tool nose radius compensation value

Like (1), the direction is reverse in block B.
14.3.6
Overcutting by Tool Nose Radius Compensation

Explanations

- **Machining an inside corner at a radius smaller than the tool nose radius**

  When the radius of a corner is smaller than the cutter radius, because the inner offsetting of the cutter will result in overcuttings, an alarm is displayed and the CNC stops at the start of the block. In single block operation, the overcutting is generated because the tool is stopped after the block execution.

- **Machining a groove smaller than the tool nose radius**

  Since the tool nose radius compensation forces the path of the center of the tool to move in the reverse of the programmed direction, overcutting will result. In this case an alarm is displayed and the CNC stops at the start of the block.
- **Machining a step smaller than the tool nose radius**

When machining of the step is commanded by circular machining in the case of a program containing a step smaller than the tool nose radius, the path of the center of tool with the ordinary offset becomes reverse to the programmed direction. In this case, the first vector is ignored, and the tool moves linearly to the second vector position. The single block operation is stopped at this point. If the machining is not in the single block mode, the cycle operation is continued. If the step is of linear, no alarm will be generated and cut correctly. However uncut part will remain.

14.3.7 *Correction in Chamfering and Corner Arcs*

In chamfering or corner arcs, tool nose radius compensation only be performed when an ordinary intersection exists at the corner.

In offset cancel mode, a start–up block or when exchanging the offset direction, compensation cannot be performed, an P/S alarm (No.39) is displayed and the tool is stopped.

In inner chamfering or inner corner arcs, if the chamfering value or corner arc value is smaller than the tool nose radius value, the tool is stopped with an P/S alarm (No.39) since overcutting will occur.

The valid inclination angle of the programmed path in the blocks before and after the corner is 1 degree or less so that the P/S alarm (No.52, 54) generated by the calculating error of tool nose radius compensation does not occur.
The following example shows a machining area which cannot be cut sufficiently.

In inner chamfering, if the portion of the programmed path that is not a part of the chamfering (in the above figure $\ell_1$ or $\ell_2$) is in following range, insufficiently cut area will exist.

$$0 \leq \ell_1 \text{ or } \ell_2 < r \cdot \tan 22.5^\circ \quad (r: \text{tool nose radius})$$

Enlarged view on the remaining machining area

Although the tool should be positioned at 2 in the above figure, the tool is positioned at 1 (the tool nose is tangent to line L).

Thus, area 3 is not machined.

P/S alarm No. 52 or 55 is displayed in the following cases:

Limit of programmed path with chamfering
The alarm is displayed at this path
Programmed path

End point P2
Tool nose center path without chamfering
Tool nose center path with chamfering
Start point
In outer chamfering with an offset, a limit is imposed on the programmed path. The path during chamfering coincides with the intersection points P₁ or P₂ without chamfering, therefore, outer chamfering is limited. In the figure above, the end point of the tool center path with chamfering coincides with the intersection point (P₂) of the next block without chamfering. If the chamfering value is more than the limit value specified, P/S alarm No.52 or 55 will be displayed.

14.3.8 Input Command from MDI

Tool nose radius compensation is not performed for commands input from the MDI. However, when automatic operation using absolute commands is temporarily stopped by the single block function, MDI operation is performed, then automatic operation starts again, the tool path is as follows:

In this case, the vectors at the start position of the next block are translated and the other vectors are produced by the next two blocks. Therefore, from next block but one, tool nose radius compensation is accurately performed.

When position Pₐ, Pₐ, and Pₖ are programmed in an absolute command, tool is stopped by the single block function after executing the block from Pₐ to Pₐ and the tool is moved by MDI operation. Vectors Vₐ and Vₐ are translated to Vₐ' and Vₐ' and offset vectors are recalculated for the vectors Vₖ and Vₖ between block Pₐ–Pₖ and Pₖ–Pₖ. However, since vector Vₐ is not calculated again, compensation is accurately performed from position Pₖ.
14.3.9 General Precautions for Offset Operations

- Changing the offset value

In general, the offset value is changed in cancel mode, or when changing tools. If the offset value is changed in offset mode, the vector at the end point of the block is calculated for the new offset value.

![Diagram showing offset values in blocks N6 and N7](image)

When some vectors are produced between blocks N6 and N7, the vector at the end point of the present blocks is calculated using the offset value of the block N6.

When a negative offset value is specified, the program is executed for the figure which is created by exchanging G41 for G42 or G42 for G41 in the process sheet.

A tool machining an inner profile will machine the occur profile, and tool machining the outer profile will machine the inner profile.

An example is shown below. In general, CNC machining is programmed assuming a positive offset value. When a program specifies a tool path as shown in 1, the tool will move as shown in 2 if a negative offset is specified. The tool in 2 will move as shown in 1 when the sign of the offset value is reserved.

![Diagram showing tool paths](image)

**WARNING**

When the sign of the offset value is reversed, the offset vector of the tool nose is reversed but the imaginary tool nose direction does not change. Therefore, do not reverse the sign of the offset value when starting the machining meeting the imaginary tool nose to the start point.
When a G53 command is executed in tool–tip radius compensation mode, the tool–tip radius compensation vector is automatically canceled before positioning, that vector being automatically restored by a subsequent move command. The format for restoring the tool–tip radius compensation vector is the FS16 type when bit 2 (CCN) of parameter No. 5003 is set to 0, or the FS15 type when the bit is set to 1.

When a G28 or G30 command is executed in tool–tip radius compensation mode, the tool–tip radius compensation vector is automatically canceled before automatic reference position return, that vector being automatically restored by a subsequent move command. The timing and format for canceling and restoring the tool–tip radius compensation vector are the FS15 type when bit 2 (CCN) of parameter No. 5003 is set to 1, or the FS16 type when the bit is set to 0.

Explanations

- **G53 command in tool–tip radius compensation mode**

  When a G53 command is executed in tool–tip radius compensation mode, a vector having a length equal to the offset is created, at the end of the preceding block, perpendicular to the direction in which the tool moves. When the tool moves to a specified position according to the G53 command, the offset vector is canceled. When the tool moves according to the next command, the offset vector is automatically restored. The format for restoring the tool–tip radius compensation vector is the start–up type when bit 2 (CCN) of parameter No. 5003 is set to 0, or the intersection vector type (FS15 type) when the bit is set to 1.

- **G53 command in offset mode**

  When bit 2 (CCN) of parameter No. 5003 is set to 0

  ![Start-up](image1)

  ![Start-up](image2)

  When bit 2 (CCN) of parameter No. 5003 is set to 1

  ![Start-up](image3)

  ![Start-up](image4)
- Incremental G53 command in offset mode

- G53 command specifying no movement in offset mode
WARNING

1 When a G53 command is executed in tool–tip radius compensation mode when all–axis machine lock is applied, positioning is not performed for those axes to which machine lock is applied and the offset vector is not canceled. When bit 2 (CCN) of parameter No. 5003 is set to 0 or each–axis machine lock is applied, the offset vector is canceled.

Example 1) When bit 2 (CCN) of parameter No. 5003 is set to 0 and all–axis machine lock is applied

Example 2) When bit 2 (CCN) of parameter No. 5003 is set to 1 and all–axis machine lock is applied

Example 3) When bit 2 (CCN) of parameter No. 5003 is set to 1 and each–axis machine lock is applied
WARNING

2. When a compensation axis is specified in a G53 command in tool-tip radius compensation mode, the vectors for other compensation axes are also canceled. This also applies when bit 2 (CCN) of parameter No. 5003 is set to 1. (The FS15 cancels only the vector for the specified axis. Note that the FS15 type cancellation differs from the actual FS15 specification in this point.)

Example)
When bit 2 (CCN) of parameter No. 5003 is set to 0

[FS15 type]

![Diagram showing compensation vectors and operations for G53 and G00 commands with FS15 type cancellation.]
NOTE

1 When an axis not included in the tool-tip radius compensation plane is specified in a G53 command, a vector perpendicular to the direction in which the tool moves is created at the end of the preceding block and the tool does not move. Offset mode is automatically resumed from the next block (in the same way as when two or more blocks specifying no movement are consecutively executed).

Example)
When bit 2 (CCN) of parameter No. 5003 is set to 0

2 When a G53 command is specified as a start-up block, the next block actually becomes the start-up block. When bit 2 (CCN) of parameter No. 5003 is set to 1, however, the next block creates an intersection vector.

Example)
When bit 2 (CCN) of parameter No. 5003 is set to 0

When a G28 or G30 command is executed in tool-tip radius compensation mode, the operation specified in the command is performed according to the FS15 format if bit 2 (CCN) of parameter No. 5003 is set to 1. An intersection vector is created at the end of the preceding block and a perpendicular vector is created at the intermediate position. The offset vector is canceled when the tool moves from the intermediate position to the reference position. The offset vector is restored as an intersection vector by the next block.
- G28 or G30 command in offset mode (with movement to both an intermediate position and reference position performed)

When bit 2 (CCN) of parameter No. 5003 is set to 0

![Diagram 1](image1.png)

When bit 2 (CCN) of parameter No. 5003 is set to 1

![Diagram 2](image2.png)

- G28 or G30 command in offset mode (with movement to an intermediate position not performed)

When bit 2 (CCN) of parameter No. 5003 is set to 0

![Diagram 3](image3.png)

When bit 2 (CCN) of parameter No. 5003 is set to 1

![Diagram 4](image4.png)
• G28 or G30 command in offset mode (with movement to a reference position not performed)

- When bit 2 (CCN) of parameter No. 5003 is set to 0

- When bit 2 (CCN) of parameter No. 5003 is set to 1

• G28 or G30 command in offset mode (with no movement)

- When bit 2 (CCN) of parameter No. 5003 is set to 0

- When bit 2 (CCN) of parameter No. 5003 is set to 1
WARNING
1 When a G28 or G30 command is executed when all-axis machine lock is applied, a vector perpendicular to the direction in which the tool moves is created at the intermediate position. In this case, the tool does not move to the reference position and the offset vector is not canceled. When bit 2 (CCN) of parameter No. 5003 is set to 0 or each-axis machine lock is applied, the offset vector is canceled.

Example 1)
When bit 2 (CCN) of parameter No. 5003 is set to 1.

[FS15 type]

Example 2)
When bit 2 (CCN) of parameter No. 5003 is set to 0 and all-axis machine lock is applied

2 When a compensation axis is specified in a G28 or G30 command in tool-tip radius compensation mode, the vectors for other compensation axes are also canceled. This also applies when bit 2 (CCN) of parameter No. 5003 is set to 1. (The FS15 cancels only the vector for the specified axis. Note that the FS15 type cancellation differs from the actual FS15 specification in this point.)

[FS15 type]
NOTE
1 When an axis not included in the tool−tip radius compensation plane is specified in a G28 or G30 command, a vector perpendicular to the direction in which the tool moves is created at the end of the preceding block and the tool does not move. Offset mode is automatically resumed from the next block (in the same way as when two or more blocks specifying no movement are consecutively executed).

Example)
When bit 2 (CCN) of parameter No. 5003 is set to 1.

Example 1)
When bit 2 (CCN) of parameter No. 5003 is set to 1.

2 When a G28 or G30 command is specified as a start−up block, a vector perpendicular to the direction in which the tool moves is created at the intermediate position. The vector is then canceled at the reference position. The next block creates an intersection vector.

Example 1)
When bit 2 (CCN) of parameter No. 5003 is set to 1.
14.4 TOOL COMPENSATION VALUES, NUMBER OF COMPENSATION VALUES, AND ENTERING VALUES FROM THE PROGRAM (G10)

Tool compensation values include tool geometry compensation values and tool wear compensation (Fig. 14.4).

![Fig. 14.4 Tool geometry offset and tool wear offset](image)

Tool compensation values can be entered into CNC memory from the MDI panel or from a program. A tool compensation value is selected from the CNC memory when the corresponding code is specified after address T in a program. The value is used for tool offset or tool nose radius compensation. See subsec. II–14.1.2 for details.

### 14.4.1 Tool Compensation and Number of Tool Compensation

- **Valid range of tool compensation values**

Table 14.4.1 shows the valid input range of tool compensation values.

<table>
<thead>
<tr>
<th>Increment system</th>
<th>Tool compensation value</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Metric input (mm)</td>
</tr>
<tr>
<td>IS–B</td>
<td>–999.999 to +999.999 mm</td>
</tr>
<tr>
<td>IS–C</td>
<td>–999.9999 to +999.9999 mm</td>
</tr>
</tbody>
</table>

The maximum tool wear compensation can be changed by setting parameter No.5013.

- **Number of tool compensation**

The memory can hold 64 tool compensation values.
Offset values can be input by a program using the following command:

\[
\text{G10 P}_n\; \text{X}_n\; \text{Y}_n\; \text{Z}_n\; \text{R}_n\; \text{Q}_n; \\
\text{or} \\
\text{G10 P}_n\; \text{U}_n\; \text{V}_n\; \text{W}_n\; \text{C}_n\; \text{Q}_n; \\
\]

- **P**: Offset number
- **0**: Command of work coordinate system shift value
- **1–64**: Command of tool wear offset value
- **Command value is offset number**
- **10000+(1–64)**: Command of tool geometry offset value
- **(1–64)**: Offset number
- **X**: Offset value on X axis (absolute)
- **Y**: Offset value on Y axis (absolute)
- **Z**: Offset value on Z axis (absolute)
- **U**: Offset value on X axis (incremental)
- **V**: Offset value on Y axis (incremental)
- **W**: Offset value on Z axis (incremental)
- **R**: Tool nose radius offset value (absolute)
- **R**: Tool nose radius offset value (incremental)
- **Q**: Imaginary tool nose number

In an absolute command, the values specified in addresses X, Y, Z, and R are set as the offset value corresponding to the offset number specified by address P. In an incremental command, the value specified in addresses U, V, W, and C is added to the current offset value corresponding to the offset number.

**NOTE**

1. Addresses X, Y, Z, U, V, and W can be specified in the same block.
2. Use of this command in a program allows the tool to advance little by little. This command can also be used input offset values one at a time from a program by specifying this command successively instead of inputting these values one at a time from the MDI unit.
14.5 AUTOMATIC TOOL OFFSET (G36, G37)

When a tool is moved to the measurement position by execution of a command given to the CNC, the CNC automatically measures the difference between the current coordinate value and the coordinate value of the command measurement position and uses it as the offset value for the tool. When the tool has been already offset, it is moved to the measurement position with that offset value. If the CNC judges that further offset is needed after calculating the difference between the coordinate values of the measurement position and the commanded coordinate values, the current offset value is further offset. Refer to the instruction manuals of the machine tool builder for details.

Explanations

• Coordinate system

When moving the tool to a position for measurement, the coordinate system must be set in advance. (The work coordinate system for programming is used in common.)

• Movement to measurement position

A movement to a measurement position is performed by specifying as follows in the MDI, or MEM mode:

G36 Xxa ; or G37 Zza ;

In this case, the measurement position should be x_a or z_a (absolute command).

Execution of this command moves the tool at the rapid traverse rate toward the measurement position, lowers the feedrate halfway, then continues to move it until the approach end signal from the measuring instrument is issued. When the tool tip reaches the measurement position, the measuring instrument outputs the measurement position reach signal to the CNC which stops the tool.

• Offset

The current tool offset value is further offset by the difference between the coordinate value (α or β) when the tool has reached the measurement position and the value of x_a or z_a specified in G36Xxa or G37Zza:

Offset value x = Current offset value x+(α–x_a)
Offset value z = Current offset value z+(β–z_a)

x_a : Programmed X–axis measurement point
z_a : Programmed Z–axis measurement point

These offset values can also be altered from the MDI keyboard.
• Feedrate and alarm

The tool, when moving from the stating position toward the measurement position predicted by $x_a$ or $z_a$ in G36 or G37, is fed at the rapid traverse rate across area $A$. Then the tool stops at point $T$ ($x_a - \gamma x$ or $z_a - \gamma z$) and moves at the measurement feedrate set by parameter (No.6241) across areas $B$, $C$, and $D$. If the approach end signal turns on during movement across area $B$, alarm is generated. If the approach end signal does not turn on before point $V$, and tool stops at point $V$ and P/S alarm (No.080) is generated.

![Feedrate and alarm diagram](image)

• G code

If bit 3 (G36) of parameter No. 3405 has been set to 1, G37.1 and G37.2 are used as the G codes for automatic tool compensation for the X– and Z–axes, respectively.

Examples

![Tool compensation example](image)

G50 X760.0 Z1100.0 ; Programming of absolute zero point

(Coordinate system setting)

S01 M03 T0101 ; Specifies tool T1, offset number 1, and spindle revolution
G36 X200.0 ; Moves to the measurement position
If the tool has reached the measurement position
at X198.0 ; since the correct measurement
position is 200 mm, the offset value is altered by
198.0–200.0=–2.0mm.
G00 X204.0 ; Refracts a little along the X axis.
G37 Z800.0 ; Moves to the Z–axis measurement position.
If the tool has reached the measurement position
at X804.0, the offset value is altered by
804.0–800.0=4.0mm.
T0101 ; Further offsets by the difference.
The new offset value becomes valid when the T
code is specified again.

WARNING
1 Measurement speed(Fp), γ, and ε are set as parameters (Fp : No.6241, γ : No.6251,
ε : No.6254) by machine tool builder. ε must be positive numbers so that γ>ε.
2 Cancel the tool nose radius compensation before G36, G37.
3 When a manual movement is inserted into a movement at a measurement feedrate, return the
tool to the position before the inserted manual movement for restart.
4 The tool offset amount is determined considering the value of tool nose R. Make sure that tool
nose radius value is set correctly.
Example) When the tool nose center coincides with the start point.

![Diagram]

The tool actually moves from point A to point B, but the tool offset value is determined assuming
that the tool moves to point C considering the tool nose radius value.

NOTE
1 When there is no T code command before G36 or G37, P/S alarm No.81 is generated.
2 When a T code is specified in the same block as G36 or G37, P/S alarm No.82 is generated.
Although subprograms are useful for repeating the same operation, the custom macro function also allows use of variables, arithmetic and logic operations, and conditional branches for easy development of general programs such as pocketing and user-defined canned cycles. A machining program can call a custom macro with a simple command, just like a subprogram.
15.1 VARIABLES

An ordinary machining program specifies a G code and the travel distance directly with a numeric value; examples are G100 and X100.0.

With a custom macro, numeric values can be specified directly or using a variable number. When a variable number is used, the variable value can be changed by a program or using operations on the MDI panel.

```
#1=#2+100 ;
G01 X#1 F0.3 ;
```

Explanation

• Variable representation

When specifying a variable, specify a number sign (#) followed by a variable number. General-purpose programming languages allow a name to be assigned to a variable, but this capability is not available for custom macros.

Example: #1

An expression can be used to specify a variable number. In such a case, the expression must be enclosed in brackets.

Example: #[#1+#2–12]

• Types of variables

Variables are classified into four types by variable number.

<table>
<thead>
<tr>
<th>Variable number</th>
<th>Type of variable</th>
<th>Function</th>
</tr>
</thead>
<tbody>
<tr>
<td>#0</td>
<td>Always null</td>
<td>This variable is always null. No value can be assigned to this variable.</td>
</tr>
<tr>
<td>#1 – #33</td>
<td>Local variables</td>
<td>Local variables can only be used within a macro to hold data such as the results of operations. When the power is turned off, local variables are initialized to null. When a macro is called, arguments are assigned to local variables.</td>
</tr>
<tr>
<td>#100 – #199</td>
<td>Common variables</td>
<td>Common variables can be shared among different macro programs. When the power is turned off, variables #100 to #199 are initialized to null. Variables #500 to #999 hold data even when the power is turned off.</td>
</tr>
<tr>
<td>#1000 –</td>
<td>System variables</td>
<td>System variables are used to read and write a variety of NC data items such as the current position and tool compensation values.</td>
</tr>
</tbody>
</table>

• Range of variable values

Local and common variables can have value 0 or a value in the following ranges:

- $10^{-47}$ to $10^{-29}$
- 0
- $10^{-29}$ to $+10^{47}$

If the result of calculation turns out to be invalid, an P/S alarm No. 111 is issued.
When a variable value is defined in a program, the decimal point can be omitted.

Example:
When \#1=123; is defined, the actual value of variable \#1 is 123.000.

To reference the value of a variable in a program, specify a word address followed by the variable number. When an expression is used to specify a variable, enclose the expression in brackets.

Example: \( \text{G01X}[^{\#1+\#2}]\text{F}\#3; \)

A referenced variable value is automatically rounded according to the least input increment of the address.

Example:
When \( \text{G00X}\#1; \) is executed on a 1/1000-mm CNC with 12.3456 assigned to variable \#1, the actual command is interpreted as \( \text{G00X12.346}; \)

To reverse the sign of a referenced variable value, prefix a minus sign (–) to \#.

Example: \( \text{G00X}–\#1; \)

When an undefined variable is referenced, the variable is ignored up to an address word.

Example:
When the value of variable \#1 is 0, and the value of variable \#2 is null, execution of \( \text{G00X}\#1\text{Z}\#2; \) results in \( \text{G00X}0; \)

When the value of a variable is not defined, such a variable is referred to as a ”null” variable. Variable \#0 is always a null variable. It cannot be written to, but it can be read.

(a) Quotation
When an undefined variable is quoted, the address itself is also ignored.

<table>
<thead>
<tr>
<th>When #1 = &lt; vacant &gt;</th>
<th>When #1 = 0</th>
</tr>
</thead>
<tbody>
<tr>
<td>G90 X100 Y#1</td>
<td>G90 X100 Y#1</td>
</tr>
<tr>
<td>↓</td>
<td>↓</td>
</tr>
<tr>
<td>G90 X100</td>
<td>G90 X100 Y0</td>
</tr>
</tbody>
</table>
(b) Operation

< vacant > is the same as 0 except when replaced by < vacant >

<table>
<thead>
<tr>
<th>When #1 = &lt; vacant &gt;</th>
<th>When #1 = 0</th>
</tr>
</thead>
</table>
| #2 = #1 \[\downarrow \] \[\downarrow \]  
#2 = < vacant > | #2 = #1 \[\downarrow \]  
#2 = 0 |
| #2 = #1*5 \[\downarrow \]  
#2 = 0 | #2 = #1*5 \[\downarrow \]  
#2 = 0 |
| #2 = #1+#1 \[\downarrow \]  
#2 = 0 | #2 = #1 + #1 \[\downarrow \]  
#2 = 0 |

(c) Conditional expressions

< vacant > differs from 0 only for EQ and NE.

<table>
<thead>
<tr>
<th>When #1 = &lt; vacant &gt;</th>
<th>When #1 = 0</th>
</tr>
</thead>
</table>
| #1 EQ #0 \[\downarrow \]  
Established | #1 EQ #0 \[\downarrow \]  
Not established |
| #1 NE 0 \[\downarrow \]  
Established | #1 NE 0 \[\downarrow \]  
Not established |
| #1 GE #0 \[\downarrow \]  
Established | #1 GE #0 \[\downarrow \]  
Established |
| #1 GT 0 \[\downarrow \]  
Not established | #1 GT 0 \[\downarrow \]  
Not established |
• Displaying variable values

<table>
<thead>
<tr>
<th>VARIABLE</th>
<th>O1234 N12345</th>
</tr>
</thead>
<tbody>
<tr>
<td>NO.</td>
<td>DATA</td>
</tr>
<tr>
<td>100</td>
<td>123.456</td>
</tr>
<tr>
<td>101</td>
<td>0.000</td>
</tr>
<tr>
<td>102</td>
<td></td>
</tr>
<tr>
<td>103</td>
<td>********</td>
</tr>
<tr>
<td>104</td>
<td></td>
</tr>
<tr>
<td>105</td>
<td></td>
</tr>
<tr>
<td>106</td>
<td></td>
</tr>
<tr>
<td>107</td>
<td></td>
</tr>
</tbody>
</table>

ACTUAL POSITION (RELATIVE)

| X | 0.000 | Y | 0.000 |
| Z | 0.000 | B | 0.000 |

MEM **** *** *** 18:42:15

[ MACRO ] [ MENU ] [ OPR ] [ ] [ (OPRT) ]

• When the value of a variable is blank, the variable is null.

• The mark ******** indicates an overflow (when the absolute value of a variable is greater than 99999999) or an underflow (when the absolute value of a variable is less than 0.0000001).

Limitations

Program numbers, sequence numbers, and optional block skip numbers cannot be referenced using variables.

Example:

Variables cannot be used in the following ways:

O#1;
/#2G00X100.0;
N#3Z200.0;
System variables can be used to read and write internal NC data such as tool compensation values and current position data. Note, however, that some system variables can only be read. System variables are essential for automation and general-purpose program development.

Explanations

• Interface signals

Signals can be exchanged between the programmable machine controller (PMC) and custom macros.

**Table 15.2 (a) System variables for interface signals**

(When the parameter MIF (bit 0 of No. 6001) is set to 0.)

<table>
<thead>
<tr>
<th>Variable number</th>
<th>Function</th>
</tr>
</thead>
<tbody>
<tr>
<td>#1000 to #1015</td>
<td>A 16–bit signal can be sent from the PMC to a custom macro. Variables #1000 to #1015 are used to read a signal bit by bit. Variable #1032 is used to read all 16 bits of a signal at one time.</td>
</tr>
<tr>
<td>#1100 to #1115</td>
<td>A 16–bit signal can be sent from a custom macro to the PMC. Variables #1100 to #1115 are used to write a signal bit by bit. Variable #1132 is used to write all 16 bits of a signal at one time.</td>
</tr>
<tr>
<td>#1133</td>
<td>Variable #1133 is used to write all 32 bits of a signal at one time from a custom macro to the PMC. Note, that values from –99999999 to +99999999 can be used for #1133.</td>
</tr>
</tbody>
</table>

(When the parameter MIF (bit 0 of No. 6001) is set to 1.)

<table>
<thead>
<tr>
<th>Variable number</th>
<th>Function</th>
</tr>
</thead>
<tbody>
<tr>
<td>#1000 to #1031</td>
<td>A 32–bit signal can be sent from the PMC to a custom macro. Variables #1000 to #1031 are used to read a signal bit by bit.</td>
</tr>
<tr>
<td>#1100 to #1131</td>
<td>A 32–bit signal can be sent from a custom macro to the PMC. Variables #1100 to #1131 are used to write a signal bit by bit.</td>
</tr>
<tr>
<td>#1032 to #1035</td>
<td>Variables #1032 to #1035 are used to output all 32 bits of a signal at one time from the PMC to a custom macro. Note, that values from –99999999 to +99999999 can be used for #1032 to #1035.</td>
</tr>
<tr>
<td>#1132 to #1135</td>
<td>Variables #1132 to #1135 are used to write all 32 bits of a signal at one time from a custom macro to the PMC. Note, that values from –99999999 to +99999999 can be used for #1132 to #1135.</td>
</tr>
</tbody>
</table>

For detailed information, refer to the connection manual (B–64113EN–1).
• Tool compensation values

Both variables #2000 to #2999 and variables #10000 to #19999 can be used.

Table 15.2 (b) System variables for tool compensation memory C

<table>
<thead>
<tr>
<th>Compensation number</th>
<th>X axis compensation value</th>
<th>Z axis compensation value</th>
<th>Tool nose radius compensation value</th>
<th>Imaginary tool nose position T</th>
<th>Y axis compensation value</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>#2001</td>
<td>#2101</td>
<td>#2201</td>
<td>#2301</td>
<td>#2401</td>
</tr>
<tr>
<td>49</td>
<td></td>
<td>#2701</td>
<td>#2749</td>
<td></td>
<td>#2451</td>
</tr>
<tr>
<td>64</td>
<td>#2064</td>
<td>#2164</td>
<td>#2264</td>
<td>#2364</td>
<td></td>
</tr>
</tbody>
</table>

Table 15.2 (c) System variables for 99 tool compensation values

<table>
<thead>
<tr>
<th>Compensation number</th>
<th>X axis compensation value</th>
<th>Z axis compensation value</th>
<th>Tool nose radius compensation value</th>
<th>Imaginary tool nose position T</th>
<th>Y axis compensation value</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>#10001</td>
<td>#11001</td>
<td>#12001</td>
<td>#13001</td>
<td>#14001</td>
</tr>
<tr>
<td>64</td>
<td>#100064</td>
<td>#110064</td>
<td>#120064</td>
<td>#130064</td>
<td>#140064</td>
</tr>
</tbody>
</table>

• Workpiece coordinate system shift amount

A workpiece coordinate system shift amount can be read. The amount can also be changed by entering a value.

Table 15.2 (d) System variable for macro alarms

<table>
<thead>
<tr>
<th>Variable number</th>
<th>Function</th>
</tr>
</thead>
<tbody>
<tr>
<td>#3000</td>
<td>When a value from 0 to 200 is assigned to variable #3000, the CNC stops with an alarm. After an expression, an alarm message not longer than 26 characters can be described. The CRT screen displays alarm numbers by adding 3000 to the value in variable #3000 along with an alarm message.</td>
</tr>
</tbody>
</table>

Example:

#3000=1( TOOL NOT FOUND);    
→ The alarm screen displays "3001 TOOL NOT FOUND."
• **Time information**

Time information can be read and written.

**Table 15.2 (e) System variables for time information**

<table>
<thead>
<tr>
<th>Variable number</th>
<th>Function</th>
</tr>
</thead>
<tbody>
<tr>
<td>#3001</td>
<td>This variable functions as a timer that counts in 1-millisecond increments at all times. When the power is turned on, the value of this variable is reset to 0. When 2147483648 milliseconds is reached, the value of this timer returns to 0.</td>
</tr>
<tr>
<td>#3002</td>
<td>This variable functions as a timer that counts in 1-hour increments when the cycle start lamp is on. This timer preserves its value even when the power is turned off. When 9544.371767 hours is reached, the value of this timer returns to 0.</td>
</tr>
<tr>
<td>#3011</td>
<td>This variable can be used to read the current date (year/month/day). Year/month/day information is converted to an apparent decimal number. For example, March 28, 1993 is represented as 19930328.</td>
</tr>
<tr>
<td>#3012</td>
<td>This variable can be used to read the current time (hours/minutes/seconds). Hours/minutes/seconds information is converted to an apparent decimal number. For example, 34 minutes and 56 seconds after 3 p.m. is represented as 153456.</td>
</tr>
</tbody>
</table>

• **Automatic operation control**

The control state of automatic operation can be changed.

**Table 15.2 (f) System variable (#3003) for automatic operation control**

<table>
<thead>
<tr>
<th>#3003</th>
<th>Single block</th>
<th>Completion of an auxiliary function</th>
</tr>
</thead>
<tbody>
<tr>
<td>0</td>
<td>Enabled</td>
<td>To be awaited</td>
</tr>
<tr>
<td>1</td>
<td>Disabled</td>
<td>To be awaited</td>
</tr>
<tr>
<td>2</td>
<td>Enabled</td>
<td>Not to be awaited</td>
</tr>
<tr>
<td>3</td>
<td>Disabled</td>
<td>Not to be awaited</td>
</tr>
</tbody>
</table>

- When the power is turned on, the value of this variable is 0.
- When single block stop is disabled, single block stop operation is not performed even if the single block switch is set to ON.
- When a wait for the completion of auxiliary functions (M, S, and T functions) is not specified, program execution proceeds to the next block before completion of auxiliary functions. Also, distribution completion signal DEN is not output.
Table 15.2 (g) System variable (#3004) for automatic operation control

<table>
<thead>
<tr>
<th>#3004</th>
<th>Feed hold</th>
<th>Feedrate Override</th>
<th>Exact stop</th>
</tr>
</thead>
<tbody>
<tr>
<td>0</td>
<td>Enabled</td>
<td>Enabled</td>
<td>Enabled</td>
</tr>
<tr>
<td>1</td>
<td>Disabled</td>
<td>Enabled</td>
<td>Enabled</td>
</tr>
<tr>
<td>2</td>
<td>Enabled</td>
<td>Disabled</td>
<td>Enabled</td>
</tr>
<tr>
<td>3</td>
<td>Disabled</td>
<td>Disabled</td>
<td>Enabled</td>
</tr>
<tr>
<td>4</td>
<td>Enabled</td>
<td>Enabled</td>
<td>Disabled</td>
</tr>
<tr>
<td>5</td>
<td>Disabled</td>
<td>Enabled</td>
<td>Disabled</td>
</tr>
<tr>
<td>6</td>
<td>Enabled</td>
<td>Disabled</td>
<td>Disabled</td>
</tr>
<tr>
<td>7</td>
<td>Disabled</td>
<td>Disabled</td>
<td>Disabled</td>
</tr>
</tbody>
</table>

- When the power is turned on, the value of this variable is 0.
- When feed hold is disabled:
  1. When the feed hold button is held down, the machine stops in the single block stop mode. However, single block stop operation is not performed when the single block mode is disabled with variable #3003.
  2. When the feed hold button is pressed then released, the feed hold lamp comes on, but the machine does not stop; program execution continues and the machine stops at the first block where feed hold is enabled.
- When feedrate override is disabled, an override of 100% is always applied regardless of the setting of the feedrate override switch on the machine operator’s panel.
- When exact stop check is disabled, no exact stop check (position check) is made even in blocks including those which do not perform cutting.

**Settings**

Settings can be read and written. Binary values are converted to decimals.

<table>
<thead>
<tr>
<th>#3005</th>
</tr>
</thead>
<tbody>
<tr>
<td>Setting</td>
</tr>
<tr>
<td>FCV</td>
</tr>
</tbody>
</table>

| Setting | #7 | #6 | #5 | #4 | #3 | #2 | #1 | #0 |
| SEQ    |

- #9 (FCV) : Whether to use the FS15 tape format conversion capability
- #5 (SEQ) : Whether to automatically insert sequence numbers
- #2 (INI) : Millimeter input or inch input
- #1 (ISO) : Whether to use EIA or ISO as the output code
- #0 (TVC) : Whether to make a TV check
• Stop with a message

Execution of the program can be stopped, and then a message can be displayed.

<table>
<thead>
<tr>
<th>Variable number</th>
<th>Function</th>
</tr>
</thead>
<tbody>
<tr>
<td>#3006</td>
<td>When &quot;#3006=1 (MESSAGE);&quot; is commanded in the macro, the program executes blocks up to the immediately previous one and then stops. When a message of up to 26 characters, which is enclosed by a control–in character (&quot;(&quot;) and control–out character &quot;)&quot;), is programmed in the same block, the message is displayed on the external operator message screen.</td>
</tr>
</tbody>
</table>

• Mirror image

The mirror–image status for each axis set using an external switch or setting operation can be read through the output signal (mirror–image check signal). The mirror–image status present at that time can be checked. (See Section 4.7 in III.)

The value obtained in binary is converted into decimal notation.

<table>
<thead>
<tr>
<th>#3007 Setting</th>
<th>#7</th>
<th>#6</th>
<th>#5</th>
<th>#4</th>
<th>#3</th>
<th>#2</th>
<th>#1</th>
<th>#0</th>
</tr>
</thead>
<tbody>
<tr>
<td>Setting</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>4th axis</td>
<td>3th axis</td>
<td>2th axis</td>
<td>1th axis</td>
</tr>
<tr>
<td>For each bit,</td>
<td>0 (mirror–image function is disabled) or 1 (mirror–image function is enabled)</td>
<td>is indicated.</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Example: If #3007 is 3, the mirror–image function is enabled for the first and second axes.

• When the mirror–image function is set for a certain axis by both the mirror–image signal and setting, the signal value and setting value are ORed and then output.

• When mirror–image signals for axes other than the controlled axes are turned on, they are still read into system variable #3007.

• System variable #3007 is a write–protected system variable. If an attempt is made to write data in the variable, P/S 116 alarm "WRITE PROTECTED VARIABLE" is issued.

• Number of machined parts

The number (target number) of parts required and the number (completion number) of machined parts can be read and written.

<table>
<thead>
<tr>
<th>Table 15.2 (h) System variables for the number of parts required and the number of machined parts</th>
</tr>
</thead>
<tbody>
<tr>
<td>Variable number</td>
</tr>
<tr>
<td>-----------------</td>
</tr>
<tr>
<td>#3901</td>
</tr>
<tr>
<td>#3902</td>
</tr>
</tbody>
</table>

NOTE
Do not substitute a negative value.
Modal information specified in blocks up to the immediately preceding block can be read.

<table>
<thead>
<tr>
<th>Table 15.2 (i) System variables for modal information</th>
</tr>
</thead>
<tbody>
<tr>
<td>Variable number</td>
</tr>
<tr>
<td>-----------------</td>
</tr>
<tr>
<td>#4001</td>
</tr>
<tr>
<td></td>
</tr>
<tr>
<td>#4002</td>
</tr>
<tr>
<td>#4003</td>
</tr>
<tr>
<td>#4004</td>
</tr>
<tr>
<td>#4005</td>
</tr>
<tr>
<td>#4006</td>
</tr>
<tr>
<td>#4007</td>
</tr>
<tr>
<td>#4008</td>
</tr>
<tr>
<td>#4009</td>
</tr>
<tr>
<td>#4010</td>
</tr>
<tr>
<td>#4011</td>
</tr>
<tr>
<td>#4012</td>
</tr>
<tr>
<td>#4014</td>
</tr>
<tr>
<td>#4015</td>
</tr>
<tr>
<td>#4016</td>
</tr>
<tr>
<td>#4022</td>
</tr>
<tr>
<td>#4022</td>
</tr>
<tr>
<td>#409</td>
</tr>
<tr>
<td>#4113</td>
</tr>
<tr>
<td>#4114</td>
</tr>
<tr>
<td>#4115</td>
</tr>
<tr>
<td>#4116</td>
</tr>
</tbody>
</table>

Example:
When #1=#4001; is executed, the resulting value in #1 is 0, 1, 2, 3, or 33.

When a modal information reading system variable corresponding to a G code group which cannot be used is specified, a P/S alarm is issued.

Current position
Position information cannot be written but can be read.

<table>
<thead>
<tr>
<th>Table 15.2 (j) System variables for position information</th>
</tr>
</thead>
<tbody>
<tr>
<td>Variable number</td>
</tr>
<tr>
<td>-----------------</td>
</tr>
<tr>
<td>#5001–#5004</td>
</tr>
<tr>
<td>#5021–#5024</td>
</tr>
<tr>
<td>#5041–#5044</td>
</tr>
<tr>
<td>#5061–#5064</td>
</tr>
<tr>
<td>#5081, #5084</td>
</tr>
<tr>
<td>#5101–#5104</td>
</tr>
</tbody>
</table>
- The first digit (from 1 to 4) represents an axis number.
- The tool offset value currently used for execution rather than the immediately preceding tool offset value is held in variables #5081 to 5082.
- The tool position where the skip signal is turned on in a G31 (skip function) block is held in variables #5061 to #5064. When the skip signal is not turned on in a G31 block, the end point of the specified block is held in these variables.
- When read during movement is “disabled,” this means that expected values cannot be read due to the buffering (preread) function.

Workpiece zero point offset values can be read and written.

**Table 15.2(k) System variables for workpiece zero point offset values**

<table>
<thead>
<tr>
<th>Variable number</th>
<th>Function</th>
</tr>
</thead>
<tbody>
<tr>
<td>#5201</td>
<td>First–axis external workpiece zero point offset value</td>
</tr>
<tr>
<td>#5204</td>
<td>Fourth–axis external workpiece zero point offset value</td>
</tr>
<tr>
<td>#5221</td>
<td>First–axis G54 workpiece zero point offset value</td>
</tr>
<tr>
<td>#5224</td>
<td>Fourth–axis G54 workpiece zero point offset value</td>
</tr>
<tr>
<td>#5241</td>
<td>First–axis G55 workpiece zero point offset value</td>
</tr>
<tr>
<td>#5244</td>
<td>Fourth–axis G55 workpiece zero point offset value</td>
</tr>
<tr>
<td>#5261</td>
<td>First–axis G56 workpiece zero point offset value</td>
</tr>
<tr>
<td>#5264</td>
<td>Fourth–axis G56 workpiece zero point offset value</td>
</tr>
<tr>
<td>#5281</td>
<td>First–axis G57 workpiece zero point offset value</td>
</tr>
<tr>
<td>#5284</td>
<td>Fourth–axis G57 workpiece zero point offset value</td>
</tr>
<tr>
<td>#5301</td>
<td>First–axis G58 workpiece zero point offset value</td>
</tr>
<tr>
<td>#5304</td>
<td>Fourth–axis G58 workpiece zero point offset value</td>
</tr>
<tr>
<td>#5321</td>
<td>First–axis G59 workpiece zero point offset value</td>
</tr>
<tr>
<td>#5324</td>
<td>Fourth–axis G59 workpiece zero point offset value</td>
</tr>
</tbody>
</table>
15.3 ARITHMETIC AND LOGIC OPERATION

The operations listed in Table 15.3(a) can be performed on variables. The expression to the right of the operator can contain constants and/or variables combined by a function or operator. Variables \#j and \#K in an expression can be replaced with a constant. Variables on the left can also be replaced with an expression.

<table>
<thead>
<tr>
<th>Function</th>
<th>Format</th>
<th>Remarks</th>
</tr>
</thead>
<tbody>
<tr>
<td>Definition</td>
<td>#i = #j</td>
<td></td>
</tr>
<tr>
<td>Sum</td>
<td>#i = #j + #k;</td>
<td></td>
</tr>
<tr>
<td>Difference</td>
<td>#i = #j - #k;</td>
<td></td>
</tr>
<tr>
<td>Product</td>
<td>#i = #j \times #k;</td>
<td></td>
</tr>
<tr>
<td>Quotient</td>
<td>#i = #j / #k;</td>
<td></td>
</tr>
<tr>
<td>Sine</td>
<td>#i = \text{SIN}[#j];</td>
<td>An angle is specified in degrees. 90 degrees and 30 minutes is represented as 90.5 degrees.</td>
</tr>
<tr>
<td>Arc sine</td>
<td>#i = \text{ASIN}[#j];</td>
<td></td>
</tr>
<tr>
<td>Cosine</td>
<td>#i = \text{COS}[#j];</td>
<td></td>
</tr>
<tr>
<td>Arc cosine</td>
<td>#i = \text{ACOS}[#j];</td>
<td></td>
</tr>
<tr>
<td>Tangent</td>
<td>#i = \text{TAN}[#j];</td>
<td></td>
</tr>
<tr>
<td>Arctangent</td>
<td>#i = \text{ATAN}[#j]/#k;</td>
<td></td>
</tr>
<tr>
<td>Square root</td>
<td>#i = \text{SQRT}[#j];</td>
<td></td>
</tr>
<tr>
<td>Absolute value</td>
<td>#i = \text{ABS}[#j];</td>
<td></td>
</tr>
<tr>
<td>Rounding off</td>
<td>#i = \text{ROUND}[#j];</td>
<td></td>
</tr>
<tr>
<td>Rounding down</td>
<td>#i = \text{FIX}[#j];</td>
<td></td>
</tr>
<tr>
<td>Rounding up</td>
<td>#i = \text{FUP}[#j];</td>
<td></td>
</tr>
<tr>
<td>Natural logarithm</td>
<td>#i = \text{LN}[#j]</td>
<td></td>
</tr>
<tr>
<td>Exponential function</td>
<td>#i = \text{EXP}[#j];</td>
<td></td>
</tr>
<tr>
<td>OR</td>
<td>#i = #i \text{ OR } #k;</td>
<td>A logical operation is performed on binary numbers bit by bit.</td>
</tr>
<tr>
<td>XOR</td>
<td>#i = #i \text{ XOR } #k;</td>
<td></td>
</tr>
<tr>
<td>AND</td>
<td>#i = #i \text{ AND } #k;</td>
<td></td>
</tr>
<tr>
<td>Conversion from BCD to BIN</td>
<td>#i = \text{BIN}[#j];</td>
<td>Used for signal exchange to and from the PMC</td>
</tr>
<tr>
<td>Conversion from BIN to BCD</td>
<td>#i = \text{BCD}[#j]</td>
<td></td>
</tr>
</tbody>
</table>

Explanations

• Angle units

The units of angles used with the SIN, COS, TAN, ASIN, ACOS and ATAN functions are degrees. For example, 90 degrees and 30 minutes is represented as 90.5 degrees.

• \text{ARCSIN} \#i = \text{ASIN}[\#j];

  • The solution ranges are as indicated below:
    When the NAT bit (bit 0 of parameter 6004) is set to 0: $270^\circ$ to $90^\circ$
    When the NAT bit (bit 0 of parameter 6004) is set to 1: $-90^\circ$ to $90^\circ$
  • When \#j is beyond the range of $-1$ to $1$, P/S alarm No. 111 is issued.
  • A constant can be used instead of the \#j variable.
The solution ranges from 180° to 0°.

When #j is beyond the range of –1 to 1, P/S alarm No. 111 is issued.

A constant can be used instead of the #j variable.

Specify the lengths of two sides, separated by a slash (/).

The solution ranges are as follows:
When the NAT bit (bit 0 of parameter 6004) is set to 0: 0° to 360°

Example:
When #1 = ATAN[–1]/[–1]; is specified, #1 is 225.0
When the NAT bit (bit 0 of parameter 6004) is set to 1: –180° to 180°

Example:
When #1 = ATAN[–1]/[–1]; is specified, #1 is –135.0.

A constant can be used instead of the #j variable.

Note that the relative error may become 10^{-8} or greater.

When the antilogarithm (#j) is zero or smaller, P/S alarm No. 111 is issued.

A constant can be used instead of the #j variable.

Note that the relative error may become 10^{-8} or greater.

When the result of the operation exceeds 3.65 \times 10^{17} (j is about 110), an overflow occurs and P/S alarm No. 111 is issued.

A constant can be used instead of the #j variable.

When the ROUND function is included in an arithmetic or logic operation command, IF statement, or WHILE statement, the ROUND function rounds off at the first decimal place.

Example:
When #1=ROUND[#2]; is executed where #2 holds 1.2345, the value of variable #1 is 1.0.

When the ROUND function is used in NC statement addresses, the ROUND function rounds off the specified value according to the least input increment of the address.

Example:
Creation of a drilling program that cuts according to the values of variables #1 and #2, then returns to the original position
Suppose that the increment system is 1/1000 mm, variable #1 holds 1.2345, and variable #2 holds 2.3456. Then,
G00 G91 X–#1; Moves 1.235 mm.
G01 X–#2 F300; Moves 2.346 mm.
G00 X[#1+#2];
Since 1.2345 + 2.3456 = 3.5801, the travel distance is 3.580, which does not return the tool to the original position.

This difference comes from whether addition is performed before or after rounding off. G00X–[ROUND[#1]+ROUND[#2]] must be specified to return the tool to the original position.
• Rounding up and down to an integer

With CNC, when the absolute value of the integer produced by an operation on a number is greater than the absolute value of the original number, such an operation is referred to as rounding up to an integer. Conversely, when the absolute value of the integer produced by an operation on a number is less than the absolute value of the original number, such an operation is referred to as rounding down to an integer. Be particularly careful when handling negative numbers.

Example:
Suppose that \#1=1.2 and \#2=−1.2.
When \#3=FUP[\#1] is executed, 2.0 is assigned to \#3.
When \#3=FIX[\#1] is executed, 1.0 is assigned to \#3.
When \#3=FUP[\#2] is executed, −2.0 is assigned to \#3.
When \#3=FIX[\#2] is executed, −1.0 is assigned to \#3.

• Abbreviations of arithmetic and logic operation commands

When a function is specified in a program, the first two characters of the function name can be used to specify the function. (See III–9.7)

Example:
ROUND → RO
FIX → FI

• Priority of operations

(1) Functions
(2) Operations such as multiplication and division (\*, /, AND, MOD)
(3) Operations such as addition and subtraction (+, −, OR, XOR)

Example) \#1=\#2+\#3*SIN[\#4];


(1) to (5) indicate the order of operations.

• Bracket nesting

Brackets are used to change the order of operations. Brackets can be used to a depth of five levels including the brackets used to enclose a function. When a depth of five levels is exceeded, alarm No. 118 occurs.

Limitations

• Brackets

Brackets ([, ]) are used to enclose an expression. Note that parentheses are used for comments.
Errors may occur when operations are performed.

### Table 15.3 (b) Errors involved in operations

<table>
<thead>
<tr>
<th>Operation</th>
<th>Average error</th>
<th>Maximum error</th>
<th>Type of error</th>
</tr>
</thead>
<tbody>
<tr>
<td>a = b(c)</td>
<td>1.55(\times)10(^{-10})</td>
<td>4.66(\times)10(^{-10})</td>
<td>Relative error(^{*1})</td>
</tr>
<tr>
<td>a = b / c</td>
<td>4.66(\times)10(^{-10})</td>
<td>1.88(\times)10(^{-9})</td>
<td>(</td>
</tr>
<tr>
<td>a = (\sqrt{b})</td>
<td>1.24(\times)10(^{-9})</td>
<td>3.73(\times)10(^{-9})</td>
<td>(</td>
</tr>
<tr>
<td>a = b + c</td>
<td>2.33(\times)10(^{-10})</td>
<td>5.32(\times)10(^{-10})</td>
<td>(\min\left</td>
</tr>
<tr>
<td>a = b - c</td>
<td>2.33(\times)10(^{-10})</td>
<td>5.32(\times)10(^{-10})</td>
<td>(\min\left</td>
</tr>
<tr>
<td>a = (\sin\ [b])</td>
<td>5.0(\times)10(^{-9})</td>
<td>1.0(\times)10(^{-8})</td>
<td>Absolute error(^{\ast3})</td>
</tr>
<tr>
<td>a = (\cos\ [b])</td>
<td>5.0(\times)10(^{-9})</td>
<td>1.0(\times)10(^{-8})</td>
<td></td>
</tr>
<tr>
<td>a = (\tan\ [b]/[c]) (^{\ast4})</td>
<td>1.8(\times)10(^{-6})</td>
<td>3.6(\times)10(^{-6})</td>
<td>(</td>
</tr>
</tbody>
</table>

**NOTE**

1. The relative error depends on the result of the operation.
2. Smaller of the two types of errors is used.
3. The absolute error is constant, regardless of the result of the operation.
4. Function \(\tan\) performs \(\sin/\cos\).
5. Setting parameter No. 6004#1 to 1 normalizes the operation result to 0 when the operation result of function \(\sin, \cos, \text{or} \tan\) is less than 1.0 \(\times\) 10\(^{-18}\) or when 0 cannot be obtained due to the limitation of the precision.

• The precision of variable values is about 8 decimal digits. When very large numbers are handled in an addition or subtraction, the expected results may not be obtained.

**Example:**
When an attempt is made to assign the following values to variables \#1 and \#2:

\[
\begin{align*}
\#1 & = 9876543210123.456 \\
\#2 & = 9876543277777.777
\end{align*}
\]

the values of the variables become:

\[
\begin{align*}
\#1 & = 9876543200000.000 \\
\#2 & = 9876543300000.000
\end{align*}
\]

In this case, when \#3 = \#2 - \#1; is calculated, \#3 = 100000.000 results. (The actual result of this calculation is slightly different because it is performed in binary.)
Also be aware of errors that can result from conditional expressions using EQ, NE, GE, GT, LE, and LT.

Example:
IF[#1 EQ #2] is effected by errors in both #1 and #2, possibly resulting in an incorrect decision. Therefore, instead find the difference between the two variables with IF[ABS[#1–#2]LT0.001]. Then, assume that the values of the two variables are equal when the difference does not exceed an allowable limit (0.001 in this case).

Also, be careful when rounding down a value.

Example:
When #2=#1*1000; is calculated where #1=0.002;, the resulting value of variable #2 is not exactly 2 but 1.99999997. Here, when #3=FIX[#2]; is specified, the resulting value of variable #1 is not 2.0 but 1.0. In this case, round down the value after correcting the error so that the result is greater than the expected number, or round it off as follows:
#3=FIX[#2+0.001]  
#3=ROUND[#2]

Divisor

When a divisor of zero is specified in a division or TAN[90], alarm No. 112 occurs.
15.4 MACRO STATEMENTS AND NC STATEMENTS

The following blocks are referred to as macro statements:

- Blocks containing an arithmetic or logic operation (=)
- Blocks containing a control statement (such as GOTO, DO, END)
- Blocks containing a macro call command (such as macro calls by G65, G66, G67, or other G codes, or by M codes)

Any block other than a macro statement is referred to as an NC statement.

Explanations

- Differences from NC statements
  - Even when single block mode is on, the machine does not stop. Note, however, that the machine stops in the single block mode when bit 5 (SBM) of parameter 6000 is 1.
  - Macro blocks are not regarded as blocks that involve no movement in the tool nose radius compensation mode (see Section II–15.7).

- NC statements that have the same property as macro statements
  - If NPS (bit 4 of parameter No. 3450) is 1, any NC statements in a block satisfying the following conditions assume the same characteristics as those of macro statements.
    - If a block contains a subprogram call command (M98, a subprogram call using an M code, or a subprogram call using a T code) and does not contain any command address other than O, N, P, or L, that block is equivalent to a macro statement.
    - If a block contains M99 and does not contain any command address other than O, N, P, or L, that block is equivalent to a macro statement.
15.5 BRANCH AND REPETITION

In a program, the flow of control can be changed using the GOTO statement and IF statement. Three types of branch and repetition operations are used:

- GOTO statement (unconditional branch)
- IF statement (conditional branch: if ..., then...)
- WHILE statement (repetition while ...)

A branch to sequence number n occurs. When a sequence number outside of the range 1 to 99999 is specified, P/S alarm No. 128 occurs. A sequence number can also be specified using an expression.

Example:
- GOTO1;
- GOTO#10;
15.5.2 Conditional Branch (IF Statement)

Specify a conditional expression after IF. IF [<conditional expression>] GOTO n If the specified conditional expression is satisfied, a branch to sequence number n occurs. If the specified condition is not satisfied, the next block is executed.

\[
\text{IF}[\#1 > 10] \text{ GOTO 2 ;}
\]

If the value of variable \#1 is greater than 10, a branch to sequence number N2 occurs.

\[
\text{IF}[\#1 \leq 10] \text{ GOTO 2 ;}
\]

If the condition is not satisfied

\[
\text{IF}[\#1 \geq 10] \text{ GOTO 2 ;}
\]

Processing

If the condition is satisfied

\[
\text{IF}[\#1 \leq 10] \text{ GOTO 2 ;}
\]

N2 G00 G91 X10.0 ;


If the specified conditional expression is satisfied, a predetermined macro statement is executed. Only a single macro statement is executed.

\[
\text{IF}[\#1 = \#2] \text{ THEN } \#3 = 0;
\]

If the values of \#1 and \#2 are the same, 0 is assigned to \#3.

Explanations

- Conditional expression
  - A conditional expression must include an operator inserted between two variables or between a variable and constant, and must be enclosed in brackets ([, ]). An expression can be used instead of a variable.

- Operators
  - Operators each consist of two letters and are used to compare two values to determine whether they are equal or one value is smaller or greater than the other value. Note that the inequality sign cannot be used.

<table>
<thead>
<tr>
<th>Table 15.5.2 Operators</th>
</tr>
</thead>
<tbody>
<tr>
<td>Operator</td>
</tr>
<tr>
<td>EQ</td>
</tr>
<tr>
<td>NE</td>
</tr>
<tr>
<td>GT</td>
</tr>
<tr>
<td>GE</td>
</tr>
<tr>
<td>LT</td>
</tr>
<tr>
<td>LE</td>
</tr>
</tbody>
</table>

Sample program

The sample program below finds the total of numbers 1 to 10.

O9500;
#1=0; Initial value of the variable to hold the sum
#2=1; Initial value of the variable as an addend
N1 IF[#2 GT 10] GOTO 2 ; Branch to N2 when the addend is greater than 10
#1=#1+#2; Calculation to find the sum
#2=#2+1; Next addend
GOTO 1; Branch to N1
N2 M30; End of program
15.5.3 Repetition (WHILE Statement)

Specify a conditional expression after WHILE. While the specified condition is satisfied, the program from DO to END is executed. If the specified condition is not satisfied, program execution proceeds to the block after END.

Explanations

While the specified condition is satisfied, the program from DO to END after WHILE is executed. If the specified condition is not satisfied, program execution proceeds to the block after END. The same format as for the IF statement applies. A number after DO and a number after END are identification numbers for specifying the range of execution. The numbers 1, 2, and 3 can be used. When a number other than 1, 2, and 3 is used, P/S alarm No. 126 occurs.
• Nesting

The identification numbers (1 to 3) in a DO–END loop can be used as many times as desired. Note, however, when a program includes crossing repetition loops (overlapped DO ranges), P/S alarm No. 124 occurs.

1. The identification numbers (1 to 3) can be used as many times as required.

```plaintext
WHILE […] DO 1 ;
 Processing
END 1 ;
WHILE […] DO 1 ;
 Processing
END 1 ;
WHILE […] DO 1 ;
 Processing
END 1 ;
WHILE […] DO 2 ;
 Processing
END 1 ;
WHILE […] DO 2 ;
 Processing
END 1 ;
WHILE […] DO 3 ;
 Processing
END 3 ;
END 2 ;
END 1 ;
WHILE […] DO 1 ;
 Processing
END 1 ;
WHILE […] DO 1 ;
 Processing
END 2 ;
WHILE […] DO 1 ;
 Processing
END 1 ;
WHILE […] DO 1 ;
 Processing
END 2 ;
WHILE […] DO 1 ;
 Processing
END 1 ;
```

3. DO loops can be nested to a maximum depth of three levels.

```plaintext
WHILE […] DO 1 ;
 WHILE […] DO 2 ;
 WHILE […] DO 3 ;
 Processing
 END 3 ;
 END 2 ;
 END 1 ;
WHILE […] DO 1 ;
 END 1 ;
WHILE […] DO 2 ;
 END 1 ;
WHILE […] DO 3 ;
 END 1 ;
```

2. DO ranges cannot overlap.

```plaintext
WHILE […] DO 1 ;
 Processing
WHILE […] DO 2 ;
 Processing
END 1 ;
END 2 ;
```

4. Control can be transferred to the outside of a loop.

```plaintext
WHILE […] DO 1 ;
 whilst […] DO 2 ;
 IF […] GOTO n ;
 END 1 ;
 Nn
```

5. Branches cannot be made to a location within a loop.

```plaintext
IF […] GOTO n ;
 WHILE […] DO 1 ;
 Nn … ;
END 1 ;
```

Limitations

• Infinite loops

When DO m is specified without specifying the WHILE statement, an infinite loop ranging from DO to END is produced.

• Processing time

When a branch to the sequence number specified in a GOTO statement occurs, the sequence number is searched for. For this reason, processing in the reverse direction takes a longer time than processing in the forward direction. Using the WHILE statement for repetition reduces processing time.

• Undefined variable

In a conditional expression that uses EQ or NE, a null value and zero have different effects. In other types of conditional expressions, a null value is regarded as zero.
The sample program below finds the total of numbers 1 to 10.

```
O0001;
#1=0;
#2=1;
WHILE[#2 LE 10]DO 1;
#1=#1+#2;
#2=#2+1;
END 1;
M30;
```
## 15.6 MACRO CALL

A macro program can be called using the following methods:

<table>
<thead>
<tr>
<th>MacCall</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>(G65)</td>
<td>Simple call</td>
</tr>
<tr>
<td>(G66, G67)</td>
<td>modal call</td>
</tr>
<tr>
<td></td>
<td>Macro call with G code</td>
</tr>
<tr>
<td></td>
<td>Macro call with M code</td>
</tr>
<tr>
<td></td>
<td>Subprogram call with M code</td>
</tr>
<tr>
<td></td>
<td>Subprogram call with T code</td>
</tr>
</tbody>
</table>

### Restrictions

- **Differences between macro calls and subprogram calls**

Macro call (G65) differs from subprogram call (M98) as described below.

- With G65, an argument (data passed to a macro) can be specified. M98 does not have this capability.

- When an M98 block contains another NC command (for example, G01 X100.0 M98Pp), the subprogram is called after the command is executed. On the other hand, G65 unconditionally calls a macro.

- When an M98 block contains another NC command (for example, G01 X100.0 M98Pp), the machine stops in the single block mode. On the other hand, G65 does not stop the machine.

- With G65, the level of local variables changes. With M98, the level of local variables does not change.
15.6.1 Simple Call (G65)

When G65 is specified, the custom macro specified at address P is called. Data (argument) can be passed to the custom macro program.

```
G65 P_ L_ <argument-specification> ;

P_ : Number of the program to call
L_ : Repetition count (1 by default)
Argument : Data passed to the macro
```

```
O0001 ;
:
G65 P9010 L2 A1.0 B2.0 ;
:
M30 ;
```

### Explanations

- **Call**
  - After G65, specify at address P the program number of the custom macro to call.
  - When a number of repetitions is required, specify a number from 1 to 9999 after address L. When L is omitted, 1 is assumed.
  - By using argument specification, values are assigned to corresponding local variables.

- **Argument specification**
  - Two types of argument specification are available. Argument specification I uses letters other than G, L, O, N, and P once each. Argument specification II uses A, B, and C once each and also uses I, J, and K up to ten times. The type of argument specification is determined automatically according to the letters used.

#### Argument specification I

<table>
<thead>
<tr>
<th>Address</th>
<th>Variable number</th>
<th>Address</th>
<th>Variable number</th>
<th>Address</th>
<th>Variable number</th>
</tr>
</thead>
<tbody>
<tr>
<td>A</td>
<td>#1</td>
<td>I</td>
<td>#4</td>
<td>T</td>
<td>#20</td>
</tr>
<tr>
<td>B</td>
<td>#2</td>
<td>J</td>
<td>#5</td>
<td>U</td>
<td>#21</td>
</tr>
<tr>
<td>C</td>
<td>#3</td>
<td>K</td>
<td>#6</td>
<td>V</td>
<td>#22</td>
</tr>
<tr>
<td>D</td>
<td>#7</td>
<td>M</td>
<td>#13</td>
<td>W</td>
<td>#23</td>
</tr>
<tr>
<td>E</td>
<td>#8</td>
<td>Q</td>
<td>#17</td>
<td>X</td>
<td>#24</td>
</tr>
<tr>
<td>F</td>
<td>#9</td>
<td>R</td>
<td>#18</td>
<td>Y</td>
<td>#25</td>
</tr>
<tr>
<td>H</td>
<td>#11</td>
<td>S</td>
<td>#19</td>
<td>Z</td>
<td>#26</td>
</tr>
</tbody>
</table>

- Addresses G, L, N, O, and P cannot be used in arguments.
- Addresses that need not be specified can be omitted. Local variables corresponding to an omitted address are set to null.
- Addresses do not need to be specified alphabetically. They conform to word address format. I, J, and K need to be specified alphabetically, however.

#### Example

```
B_A_D_ .. J_K_ Correct
B_A_D_ .. J_I_ Incorrect
```
Argument specification II

Argument specification II uses A, B, and C once each and uses I, J, and K up to ten times. Argument specification II is used to pass values such as three-dimensional coordinates as arguments.

<table>
<thead>
<tr>
<th>Address</th>
<th>Variable number</th>
</tr>
</thead>
<tbody>
<tr>
<td>A</td>
<td>#1</td>
</tr>
<tr>
<td>B</td>
<td>#2</td>
</tr>
<tr>
<td>C</td>
<td>#3</td>
</tr>
<tr>
<td>I₁</td>
<td>#4</td>
</tr>
<tr>
<td>J₁</td>
<td>#5</td>
</tr>
<tr>
<td>K₁</td>
<td>#6</td>
</tr>
<tr>
<td>I₂</td>
<td>#7</td>
</tr>
<tr>
<td>J₂</td>
<td>#8</td>
</tr>
<tr>
<td>K₂</td>
<td>#9</td>
</tr>
<tr>
<td>I₃</td>
<td>#10</td>
</tr>
<tr>
<td>J₃</td>
<td>#11</td>
</tr>
<tr>
<td>K₃</td>
<td></td>
</tr>
<tr>
<td>I₄</td>
<td></td>
</tr>
<tr>
<td>J₄</td>
<td></td>
</tr>
<tr>
<td>K₄</td>
<td></td>
</tr>
<tr>
<td>I₅</td>
<td></td>
</tr>
<tr>
<td>J₅</td>
<td></td>
</tr>
<tr>
<td>K₅</td>
<td></td>
</tr>
<tr>
<td>I₆</td>
<td></td>
</tr>
<tr>
<td>J₆</td>
<td></td>
</tr>
<tr>
<td>K₆</td>
<td></td>
</tr>
<tr>
<td>I₇</td>
<td></td>
</tr>
<tr>
<td>J₇</td>
<td></td>
</tr>
<tr>
<td>K₇</td>
<td></td>
</tr>
<tr>
<td>I₈</td>
<td></td>
</tr>
<tr>
<td>J₈</td>
<td></td>
</tr>
<tr>
<td>K₈</td>
<td></td>
</tr>
<tr>
<td>I₉</td>
<td></td>
</tr>
<tr>
<td>J₉</td>
<td></td>
</tr>
<tr>
<td>K₉</td>
<td></td>
</tr>
<tr>
<td>I₁₀</td>
<td></td>
</tr>
<tr>
<td>J₁₀</td>
<td></td>
</tr>
<tr>
<td>K₁₀</td>
<td></td>
</tr>
<tr>
<td>I₁₁</td>
<td></td>
</tr>
<tr>
<td>J₁₁</td>
<td></td>
</tr>
<tr>
<td>K₁₁</td>
<td></td>
</tr>
<tr>
<td>I₁₂</td>
<td></td>
</tr>
<tr>
<td>J₁₂</td>
<td></td>
</tr>
<tr>
<td>K₁₂</td>
<td></td>
</tr>
<tr>
<td>I₁₃</td>
<td></td>
</tr>
<tr>
<td>J₁₃</td>
<td></td>
</tr>
<tr>
<td>K₁₃</td>
<td></td>
</tr>
<tr>
<td>I₁₄</td>
<td></td>
</tr>
<tr>
<td>J₁₄</td>
<td></td>
</tr>
<tr>
<td>K₁₄</td>
<td></td>
</tr>
<tr>
<td>I₁₅</td>
<td></td>
</tr>
<tr>
<td>J₁₅</td>
<td></td>
</tr>
<tr>
<td>K₁₅</td>
<td></td>
</tr>
<tr>
<td>I₁₆</td>
<td></td>
</tr>
<tr>
<td>J₁₆</td>
<td></td>
</tr>
<tr>
<td>K₁₆</td>
<td></td>
</tr>
<tr>
<td>I₁₇</td>
<td></td>
</tr>
<tr>
<td>J₁₇</td>
<td></td>
</tr>
<tr>
<td>K₁₇</td>
<td></td>
</tr>
<tr>
<td>I₁₈</td>
<td></td>
</tr>
<tr>
<td>J₁₈</td>
<td></td>
</tr>
<tr>
<td>K₁₈</td>
<td></td>
</tr>
<tr>
<td>I₁₉</td>
<td></td>
</tr>
<tr>
<td>J₁₉</td>
<td></td>
</tr>
<tr>
<td>K₁₉</td>
<td></td>
</tr>
<tr>
<td>I₁₀₀</td>
<td></td>
</tr>
<tr>
<td>J₁₀₀</td>
<td></td>
</tr>
<tr>
<td>K₁₀₀</td>
<td></td>
</tr>
</tbody>
</table>

- Subscripts of I, J, and K for indicating the order of argument specification are not written in the actual program.

Restrictions

- Format

G65 must be specified before any argument.

- Mixture of argument specifications I and II

The CNC internally identifies argument specification I and argument specification II. If a mixture of argument specification I and argument specification II is specified, the type of argument specification specified later takes precedence.

Example

```
G65 A1.0 B2.0 I-3.0 I4.0 D5.0 P1000;
```

When both the I4.0 and D5.0 arguments are commanded for variable #7 in this example, the latter, D5.0, is valid.

- Position of the decimal point

The units used for argument data passed without a decimal point correspond to the least input increment of each address. The value of an argument passed without a decimal point may vary according to the system configuration of the machine. It is good practice to use decimal points in macro call arguments to maintain program compatibility.

- Call nesting

Calls can be nested to a depth of four levels including simple calls (G65) and modal calls (G66). This does not include subprogram calls (M98).
**Local variable levels**

- Local variables from level 0 to 4 are provided for nesting.
- The level of the main program is 0.
- Each time a macro is called (with G65 or G66), the local variable level is incremented by one. The values of the local variables at the previous level are saved in the CNC.
- When M99 is executed in a macro program, control returns to the calling program. At that time, the local variable level is decremented by one; the values of the local variables saved when the macro was called are restored.

<table>
<thead>
<tr>
<th>Main program (level 0)</th>
<th>Macro (level 1)</th>
<th>Macro (level 2)</th>
<th>Macro (level 3)</th>
<th>Macro (level 4)</th>
</tr>
</thead>
<tbody>
<tr>
<td>O0001 ; #1=1 ; G65 P2 A2 ; M30 ;</td>
<td>O0002 ; G65 P3 A3 ;</td>
<td>O0003 ; G65 P4 A4 ;</td>
<td>O0004 ; G65 P5 A5 ;</td>
<td>O0005 ;</td>
</tr>
<tr>
<td>Local variables (level 0)</td>
<td>(Level 1)</td>
<td>(Level 2)</td>
<td>(Level 3)</td>
<td>(Level 4)</td>
</tr>
<tr>
<td>#1</td>
<td>1</td>
<td>#1</td>
<td>2</td>
<td>#1</td>
</tr>
<tr>
<td>#33</td>
<td>#33</td>
<td>#33</td>
<td>#33</td>
<td>#33</td>
</tr>
</tbody>
</table>

**Common variables**

| #100–, #500– | Variables that can be read from and written to by macros at different levels |

**Sample program**

(Development cycle)

Move the tool beforehand along the X- and Z-axes to the position where a drilling cycle starts. Specify Z or W for the depth of a hole, K for the depth of a cut, and F for the cutting feedrate to drill the hole.
• Calling format

\[
\text{G65 P9100 } \begin{cases} \text{Z} & \text{Hole depth (absolute specification)} \\ \text{W} & \text{Hole depth (incremental specification)} \\ \text{K} & \text{Cutting amount per cycle} \\ \text{F} & \text{Cutting feedrate} \end{cases}
\]

• Program calling a macro program

```
O0002;
G50 X100.0 Z200.0 ;
G00 X0 Z102.0 S1000 M03 ;
G65 P9100 Z50.0 K20.0 F0.3 ;
G00 X100.0 Z200.0 M05 ;
M30 ;
```

• Macro program (called program)

```
O9100;
#1=0 ; Clear the data for the depth of the current hole.
#2=0 ; Clear the data for the depth of the preceding hole.
IF [#23 NE #0] GOTO 1 ;
.............. If incremental programming, specifies the jump to N1.
IF [#26 EQ #0] GOTO 8 ;
.............. If neither Z nor W is specified, an error occurs.
#23=#5002–#26 ; Calculates the depth of a hole.
N1 #1=#1+#6 ; Calculates the depth of the current hole.
 IF [#1 LE #23] GOTO 2 ;
 Determines whether the hole to be cut is too deep.
#1=#23 ; Clamps at the depth of the current hole.
N2 G00 W–#2 ; Moves the tool to the depth of the preceding hole at the cutting feedrate.
G01 W– [#1–#2] F#9 ; Drills the hole.
G00 W#1 ; Moves the tool to the drilling start point.
IF [#1 GE #23] GOTO 9 ; .. Checks whether drilling is completed.
#2=#1 ; Stores the depth of the current hole.
 GOTO 1 ;
N9 M99 ;
N8 #3000=1 (NOT Z OR U COMMAND)
```
Once G66 is issued to specify a modal call a macro is called after a block specifying movement along axes is executed. This continues until G67 is issued to cancel a modal call.

```
O0001 ;
G66 P9100 L2 A1.0 B2.0 ;
G00 G90 X100.0 ;
X125.0 ;
X150.0 ;
G67 ;
M30 ;
```

```
O9100 ;
G00 Z=#1 ;
G01 Z=#2 F0.3 ;
```

### Explanations

- **Call**
  - After G66, specify at address P a program number subject to a modal call.
  - When a number of repetitions is required, a number from 1 to 9999 can be specified at address L.
  - As with a simple call (G65), data passed to a macro program is specified in arguments.

- **Cancellation**
  When a G67 code is specified, modal macro calls are no longer performed in subsequent blocks.

- **Call nesting**
  Calls can be nested to a depth of four levels including simple calls (G65) and modal calls (G66). This does not include subprogram calls (M98).

- **Modal call nesting**
  Modal calls can be nested by specifying another G66 code during a modal call.

### Restrictions

- In a G66 block, no macros can be called.
- G66 needs to be specified before any arguments.
- No macros can be called in a block which contains a code such as a miscellaneous function that does not involve movement along an axis.
- Local variables (arguments) can only be set in G66 blocks. Note that local variables are not set each time a modal call is performed.
Sample program

This program makes a groove at a specified position.

```
G66 P9110 Uu Ff;
U: Groove depth (incremental specification)
F: Cutting feed of grooving
```

Calling format

```
O0003;
G50 X100.0 Z200.0;
S1000 M03;
G66 P9110 U5.0 F0.5;
G00 X60.0 Z80.0;
Z50.0;
Z30.0;
G67;
G00 X00.0 Z200.0 M05;
M30;
```

Program that calls a macro program

```
O9110;
G01 U-#21 F#9; Cuts the workpiece.
G00 U#21; Retracts the tool.
M99;
```
15.6.3
**Macro Call Using G Code**

By setting a G code number used to call a macro program in a parameter, the macro program can be called in the same way as for a simple call (G65).

```
O0001 ;
 G81 X10.0 Z–10.0 ;
 M30 ;

O0010 ;
 ...
 ...
 N9 M99 ;
```

Parameter No. 6050 = 81

**Explanations**

By setting a G code number from 1 to 9999 used to call a custom macro program (9010 to 9019) in the corresponding parameter (Nos. 6050 to 6059), the macro program can be called in the same way as with G65. For example, when a parameter is set so that macro program O9010 can be called with G81, a user-specific cycle created using a custom macro can be called without modifying the machining program.

<table>
<thead>
<tr>
<th>Program number</th>
<th>Parameter number</th>
</tr>
</thead>
<tbody>
<tr>
<td>O9010</td>
<td>6050</td>
</tr>
<tr>
<td>O9011</td>
<td>6051</td>
</tr>
<tr>
<td>O9012</td>
<td>6052</td>
</tr>
<tr>
<td>O9013</td>
<td>6053</td>
</tr>
<tr>
<td>O9014</td>
<td>6054</td>
</tr>
<tr>
<td>O9015</td>
<td>6055</td>
</tr>
<tr>
<td>O9016</td>
<td>6056</td>
</tr>
<tr>
<td>O9017</td>
<td>6057</td>
</tr>
<tr>
<td>O9018</td>
<td>6058</td>
</tr>
<tr>
<td>O9019</td>
<td>6059</td>
</tr>
</tbody>
</table>

**Correspondence between parameter numbers and program numbers**

- **Repetition**
  As with a simple call, a number of repetitions from 1 to 9999 can be specified at address L.

- **Argument specification**
  As with a simple call, two types of argument specification are available: Argument specification I and argument specification II. The type of argument specification is determined automatically according to the addresses used.

**Restrictions**

- **Nesting of calls using G codes**
  In a program called with a G code, no macros can be called using a G code. A G code in such a program is treated as an ordinary G code. In a program called as a subprogram with an M or T code, no macros can be called using a G code. A G code in such a program is also treated as an ordinary G code.
15.6.4 Macro Call Using an M Code

By setting an M code number used to call a macro program in a parameter, the macro program can be called in the same way as with a simple call (G65).

By setting an M code number from 1 to 99999999 used to call a custom macro program (O9020 to O9029) in the corresponding parameter (Nos. 6080 to 6089), the macro program can be called in the same way as with G65.

- **Correspondence between parameter numbers and program numbers**

<table>
<thead>
<tr>
<th>Program number</th>
<th>Parameter number</th>
</tr>
</thead>
<tbody>
<tr>
<td>O9020</td>
<td>6080</td>
</tr>
<tr>
<td>O9021</td>
<td>6081</td>
</tr>
<tr>
<td>O9022</td>
<td>6082</td>
</tr>
<tr>
<td>O9023</td>
<td>6083</td>
</tr>
<tr>
<td>O9024</td>
<td>6084</td>
</tr>
<tr>
<td>O9025</td>
<td>6085</td>
</tr>
<tr>
<td>O9026</td>
<td>6086</td>
</tr>
<tr>
<td>O9027</td>
<td>6087</td>
</tr>
<tr>
<td>O9028</td>
<td>6088</td>
</tr>
<tr>
<td>O9029</td>
<td>6089</td>
</tr>
</tbody>
</table>

- **Repetition**

As with a simple call, a number of repetitions from 1 to 9999 can be specified at address L.

- **Argument specification**

As with a simple call, two types of argument specification are available: Argument specification I and argument specification II. The type of argument specification is determined automatically according to the addresses used.

**Restrictions**

- An M code used to call a macro program must be specified at the start of a block.
- In a macro called with a G code or in a program called as a subprogram with an M or T code, no macros can be called using an M code. An M code in such a macro or program is treated as an ordinary M code.
15.6.5 Subprogram Call Using an M Code

By setting an M code number used to call a subprogram (macro program) in a parameter, the macro program can be called in the same way as with a subprogram call (M98).

```
O0001 ;
M03 ;
M30 ;
```

Parameter 6071 = 03

```
O9001 ;
... ...
M99 ;
```

Explanations

By setting an M code number from 1 to 99999999 used to call a subprogram in a parameter (Nos. 6071 to 6076), the corresponding custom macro program (O9001 to O9006) can be called in the same way as with M98.

**Correspondence between parameter numbers and program numbers**

<table>
<thead>
<tr>
<th>Program number</th>
<th>Parameter number</th>
</tr>
</thead>
<tbody>
<tr>
<td>O9001</td>
<td>6071</td>
</tr>
<tr>
<td>O9002</td>
<td>6072</td>
</tr>
<tr>
<td>O9003</td>
<td>6073</td>
</tr>
<tr>
<td>O9004</td>
<td>6074</td>
</tr>
<tr>
<td>O9005</td>
<td>6075</td>
</tr>
<tr>
<td>O9006</td>
<td>6076</td>
</tr>
<tr>
<td>O9007</td>
<td>6077</td>
</tr>
<tr>
<td>O9008</td>
<td>6078</td>
</tr>
<tr>
<td>O9009</td>
<td>6079</td>
</tr>
</tbody>
</table>

**Repetition**

As with a simple call, a number of repetitions from 1 to 9999 can be specified at address L.

**Argument specification**

Argument specification is not allowed.

**M code**

An M code in a macro program that has been called is treated as an ordinary M code.

**Limitations**

In a macro called with a G code or in a program called with an M or T code, no subprograms can be called using an M code. An M code in such a macro or program is treated as an ordinary M code.
15.6.6 Subprogram Calls Using a T Code

By enabling subprograms (macro program) to be called with a T code in a parameter, a macro program can be called each time the T code is specified in the machining program.

```
O0001 ;
T0203 ;
M30 ;
```

Bit 5 (TCS) of parameter No.6001 = 1

```
O9000 ;
...
M99 ;
```

Explanations

- **Call**

  By setting bit 5 (TCS) of parameter No.6001 to 1, the macro program O9000 can be called when a T code is specified in the machining program. A T code specified in a machining program is assigned to common variable #149.

Limitations

In a macro called with a G code or in a program called with an M or T code, no subprograms can be called using a T code. A T code in such a macro or program is treated as an ordinary T code.
By using the subprogram call function that uses M codes, the cumulative usage time of each tool is measured.

- The cumulative usage time of each of tool numbers 1 to 5 is measured. The time is not measured for tools whose number is 6 or more.
- The following variables are used to store the tool numbers and measured times:

<table>
<thead>
<tr>
<th>Variable</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>#501</td>
<td>Cumulative usage time of tool number 1</td>
</tr>
<tr>
<td>#502</td>
<td>Cumulative usage time of tool number 2</td>
</tr>
<tr>
<td>#503</td>
<td>Cumulative usage time of tool number 3</td>
</tr>
<tr>
<td>#504</td>
<td>Cumulative usage time of tool number 4</td>
</tr>
<tr>
<td>#505</td>
<td>Cumulative usage time of tool number 5</td>
</tr>
</tbody>
</table>

- Usage time starts being counted when the M03 command is specified and stops when M05 is specified. System variable #3002 is used to measure the time during which the cycle start lamp is on. The time during which the machine is stopped by feed hold and single block stop operation is not counted, but the time used to change tools and pallets is included.

**Operation check**

- **Parameter setting**
  Set 3 in parameter No.6071, and set 05 in parameter No.6072.

- **Variable value setting**
  Set 0 in variables #501 to #505.

- **Program that calls a macro program**

```gcode
O0001;
T0100 M06;
M03;
 M05; Changes #501.
T0200 M06;
M03;
 M05; Changes #502.
T0300 M06;
M03;
 M05; Changes #503.
T0400 M06;
M03;
 M05; Changes #504.
T0500 M06;
M03;
 M05; Changes #505.
M30;
```
Macro program
(program called)

O9001(M03); ...................... Macro to start counting
M01;
IF[FIX[#4120/100] EQ 0]GOTO 9; .......... No tool specified
IF[FIX[#4120/100] GT 5]GOTO 9; ...... Out-of-range tool number
#3002=0; .......................... Clears the timer.
N9 M03; ..................... Rotates the spindle in the forward direction.
M99;

O9002(M05); ...................... Macro to end counting
M01;
IF[FIX[#4120/100] EQ 0]GOTO 9; .......... No tool specified
IF[FIX[#4120/100] GT 5]GOTO 9; ...... Out-of-range tool number
#500+FIX[#4120/100]=#3002+#[500+FIX[#4120/100]];
................................. Calculates cumulative time.

N9 M05; ......................... Stops the spindle.
M99;
15.7 PROCESSING MACRO STATEMENTS

Explanations

- When the next block is not buffered (M codes that are not buffered, G31, etc.)

- Buffering the next block in other than tool nose radius compensation mode (G41, G42) (normally prereading one block)

For smooth machining, the CNC prereads the CNC statement to be performed next. This operation is referred to as buffering. In tool nose radius compensation mode (G41, G42), the NC prereads NC statements two or three blocks ahead to find intersections. Macro statements for arithmetic expressions and conditional branches are processed as soon as they are read into the buffer. Blocks containing M00, M01, M02, or M30, blocks containing M codes for which buffering is suppressed by setting parameter (Nos. 3411 to 3420), and blocks containing G31 are not preread.

When N1 is being executed, the next NC statement (N4) is read into the buffer. The macro statements (N2, N3) between N1 and N4 are processed during execution of N1.
- **Buffering the next block in tool nose radius compensation mode (G41, G42)**

  When N1 is being executed, the NC statements in the next two blocks (up to N5) are read into the buffer. The macro statements (N2, N4) between N1 and N5 are processed during execution of N1.

- **When the next block involves no movement in tool nose radius compensation (G41, G42) mode**

  When the NC1 block is being executed, the NC statements in the next two blocks (up to N5) are read into the buffer. Since N5 is a block that involves no movement, an intersection cannot be calculated. In this case, the NC statements in the next three blocks (up to N7) are read. The macro statements (N2, N4, and N6) between N1 and N7 are processed during execution of N1.
15.8 REGISTERING CUSTOM MACRO PROGRAMS

Custom macro programs are similar to subprograms. They can be registered and edited in the same way as subprograms. The storage capacity is determined by the total length of tape used to store both custom macros and subprograms.
15.9 LIMITATIONS

- **MDI operation**
  The macro call command can be specified in MDI mode too. During automatic operation, however, it is impossible to switch to the MDI mode for a macro program call.

- **Sequence number search**
  A custom macro program cannot be searched for a sequence number.

- **Single block**
  Even while a macro program is being executed, blocks can be stopped in the single block mode (except blocks containing macro call commands, arithmetic operation commands, and control commands).
  A block containing a macro call command (G65, G66, or G67) does not stop even when the single block mode is on. Blocks containing arithmetic operation commands and control commands can be stopped in single block mode by setting SBM (bit 5 of parameter 6000) to 1.
  Single block stop operation is used for testing custom macro programs. Note that when a single block stop occurs at a macro statement in tool nose radius compensation mode, the statement is assumed to be a block that does not involve movement, and proper compensation cannot be performed in some cases. (Strictly speaking, the block is regarded as specifying a movement with a travel distance 0.)

- **Optional block skip**
  A / appearing in the middle of an <expression> (enclosed in brackets [ ] on the right-hand side of an arithmetic expression) is regarded as a division operator; it is not regarded as the specifier for an optional block skip code.

- **Operation in EDIT mode**
  By setting NE8 (bit 0 of parameter 3202) and NE9 (bit 4 of parameter 3202) to 1, deletion and editing are disabled for custom macro programs and subprograms with program numbers 8000 to 8999 and 9000 to 9999. Registered custom macro programs and subprograms should be protected from being destroyed by accident. When the entire memory is cleared (by pressing the RESET and DELETE keys at the same time to turn on the power), the contents of memory such as custom macro programs are deleted.

- **Reset**
  With a reset operation, local variables and common variables #100 to #199 are cleared to null values. They can be prevented from being cleared by setting, CLV and CCV (bits 7 and 6 of parameter 6001). System variables #1000 to #1133 are not cleared.
  A reset operation clears any called states of custom macro programs and subprograms, and any DO states, and returns control to the main program.

- **Display of the PROGRAM RESTART screen**
  As with M98, the M and T codes used for subprogram calls are not displayed.

- **Feed hold**
  When a feed hold is enabled during execution of a macro statement, the machine stops after execution of the macro statement. The machine also stops when a reset or alarm occurs.

- **Constant values that can be used in <expression>**
  +0.0000001 to +999999999
  –999999999 to –0.0000001
  The number of significant digits is 8 (decimal). If this range is exceeded, P/S alarm No. 003 occurs.
In addition to the standard custom macro commands, the following macro commands are available. They are referred to as external output commands.

- BPRNT
- DPRNT
- POPEN
- PCLOS

These commands are provided to output variable values and characters through the reader/punch interface.

Explanations

Specify these commands in the following order:

**Open command:** POPEN
Before specifying a sequence of data output commands, specify this command to establish a connection to an external input/output device.

**Data output command:** BPRNT or DPRNT
Specify necessary data output.

**Close command:** PCLOS
When all data output commands have completed, specify PCLOS to release a connection to an external input/output device.

- **Open command POPEN**

  POPEN establishes a connection to an external input/output device. It must be specified before a sequence of data output commands. The CNC outputs a DC2 control code.

- **Data output command BPRNT**

  The BPRNT command outputs characters and variable values in binary.

  (i) Specified characters are converted to corresponding ISO codes according to the setting data (ISO) that is output at that time. Specifiable characters are as follows:
  - Letters (A to Z)
  - Numbers
  - Special characters (*, /, +, –, etc.)
  An asterisk (*) is output by a space code.

  (ii) All variables are stored with a decimal point. Specify a variable followed by the number of significant decimal places enclosed in brackets. A variable value is treated as 2-word (32-bit) data, including the decimal digits. It is output as binary data starting from the highest byte.

  (iii) When specified data has been output, an EOB code is output according to the ISO code settings.

  (iv) Null variables are regarded as 0.
Example)

```
```

Variable value

#100=0.40596  #101=–1638.4  #10=12.34

The DPRNT command outputs characters and each digit in the value of a variable according to the code set in the settings (ISO).

(i) For an explanation of the DPRNT command, see Items (i), (iii), and (iv) for the BPRNT command.

(ii) When outputting a variable, specify # followed by the variable number, then specify the number of digits in the integer part and the number of decimal places enclosed in brackets.

One code is output for each of the specified number of digits, starting with the highest digit. For each digit, a code is output according to the settings (ISO). The decimal point is also output using a code set in the settings (ISO).

Each variable must be a numeric value consisting of up to eight digits. When high-order digits are zeros, these zeros are not output if PRT (bit 1 of parameter 6001) is 1. If PRT(bit 1 of parameter 6001) is 0, a space code is output each time a zero is encountered.

When the number of decimal places is not zero, digits in the decimal part are always output. If the number of decimal places is zero, no decimal point is output. When PRT (bit 1 of parameter 6001) is 0, a space code is output to indicate a positive number instead of +; if PRT(bit 1 of parameter 6001) is 1, no code is output.
Example )


Variable value
#2=128.47398
#5=-91.2
#30=123.456

(1) Parameter PRT(No.6001#1)=0

(2) Parameter PRT(No.6001#1)=1

- Close command PCLOS
  PCLOS ;
  The PCLOS command releases a connection to an external input/output device. Specify this command when all data output commands have terminated. DC4 control code is output from the CNC.

- Required setting
  Specify the channel use for parameter 020. According to the specification of this parameter, set data items (such as the baud rate) for the reader/punch interface.
  I/O channel 0 : Parameters 101, 102 and 103
  I/O channel 1 : Parameters 111, 112 and 113
  I/O channel 2 : Parameters 121, 122 and 123
  Never specify output to the Fanuc Cassette or floppy disks.
  When specifying a DPRNT command to output data, specify whether leading zeros are output as spaces (by setting PRT (bit 1 of parameter 6001) to 1 or 0). To indicate the end of a line of data in ISO code, specify whether to use only an LF (NCR, of bit 3 of parameter 0103 is 0) or an LF and CR (NCR is 1).
NOTE
1 It is not necessary to always specify the open command (POpen), data output command (BPRNT, DPRNT), and close command (PCLOS) together. Once an open command is specified at the beginning of a program, it does not need to be specified again except after a close command was specified.
2 Be sure to specify open commands and close commands in pairs. Specify the close command at the end of the program. However, do not specify a close command if no open command has been specified.
3 When a reset operation is performed while commands are being output by a data output command, output is stopped and subsequent data is erased. Therefore, when a reset operation is performed by a code such as M30 at the end of a program that performs data output, specify a close command at the end of the program so that processing such as M30 is not performed until all data is output.
4 Abbreviated macro words enclosed in brackets [ ] remains unchanged. However, note that when the characters in brackets are divided and input several times, the second and subsequent abbreviations are converted and input.
5 O can be specified in brackets [ ]. Note that when the characters in brackets [ ] are divided and input several times, O is omitted in the second and subsequent inputs.
15.11
INTERUPTION TYPE CUSTOM MACRO

Format

<table>
<thead>
<tr>
<th>Command</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>M96 Pxxxx;</td>
<td>Enables custom macro interrupt</td>
</tr>
<tr>
<td>M97 ;</td>
<td>Disables custom macro interrupt</td>
</tr>
</tbody>
</table>

Explanations

Use of the interruption type custom macro function allows the user to call a program during execution of an arbitrary block of another program. This allows programs to be operated to match situations which vary from time to time.

(1) When a tool abnormality is detected, processing to handle the abnormality is started by an external signal.

(2) A sequence of machining operations is interrupted by another machining operation without the cancellation of the current operation.

(3) At regular intervals, information on current machining is read. Listed above are examples like adaptive control applications of the interruption type custom macro function.

Fig 15.11 Interruption type custom macro function

When M96Pxxxx is specified in a program, subsequent program operation can be interrupted by an interrupt signal (UINT) input to execute the program specified by Pxxxx.
CAUTION
When the interrupt signal (UINT, marked by * in Fig. 15.11) is input after M97 is specified, it is ignored. And the interrupt signal must not be input during execution of the interrupt program.

15.11.1 Specification Method

Explanations

• Interrupt conditions

A custom macro interrupt is available only during program execution. It is enabled under the following conditions:
- When memory operation or MDI operation is selected
- When STL (start lamp) is on
- When a custom macro interrupt is not currently being processed

• Specification

Generally, the custom macro interrupt function is used by specifying M96 to enable the interrupt signal (UINT) and M97 to disable the signal. Once M96 is specified, a custom macro interrupt can be initiated by the input of the interrupt signal (UINT) until M97 is specified or the NC is reset. After M97 is specified or the NC is reset, no custom macro interrupts are initiated even when the interrupt signal (UINT) is input. The interrupt signal (UINT) is ignored until another M96 command is specified.

The interrupt signal (UINT) becomes valid after M96 is specified. Even when the signal is input in M97 mode, it is ignored. When the signal input in M97 mode is kept on until M96 is specified, a custom macro interrupt is initiated as soon as M96 is specified (only when the status–triggered scheme is employed); when the edge–triggered scheme is employed, the custom macro interrupt is not initiated even when M96 is specified.

NOTE
For the status–triggered and edge–triggered schemes, see Item “Custom macro interrupt signal (UINT)” of Subsec. 15.11.2.
15.11.2
Details of Functions

Explanations

- **Subprogram–type interrupt and macro–type interrupt**
  
  There are two types of custom macro interrupts: Subprogram–type interrupts and macro–type interrupts. The interrupt type used is selected by MSB (bit 5 of parameter 6003).

  **(a) Subprogram–type interrupt**
  
  An interrupt program is called as a subprogram. This means that the levels of local variables remain unchanged before and after the interrupt. This interrupt is not included in the nesting level of subprogram calls.

  **(b) Macro–type interrupt**
  
  An interrupt program is called as a custom macro. This means that the levels of local variables change before and after the interrupt. The interrupt is not included in the nesting level of custom macro calls. When a subprogram call or a custom macro call is performed within the interrupt program, this call is included in the nesting level of subprogram calls or custom macro calls. Arguments cannot be passed from the current program even when the custom macro interrupt is a macro–type interrupt.

- **M codes for custom macro interrupt control**
  
  In general, custom macro interrupts are controlled by M96 and M97. However, these M codes, may already being used for other purposes (such as an M function or macro M code call) by some machine tool builders. For this reason, MPR (bit 4 of parameter 6003) is provided to set M codes for custom macro interrupt control.

  When specifying this parameter to use the custom macro interrupt control M codes set by parameters, set parameters 6033 and 6034 as follows:

  Set the M code to enable custom macro interrupts in parameter 6033, and set the M code to disable custom macro interrupts in parameter 6034.

  When specifying that parameter–set M codes are not used, M96 and M97 are used as the custom macro control M codes regardless of the settings of parameters 6033 and 6034.

  The M codes used for custom macro interrupt control are processed internally (they are not output to external units). However, in terms of program compatibility, it is undesirable to use M codes other than M96 and M97 to control custom macro interrupts.

- **Custom macro interrupts and NC statements**
  
  When performing a custom macro interrupt, the user may want to interrupt the NC statement being executed, or the user may not want to perform the interrupt until the execution of the current block is completed. \( \text{MIN} \) (bit 2 of parameter 6003) is used to select whether to perform interrupts even in the middle of a block or to wait until the end of the block.
(i) When the interrupt signal (UINT) is input, any movement or dwell being performed is stopped immediately and the interrupt program is executed.

(ii) If there are NC statements in the interrupt program, the command in the interrupted block is lost and the NC statement in the interrupt program is executed. When control is returned to the interrupted program, the program is restarted from the next block after the interrupted block.

(iii) If there are no NC statements in the interrupt program, control is returned to the interrupted program by M99, then the program is restarted from the command in the interrupted block.

**Type I**
(when an interrupt is performed even in the middle of the block)

(i) If the block being executed is not a block that consists of several cycle operations such as a drilling canned cycle and automatic reference position return (G28), an interrupt is performed as follows: When an interrupt signal (UINT) is input, macro statements in the interrupt program are executed immediately unless an NC statement is encountered in the interrupt program. NC statements are not executed until the current block is completed.

(ii) If the block being executed consists of several cycle operations, an interrupt is performed as follows: When the last movement in the cycle operations is started, macro statements in the interrupt program are executed unless an NC statement is encountered. NC statements are executed after all cycle operations are completed.

**Type II**
(when an interrupt is performed at the end of the block)
The interrupt signal becomes valid after execution starts of a block that contains M96 for enabling custom macro interrupts. The signal becomes invalid when execution starts of a block that contains M97. While an interrupt program is being executed, the interrupt signal becomes invalid. The signal become valid when the execution of the block that immediately follows the interrupted block in the main program is started after control returns from the interrupt program. In type I, if the interrupt program consists of only macro statements, the interrupt signal becomes valid when execution of the interrupted block is started after control returns from the interrupt program.

Even when cycle operation is in progress, movement is interrupted, and the interrupt program is executed. If the interrupt program contains no NC statements, the cycle operation is restarted after control is returned to the interrupted program. If there are NC statements, the remaining operations in the interrupted cycle are discarded, and the next block is executed.

When the last movement of the cycle operation is started, macro statements in the interrupt program are executed unless an NC statement is encountered. NC statements are executed after cycle operation is completed.
Custom macro interrupt signal (UINT)

There are two schemes for custom macro interrupt signal (UINT) input: the status-triggered scheme and edge-triggered scheme. When the status-triggered scheme is used, the signal is valid when it is on. When the edge triggered scheme is used, the signal becomes valid on the rising edge when it switches from off to on status.

One of the two schemes is selected with TSE (bit 3 of parameter 6003). When the status-triggered scheme is selected by this parameter, a custom macro interrupt is generated if the interrupt signal (UINT) is on at the time the signal becomes valid. By keeping the interrupt signal (UINT) on, the interrupt program can be executed repeatedly.

When the edge-triggered scheme is selected, the interrupt signal (UINT) becomes valid only on its rising edge. Therefore, the interrupt program is executed only momentarily (in cases when the program consists of only macro statements). When the status-triggered scheme is inappropriate, or when a custom macro interrupt is to be performed just once for the entire program (in this case, the interrupt signal may be kept on), the edge-triggered scheme is useful.

Except for the specific applications mentioned above, use of either scheme results in the same effects. The time from signal input until a custom macro interrupt is executed does not vary between the two schemes.

In the above example, an interrupt is executed four times when the status triggered scheme is used; when the edge-triggered scheme is used, the interrupt is executed just once.
To return control from a custom macro interrupt to the interrupted program, specify M99. A sequence number in the interrupted program can also be specified using address P. If this is specified, the program is searched from the beginning for the specified sequence number. Control is returned to the first sequence number found.

When a custom macro interrupt program is being executed, no interrupts are generated. To enable another interrupt, execute M99. When M99 is specified alone, it is executed before the preceding commands terminate. Therefore, a custom macro interrupt is enabled for the last command of the interrupt program. If this is inconvenient, custom macro interrupts should be controlled by specifying M96 and M97 in the program.

When a custom macro interrupt is being executed, no other custom macro interrupts are generated; when an interrupt is generated, additional interrupts are inhibited automatically. Executing M99 makes it possible for another custom macro interrupt to occur. M99 specified alone in a block is executed before the previous block terminates. In the following example, an interrupt is enabled for the Gxx block of O1234. When the signal is input, O1234 is executed again. O5678 is controlled by M96 and M97. In this case, an interrupt is not enabled for O5678 (enabled after control is returned to O1000).

NOTE
When an M99 block consists only of address O, N, P, L, or M, this block is regarded as belonging to the previous block in the program. Therefore, a single–block stop does not occur for this block. In terms of programming, the following (1) and (2) are basically the same. (The difference is whether Gxxx is executed before M99 is recognized.)

(1) Gxxx Xxxxx;
   M99;
(2) Gxxx Xxxxx M99;
A custom macro interrupt is different from a normal program call. It is initiated by an interrupt signal (UINT) during program execution. In general, any modifications of modal information made by the interrupt program should not affect the interrupted program.

For this reason, even when modal information is modified by the interrupt program, the modal information before the interrupt is restored when control is returned to the interrupted program by M99.

When control is returned from the interrupt program to the interrupted program by M99 Pxxxx, modal information can again be controlled by the program. In this case, the new continuous information modified by the interrupt program is passed to the interrupted program. Restoration of the old modal information present before the interrupt is not desirable. This is because after control is returned, some programs may operate differently depending on the modal information present before the interrupt. In this case, the following measures are applicable:

1. The interrupt program provides modal information to be used after control is returned to the interrupted program.

2. After control is returned to the interrupted program, modal information is specified again as necessary.

The modal information present before the interrupt becomes valid. The new modal information modified by the interrupt program is made invalid.

The new modal information modified by the interrupt program remains valid even after control is returned. The old modal information which was valid in the interrupted block can be read using custom macro system variables #4001 to #4120.

Note that when modal information is modified by the interrupt program, system variables #4001 to #4120 are not changed.
**System variables (position information values) for the interrupt program**

- The coordinates of point A can be read using system variables #5001 and up until the first NC statement is encountered.
- The coordinates of point A’ can be read after an NC statement with no move specifications appears.
- The machine coordinates and workpiece coordinates of point B’ can be read using system variables #5021 and up and #5041 and up.

```
Interrupt generated
Tool nose center path
A' B
A B
Offset vector
Programmed tool path
```

**Custom macro interrupt and custom macro modal call**

When the interrupt signal (UINT) is input and an interrupt program is called, the custom macro modal call is canceled (G67). However, when G66 is specified in the interrupt program, the custom macro modal call becomes valid. When control is returned from the interrupt program by M99, the modal call is restored to the state it was in before the interrupt was generated. When control is returned by M99Pxxxx; the modal call in the interrupt program remains valid.

**Custom macro interrupt and program restart**

When the interrupt signal (UINT) is input while a return operation is being performed in the dry run mode after the search operation for program restart, the interrupt program is called after restart operation terminates for all axes. This means that interrupt type II is used regardless of the parameter setting.

**DNC operation and Interruption type custom macro**

“Interruption type custom macro” cannot be done during DNC operation or executing a program with an external input–output device.
The values of parameters can be entered in a program. This function is used for setting pitch error compensation data when attachments are changed or the maximum cutting feedrate or cutting time constants are changed to meet changing machining conditions.
Format

<table>
<thead>
<tr>
<th>Format</th>
</tr>
</thead>
<tbody>
<tr>
<td>G10L50;</td>
</tr>
<tr>
<td>N_R_; Parameter entry mode setting</td>
</tr>
<tr>
<td>N_P_R_; For parameters other than the axis type</td>
</tr>
<tr>
<td>G11; Parameter entry mode cancel</td>
</tr>
</tbody>
</table>

Meaning of command

| N_: Parameter No. (4digits) or compensation position No.(0 to 1023) for pitch errors compensation +10,000 (5digit) |
| R_: Parameter setting value (Leading zeros can be omitted.) |
| P_: Axis No. 1 to 8 (Used for entering axis type parameters) |

Explanations

- **Parameter setting value (R_)**
  
  Do not use a decimal point in a value set in a parameter (R_). A decimal point cannot be used in a custom macro variable for R_ either.

- **Axis No.(P_)**
  
  Specify an axis number (P_) from 1 to 8 (up to eight axes) for an axis type parameter. The control axes are numbered in the order in which they are displayed on the CNC display.

  For example, specify P2 for the control axis which is displayed second.

**WARNING**

1. Do not fail to perform reference point return manually after changing the pitch error compensation data or backlash compensation data. Without this, the machine position can deviate from the correct position.

2. The canned-cycle mode must be cancelled before entering of parameters. When not cancelled, the drilling motion will be activated.

**NOTE**

Other NC statements cannot be specified while in parameter input mode.
Examples

1. Set bit 2 (SPB) of bit type parameter No. 3404

<table>
<thead>
<tr>
<th>Code</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>G10L50 ;</td>
<td>Parameter entry mode</td>
</tr>
<tr>
<td>N3404 R 00000100 ;</td>
<td>SBP setting</td>
</tr>
<tr>
<td>G11 ;</td>
<td>cancel parameter entry mode</td>
</tr>
</tbody>
</table>

2. Change the values for the Z-axis (2nd axis) and C-axis (4th axis) in axis type parameter No.1322 (the coordinates of stored stroke limit 2 in the positive direction for each axis).

<table>
<thead>
<tr>
<th>Code</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>G10L50 ;</td>
<td>Parameter entry mode</td>
</tr>
<tr>
<td>N1322P3R4500 ;</td>
<td>Modify Z axis</td>
</tr>
<tr>
<td>N1322P4R12000 ;</td>
<td>Modify C axis</td>
</tr>
<tr>
<td>G11 ;</td>
<td>cancel parameter entry mode</td>
</tr>
</tbody>
</table>
Programs in the Series 10/11 tape format can be registered in memory for memory operation by setting bit 1 of parameter No. 0001. Registration to memory and memory operation are possible for the functions which use the same tape format as that for the Series 10/11 as well as for the following functions which use a different tape format:

- Equal-lead threading
- Subprogram calling
- Canned cycle
- Multiple repetitive canned cycle
- Canned drilling cycle

**NOTE**

Registration to memory and memory operation are possible only for the functions available in this CNC.
17.1 ADDRESSES AND SPECIFIABLE VALUE RANGE FOR Series 10/11 TAPE FORMAT

Some addresses which cannot be used for the this CNC can be used in the Series 10/11 tape format. The specifiable value range for the FS10/11 tape format is basically the same as that for the this CNC. Sections II–17.2 to II–17.6 describe the addresses with a different specifiable value range. If a value out of the specifiable value range is specified, an alarm is issued.
17.2 EQUAL–LEAD THREADING

Format

G32IP_F_Q;

or

G32IP_E_Q;

IP: Combination of axis addresses
F: Lead along the longitudinal axis
E: Lead along the longitudinal axis
Q: Sight of the threading start angle

Explanations

- Address

Although the FS10/11 allows the operator to specify the number of threads per inch with address E, the FS10/11 tape format does not. Addresses E and F are used in the same way for specifying the lead along the longitudinal axis. The thread lead specified with address E is therefore also assumed as a continuous–state value for address F.

- Specifiable value range for the thread lead

<table>
<thead>
<tr>
<th>Address for thread lead</th>
<th>mm input</th>
<th>inch input</th>
</tr>
</thead>
<tbody>
<tr>
<td>E</td>
<td>0.0001 to 500.0000mm</td>
<td>0.000001 to 9.999999inch</td>
</tr>
<tr>
<td>F</td>
<td>Command with a decimal point</td>
<td>0.0001 to 500.0000mm</td>
</tr>
<tr>
<td></td>
<td>Command without a decimal point</td>
<td>0.01 to 500.00mm</td>
</tr>
</tbody>
</table>

- Specifiable value range for the feedrate

<table>
<thead>
<tr>
<th>Address for feedrate</th>
<th>mm input</th>
<th>inch input</th>
</tr>
</thead>
<tbody>
<tr>
<td>F</td>
<td>Feed per minute</td>
<td>1 to 240000 mm/min</td>
</tr>
<tr>
<td></td>
<td>Increment system (IS–B)</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Feed per rotation</td>
<td>0.01 to 500.00 mm/rev</td>
</tr>
<tr>
<td></td>
<td>Increment system (IS–C)</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>1 to 100000 mm/min</td>
</tr>
</tbody>
</table>

WARNING

Specify the feedrate one more time when switching between feed per minute and feed per rotation.
17. MEMORY OPERATION BY 
Series 10/11 TAPE FORMAT

PROGRAMMING

17.3 SUBPROGRAM CALLING

Format

\[
\text{M98P} \quad \text{L} \quad ;
\]

P: Subprogram number
L: Repetition count

Explanation

- **Address**

  Address L cannot be used in this CNC tape format but can be used in the FS10/11 tape format.

- **Subprogram number**

  The specifiable value range is the same as that for this CNC (1 to 9999). If a value of more than four digits is specified, the last four digits are assumed as the subprogram number.

- **Repetition count**

  The repetition count L can be specified in the range from 1 to 9999. If no repetition count is specified, 1 is assumed.
17.4 CANNED CYCLE

Format

Outer / inner surface turning cycle (straight cutting cycle)
G90X_Z_F_;

Outer / inner surface turning cycle (taper cutting cycle)
G90X_Z_I_F_;  
I: Length of the taper section along the X-axis (radius)

Threading cycle (straight threading cycle)
G92X_Z_F_Q_;  
F: Thread lead  
Q: Shift of the threading start angle

Threading cycle (taper threading cycle)
G92X_Z_I_F_;  
I: Length of the taper section along the X-axis (radius)

End surface turning cycle (front taper cutting cycle)
G94X_Z_F_;  

End surface turning cycle (front taper cutting cycle)
G94X_Z_K_F_;  
K: Length of the taper section along the Z-axis

• Address
Addresses I and K cannot be used for a canned cycle in this CNC tape format but can be used in the FS10/11 command format.

• Specifiable value range for the feedrate
Same as that for equal-lead threading in section II-17.2. See section II-17.2.
17.5 MULTIPLE REPETITIVE CANNED TURNING CYCLE

Format

**Outer / inner surface turning cycle**

G71P_Q_U_W_I_K_D_F_S_T;

- **I**: Length and direction of cutting allowance for finishing the rough machining cycle along the X-axis (ignored if specified)
- **K**: Length and direction of cutting allowance for finishing the rough machining cycle along the Z-axis (ignored if specified)
- **D**: Depth of cut

**End surface rough machining cycle**

G72P_Q_U_W_I_K_D_F_S_T;

- **I**: Length and direction of cutting allowance for finishing the rough machining cycle along the X-axis (ignored if specified)
- **K**: Length and direction of cutting allowance for finishing the rough machining cycle along the Z-axis (ignored if specified)
- **D**: Depth of cut

**Closed–loop turning cycle**

G73P_Q_U_W_I_K_D_F_S_T;

- **I**: Length and direction of clearance along the X-axis (radius)
- **K**: Length and direction of clearance along the Z-axis
- **D**: Number of divisions

**End surface cutting–off cycle**

G74X_Z_I_K_F_D;

or

G74U_W_I_K_F_D;

- **I**: Distance to be traveled along the X-axis
- **K**: Depth of cut along the Z-axis
- **D**: Clearance of the tool at the end of the cutting path

**Outer / inner surface cutting–off cycle**

G75X_Z_I_K_F_D;

or

G75U_W_I_K_F_D;

- **I**: Distance to be traveled along the X-axis
- **K**: Depth of cut along the Z-axis
- **D**: Clearance of the tool at the end of the cutting path

**Multiple repetitive threading cycle**

G76X_Z_I_K_D_F_A_P_Q;

- **I**: Difference of radiuses at threads
- **K**: Height of thread crest (radius)
- **D**: Depth of the first cut (radius)
- **A**: Angle of the tool tip (angle of ridges)
- **P**: Method of cutting
If the following addresses are specified in the FS10/11 tape format, they are ignored.

- I and K for the outer/inner surface rough machining cycle (G71)
- I and K for the end surface rough machining cycle (G72)

For the multiple repetitive threading cycle (G76), specify P1 (constant depth of cutting with a single edge) or P2 (constant depth of zigzag thread cutting with both edges) as the cutting method (P). A value of between 0 and 120 degrees can be specified for tool tip angle A. If other values are specified, P/S alarm 062 is issued.

Address D (cutting depth and retraction distance) can be specified with a value between −99999999 and 99999999, in the minimum input increment, even when calculator–like decimal point input is specified (when bit 0 (DPI) of parameter No. 3401 is set to 1). When address D contains a decimal point, P/S alarm No. 007 is issued.

The specifiable value range for the feedrate is the same as that for equal–lead threading. See section II–17.2.
17.6 CANNED DRILLING CYCLE FORMATS

Format

Drilling cycle
G81X_C_Z_F_L_ ; or G82X_C_Z_R_F_L_ ;
  R : Distance from the initial level to the R position
  P : Dwell time at the bottom of the hole
  F : Cutting feedrate
  L : Number of repetitions

Peck drilling cycle
G83X_C_Z_R_Q_P_F_L_ ;
  R : Distance from the initial level to the R position
  Q : Depth of cut in each cycle
  P : Dwell time at the bottom of the hole
  F : Cutting feedrate
  L : Number of repetitions

High-speed peck drilling cycle
G83.1X_C_Z_R_Q_P_F_L_ ;
  R : Distance from the initial level to the R position
  Q : Depth of cut in each cycle
  P : Dwell time at the bottom of the hole
  F : Cutting feedrate
  L : Number of repetitions

Tapping
G84X_C_Z_R_P_F_L_ ;
  R : Distance from the initial level to the R position
  P : Dwell time at the bottom of the hole
  F : Cutting feedrate
  L : Number of repetitions

Rigid tapping
G84.2X_C_Z_R_P_F_L_S_ ;
  R : Distance from the initial level to the R position
  P : Dwell time at the bottom of the hole
  F : Cutting feedrate
  L : Number of repetitions
  S : Spindle speed

Boring cycle
G85X_C_Z_R_F_L_ ; or G89X_C_Z_R_P_F_L_ ;
  R : Distance from the initial level to the R position
  P : Dwell time at the bottom of the hole
  F : Cutting feedrate
  L : Number of repetitions

Cancel
G80 ;

Explanations

• Address

For this CNC tape format, the address used to specify the number of repetitions is K. For the FS10/11 tape format, it is L.
• **G code**

Some G codes are valid only for this CNC tape format or FS10/11 tape format. Specifying an invalid G code results in P/S alarm No. 10 being generated.

<table>
<thead>
<tr>
<th>G codes valid only for the Series 10/11 tape format</th>
<th>G81, G82, G83.1, G84.2</th>
</tr>
</thead>
<tbody>
<tr>
<td>G codes valid only for the Series 0i tape format</td>
<td>G87, G88</td>
</tr>
</tbody>
</table>

• **Positioning plane and drilling axis**

For this CNC tape format, the positioning plane and drilling axis are determined according to the G code for the canned cycle used. For the FS10/11 tape format, the positioning plane and drilling axis are determined according to G17/G19.

The drilling axis is the basic axis (Z–axis or X–axis) that does not lie in the positioning plane.

<table>
<thead>
<tr>
<th>G code</th>
<th>Positioning plane</th>
<th>Drilling axis</th>
</tr>
</thead>
<tbody>
<tr>
<td>G17</td>
<td>XY plane</td>
<td>Z–axis</td>
</tr>
<tr>
<td>G19</td>
<td>YZ plane</td>
<td>X–axis</td>
</tr>
</tbody>
</table>

Resetting bit 0 (FXY) of parameter No. 5101 enables fixing of the drilling axis to the Z–axis.

• **Details of data specifying machining**

Data for the canned cycle is specified as follows:

```
G X C Z R Q P F L ;
```

**Setting**	**Address**	**Explanation**
Drilling mode | G   | Canned drilling cycle G code |
Hole position data | X/U (Z/W) C/H | Incremental or absolute value used to specify the hole position |
Drilling mode | Z/W (X/U) | Incremental or absolute value used to specify the distance from the R position to the bottom of the hole |
Drilling mode | R | Incremental value used to specify the distance from the initial level to the R position, or absolute value used to specify the R position. Which to use depends on bit 6 of parameter No. 5102 and the G code system being used. |
Drilling mode | Q | Incremental value used to specify the depth of cut in each G83 or G83.1 cycle with radius programming. |
Drilling mode | P | Dwell time at the bottom of the hole. The relationship between the dwell time and the specified value is the same as that for G04. |
Drilling mode | F | Cutting feedrate |
Number of repetitions | L | Number of repetitions for a sequence of cutting operations. If L is not specified, it is assumed to be 1. |
17. MEMORY OPERATION BY SERIES 10/11 TAPE FORMAT PROGRAMMING

**Specifying the R position**

The R position is specified as an incremental value for the distance between the initial level to the R position. For the FS10/11 tape format, the parameter and the G code system used determine whether an incremental or absolute value is to be used to specify the distance between the initial level and the R position.

If bit 6 (RAB) of parameter No. 5102 is 0, an incremental value is always used. If it is 1, the type of value used depends on the G code system used. When G code system A is used, an absolute value is used. When G code system B or C is used, an absolute value is used in G90 mode, and an incremental value is used in G91 mode.

<table>
<thead>
<tr>
<th>Series 10/11 tape format</th>
<th>Series 16/18/160/180 tape format</th>
</tr>
</thead>
<tbody>
<tr>
<td>Bit 6 of parameter No. 5102 = 1</td>
<td>Bit 6 of parameter No. 5102 = 0</td>
</tr>
<tr>
<td>G code system</td>
<td>Incremental</td>
</tr>
<tr>
<td>A</td>
<td>B, C</td>
</tr>
<tr>
<td>Absolute G90 G91</td>
<td>Absolute Incremental</td>
</tr>
</tbody>
</table>

**Details of the canned cycle**

The correspondence between the G codes and this CNC tape format or FS10/11 tape format is listed below. This list also provides notes on dwell during a canned cycle.

- **No. G 0068 (Use) This CNC command format**
- **G81 (Drilling cycle) G83 (G87) P0 <Q not specified>**
  - No dwelling
- **G82 (Drilling cycle) G83 (G87) P <Q not specified>**
  - The tool always dwells at the bottom of the hole.
- **G83 (Peck drilling cycle) G83 (G87) <Type B>**
  - If the block contains a P command, the tool dwells at the bottom of the hole.
- **G83.1 (Peck drilling cycle) G83 (G87) <Type A>**
  - If the block contains a P command, the tool dwells at the bottom of the hole.
  - Note: Either type A or B is selected according to bit 2 (RTR) of parameter No. 5101.
- **G84 (Tapping) G84 (G88) I**
  - If the block contains a P command, the tool dwells after it reaches the bottom of the hole and after it is retracted to the R position.
- **G84.2 (Rigid tapping) M29 S_ G84 (G88)**
  - If the block contains a P command, the tool dwells before the spindle starts rotating in reverse at the bottom of the hole and before it starts rotating in the normal direction at the R position.
- **G85 (Boring cycle) G85 (G89) P0**
  - No dwelling
- **G89 (Boring cycle) G85 (G89) P_**
  - The tool always dwells at the bottom of the hole.

**Clearance d for G83 and G83.1**

Parameter No. 5114 determines clearance d for G83 and G83.1.
• Dwell with G83 and G83.1

For Series 0i, G83 or G83.1 does not cause the tool to dwell. For the FS10/11 tape format, the tool dwells at the bottom of the hole only if the block contains a P address.

• Dwelling with G84 and G84.2

In Series 0i, G84/G84.2 causes the tool to dwell before the spindle starts rotating in either the normal or reverse direction, according to the corresponding parameter setting. For the FS10/11 tape format, when the block contains a P address, the tool dwells at the bottom of the hole and at the R position before the spindle starts rotating either in the normal or reverse direction.

• Rigid tapping

For the FS10/11 tape format, rigid tapping can be specified by using the methods listed below:

<table>
<thead>
<tr>
<th>Format</th>
<th>Condition (parameter), comment</th>
</tr>
</thead>
<tbody>
<tr>
<td>G84.2 X_ Z_ R_ .... S**** ;</td>
<td>Setting (F10/F11) = 1</td>
</tr>
<tr>
<td>S**** ; G84.2 X_ Z_ R_ .... ;</td>
<td>* Common to Series 0i format</td>
</tr>
<tr>
<td>M29 S**** ; G84 X_ Z_ R_ .... ;</td>
<td>G84 is made a G code for rigid tapping. Bit 0 (G84) of parameter No. 5200 = 1</td>
</tr>
<tr>
<td>M29 S**** G84 X_ Z_ R_ .... ; G84 X_ Z_ R_ .... S**** ;</td>
<td>* Common to Series 0i format</td>
</tr>
<tr>
<td>S**** ; G84 X_ Z_ R_ .... ;</td>
<td></td>
</tr>
</tbody>
</table>

• Diameter or radius programming

Specifying 1 for bit 7 (RDI) of parameter No. 5102 causes the canned cycle R command diameter or radius programming mode in the FS10/11 tape format to match the diameter or radius programming mode for the drilling axis.

• Disabling the Series 10/11 format

Specifying bit 3 (F16) of parameter No. 5102 disables the FS10/11 tape format. This applies only to the canned drilling cycle. However, the number of repetitions must be specified by using the L address.

**CAUTION**

Setting bit 3 (F16) of parameter No. 5102 to 1 overrides bits 6 (RAB) and 7 (RDI) of parameter No. 5102; both settings are assumed to be 0.

Limitations

• C–axis as the drilling axis

It is impossible to use the C–axis (the third axis) as a drilling axis. So, specifying G18 (ZX plane) generates P/S alarm No. 28 (plane selection command error).

• Clamping the C–axis

For the FS10/11 tape format, it is impossible to specify an M code for clamping the C–axis.
18 FUNCTIONS FOR HIGH SPEED CUTTING
18.1 ADVANCE PREVIEW CONTROL (G08)

This function is designed for high-speed precise machining. With this function, the delay due to acceleration/deceleration and the delay in the servo system which increase as the feedrate becomes higher can be suppressed. The tool can then follow specified values accurately and errors in the machining profile can be reduced. This function becomes effective when advanced preview control mode is entered. For details, refer to the relevant manual published by the machine tool builder.

Format

G08 P_

P1 : Turn on advanced preview control mode.
P0 : Turn off advanced preview control mode.

Explanations

• Available functions

In advanced preview control mode, the following functions are available:
(1) Linear acceleration/deceleration before interpolation
(2) Automatic corner deceleration function
(3) Feedrate cramp function by arc radins
For the function of (1) above, a special parameter for the advanced preview control mode is provided.

• Reset

Advanced preview control mode is canceled by reset.
18. FUNCTIONS FOR HIGH SPEED CUTTING

**Programming**

**Notes**

**NOTE**

1. If a block without a move command is encountered in the advanced preview control mode, the tool decelerates and stops in the previous block.
2. If a move block in the advanced preview control mode contains an M, S, or T code, the tool decelerates and stops in that block.
3. If a one-shot G code such as G04 is specified in the advanced preview control mode, the tool decelerates and stops in the previous block.
4. If an axial machine lock signal (MLK1 to MLK8) is set on or off in the advanced preview control mode, acceleration/deceleration is not carried out on the axis on which the machine lock is performed.
5. The automatic corner override in the advanced preview control mode can change just the internal arc cutting speed.
6. If an overtravel alarm occurs in the advanced preview control mode, the tool decelerates and stops after the alarm occurs. That is, the tool overruns by the deceleration distance.
7. If the feed per revolution command is specified in the advanced preview control mode, the spindle speed can be changed up to 30000 min⁻¹.
8. If a feed per minute block is followed or preceded by a feed per revolution block in the advanced preview control mode, the tool decelerates and stops in the previous block.

**Limitations**

- **G08 command**
- **Threading**

Specify G08 code only in a block.

Because this function involves automatic velocity control, the tool decelerates in a corner, automatically changing the depth of cut, even in the feed per minute mode. Therefore, this function cannot be used for threading. Automatic deceleration is performed also in the feed per revolution mode.

In the advanced preview control mode, some functions cannot be specified. When specifying any of those functions, cancel the advanced preview control mode in advance. After specifying the function, select the advanced preview control mode again. The table below indicates the applicability of the functions.

<table>
<thead>
<tr>
<th>Function name</th>
<th>Applicability</th>
</tr>
</thead>
<tbody>
<tr>
<td>Canned cycle for grinding</td>
<td>▲</td>
</tr>
<tr>
<td>Rapid traverse bell-shaped acceleration/deceleration</td>
<td>○</td>
</tr>
<tr>
<td>Abnormal load detect function</td>
<td>○</td>
</tr>
<tr>
<td>Chuck/tailstock barrier</td>
<td>○</td>
</tr>
<tr>
<td>Butt-type reference position setting</td>
<td>▲</td>
</tr>
<tr>
<td>Tandem control</td>
<td>○</td>
</tr>
</tbody>
</table>

*Functions that cannot be specified in the advanced preview control mode*
<table>
<thead>
<tr>
<th>Function name</th>
<th>Applicability</th>
</tr>
</thead>
<tbody>
<tr>
<td>Main CPU custom software capacity</td>
<td>○</td>
</tr>
<tr>
<td>Stroke limit check before movement</td>
<td>▲</td>
</tr>
<tr>
<td>Axis control by PMC</td>
<td>▲ (*1)</td>
</tr>
<tr>
<td>Increment system 1/10</td>
<td>○</td>
</tr>
<tr>
<td>Linear acceleration/deceleration after cutting feed interpolation</td>
<td>○</td>
</tr>
<tr>
<td>Axis removal</td>
<td>○</td>
</tr>
<tr>
<td>Polar coordinate interpolation</td>
<td>▲</td>
</tr>
<tr>
<td>Cylindrical interpolation</td>
<td>▲</td>
</tr>
<tr>
<td>Polygon turning</td>
<td>▲</td>
</tr>
<tr>
<td>Helical interpolation</td>
<td>○</td>
</tr>
<tr>
<td>Threading retract</td>
<td>▲</td>
</tr>
<tr>
<td>Continuous threading</td>
<td>▲</td>
</tr>
<tr>
<td>Variable–lead threading</td>
<td>▲</td>
</tr>
<tr>
<td>Rigid tapping</td>
<td>▲</td>
</tr>
<tr>
<td>Third/fourth reference position return</td>
<td>○</td>
</tr>
<tr>
<td>Single manual handle control</td>
<td>○</td>
</tr>
<tr>
<td>Double manual handle control</td>
<td>○</td>
</tr>
<tr>
<td>Handle interrupt</td>
<td>▲</td>
</tr>
<tr>
<td>Program restart</td>
<td>▲</td>
</tr>
<tr>
<td>Stored stroke check 2, 3</td>
<td>▲</td>
</tr>
<tr>
<td>Stored pitch error compensation</td>
<td>○</td>
</tr>
<tr>
<td>External deceleration</td>
<td>○</td>
</tr>
<tr>
<td>Simple synchronization control</td>
<td>▲</td>
</tr>
<tr>
<td>Sequence number collation stop</td>
<td>○</td>
</tr>
<tr>
<td>Position switch</td>
<td>▲</td>
</tr>
<tr>
<td>High–speed skip function</td>
<td>▲</td>
</tr>
<tr>
<td>Multistage skip function</td>
<td>▲</td>
</tr>
<tr>
<td>S serial output</td>
<td>○</td>
</tr>
<tr>
<td>Spindle positioning</td>
<td>▲</td>
</tr>
<tr>
<td>Cs contour control</td>
<td>▲ (*2)</td>
</tr>
<tr>
<td>First spindle orientation</td>
<td>○</td>
</tr>
<tr>
<td>First spindle output selection</td>
<td>○</td>
</tr>
<tr>
<td>Constant surface speed control</td>
<td>○</td>
</tr>
</tbody>
</table>
### 18. FUNCTIONS FOR HIGH SPEED CUTOVER PROGRAMMING

<table>
<thead>
<tr>
<th>Function name</th>
<th>Applicability</th>
</tr>
</thead>
<tbody>
<tr>
<td>Actual spindle speed output</td>
<td>○</td>
</tr>
<tr>
<td>Spindle speed fluctuation detection</td>
<td>○</td>
</tr>
<tr>
<td>Spindle synchronization control</td>
<td>○</td>
</tr>
<tr>
<td>Multi-spindle control</td>
<td>○</td>
</tr>
<tr>
<td>S analog output</td>
<td>○</td>
</tr>
<tr>
<td>Second spindle orientation</td>
<td>○</td>
</tr>
<tr>
<td>Second spindle output selection</td>
<td>○</td>
</tr>
<tr>
<td>Direct drawing dimension programming</td>
<td>○</td>
</tr>
<tr>
<td>G code system B/C</td>
<td>○</td>
</tr>
<tr>
<td>Programmable data input</td>
<td>○</td>
</tr>
<tr>
<td>Custom macro B</td>
<td>○</td>
</tr>
<tr>
<td>Interrupt-type custom macro</td>
<td>▲</td>
</tr>
<tr>
<td>Chamfer, corner rounding</td>
<td>○</td>
</tr>
<tr>
<td>Inch/metric selection</td>
<td>○</td>
</tr>
<tr>
<td>Multiple repetitive canned cycle</td>
<td>○</td>
</tr>
<tr>
<td>Canned cycle for drilling</td>
<td>○</td>
</tr>
<tr>
<td>Play back</td>
<td>○</td>
</tr>
<tr>
<td>Mirror image double turret</td>
<td>○</td>
</tr>
<tr>
<td>F10/11 tape format</td>
<td>○</td>
</tr>
<tr>
<td>Graphic conversation</td>
<td>○</td>
</tr>
<tr>
<td>Pattern data input</td>
<td>○</td>
</tr>
<tr>
<td>Additional custom macro common variable</td>
<td>○</td>
</tr>
<tr>
<td>Macro executor</td>
<td>○</td>
</tr>
<tr>
<td>Multiple repetitive canned cycle 2</td>
<td>○</td>
</tr>
<tr>
<td>Workpiece coordinate system</td>
<td>○</td>
</tr>
<tr>
<td>Reader/punch control 1</td>
<td>○</td>
</tr>
<tr>
<td>Reader/punch control 2</td>
<td>○</td>
</tr>
<tr>
<td>External control of I/O device</td>
<td>○</td>
</tr>
<tr>
<td>DNC2 control</td>
<td>○</td>
</tr>
<tr>
<td>External tool compensation</td>
<td>○</td>
</tr>
<tr>
<td>External message</td>
<td>○</td>
</tr>
<tr>
<td>External machine zero point shift</td>
<td>○</td>
</tr>
<tr>
<td>External data input</td>
<td>○</td>
</tr>
<tr>
<td>Angular-axis control</td>
<td>▲</td>
</tr>
</tbody>
</table>
### 18. FUNCTIONS FOR HIGH SPEED CUTTING

#### PROGRAMMING

<table>
<thead>
<tr>
<th>Function name</th>
<th>Applicability</th>
</tr>
</thead>
<tbody>
<tr>
<td>Workpiece coordinate system preset</td>
<td>○</td>
</tr>
<tr>
<td>Second auxiliary function</td>
<td>○</td>
</tr>
<tr>
<td>Arbitrary axis/angular–axis control</td>
<td>▲</td>
</tr>
<tr>
<td>Tool–nose radius compensation</td>
<td>○</td>
</tr>
<tr>
<td>Tool geometry compensation and wear compensation</td>
<td>○</td>
</tr>
<tr>
<td>Automatic tool compensation</td>
<td>▲</td>
</tr>
<tr>
<td>Direct input of offset value measurement B</td>
<td>○</td>
</tr>
<tr>
<td>Y–axis offset</td>
<td>○</td>
</tr>
<tr>
<td>Tool life management</td>
<td>○</td>
</tr>
<tr>
<td>Additional optional block skip</td>
<td>○</td>
</tr>
<tr>
<td>Background editing</td>
<td>○</td>
</tr>
<tr>
<td>Expanded tape editing</td>
<td>○</td>
</tr>
<tr>
<td>Software operator’s panel</td>
<td>○</td>
</tr>
<tr>
<td>General switches of software operator’s panel</td>
<td>○</td>
</tr>
<tr>
<td>Display of run time and parts count</td>
<td>○</td>
</tr>
<tr>
<td>Graphic display</td>
<td>○</td>
</tr>
<tr>
<td>Floppy Cassette directory display</td>
<td>○</td>
</tr>
<tr>
<td>Feed per revolution</td>
<td>○</td>
</tr>
<tr>
<td>Skip function (G31)</td>
<td>▲</td>
</tr>
<tr>
<td>Low–speed reference position return (G28)</td>
<td>▲</td>
</tr>
<tr>
<td>Torque limit skip</td>
<td>▲</td>
</tr>
<tr>
<td>Threading</td>
<td>▲</td>
</tr>
</tbody>
</table>

**<Applicability>**

○ : The function can be used in the look–ahead control mode.

▲ : The function cannot be used in the look–ahead control mode. When using the function, cancel the look–ahead control mode.

**NOTE**

1. PMC axis control can be enabled only for advance feed forward.
2. Cs contour control can be performed in the look–ahead control mode if the G8S bit (bit 5 of parameter 1602) is set accordingly.
19 AXIIS CONTROL FUNCTION
19.1 POLYGONAL TURNING

Polygonal turning means machining a polygonal figure by rotating the workpiece and tool at a certain ratio.

![Fig. 19.1 (a) Polygonal turning](image)

By changing conditions which are rotation ratio of workpiece and tool and number of cutters, the machining figure can be changed to a square or hexagon. The machining time can be reduced as compared with polygonal figure machining using C and X axes of the polar coordinate. The machined figure however, is not exactly polygonal. Generally, polygonal turning is used for the heads of square and/or hexagon bolts or hexagon nuts.

![Fig. 19.1 (b) Hexagon bolt](image)

Format

G51.2(G251) P_Q;
P, Q: Rotation ratio of spindle and Y axis
Specify range: Integer 1 to 9 for both P and Q
When Q is a positive value, Y axis makes positive rotation.
When Q is a negative value, Y axis makes negative rotation.
Explanations

Tool rotation for polygonal turning is controlled by CNC controlled axis. This rotary axis of tool is called Y axis in the following description. The Y axis is controlled by G51.2 command, so that the rotation speeds of the workpiece mounted on the spindle (previously specified by S–command) and the tool become the specified ratio.

(Example) Rotation ratio of workpiece (spindle) to Y axis is 1:2, and the Y axis makes positive rotation.

G51.2P1Q2;
When simultaneous start is specified by G51.2, the one–rotation signal sent from the position codes set on the spindle is detected. After this detection, the Y axis rotation is controled according to the rotation ratio (P:Q) while synchronizing with the spindle speed. Namely, the Y axis rotation is controlled so that the spindle and Y axis stand in a relation of P:Q. This relation will be maintained until the polygonal turning cancel command is executed (G50.2 or reset operation). The direction of Y axis rotation is determined by the code Q and not affected by the direction of the position coder rotation.

Synchronization of the spindle and Y axis is canceled by the following command:

G50.2(G250);
When G50.2 is specified, synchronization of the spindle and Y axis is canceled and the Y axis stops.

This synchronization is also canceled in the following cases:

i) Power off
ii) Emergency stop
iii) Servo alarm
iv) Reset (external reset signal ERS, reset/rewind signal RRW, and RESET key on the MDI panel)

v) Occurrence of P/S alarm Nos. 217 to 221

Example

G00X100.0Z20.0 S1000.0M03 ; Workpiece rotation speed 1000min⁻¹
G51.2P1Q2 ; Tool rotation start (tool rotation speed 2000min⁻¹)
G01X80.0F10.0 ; X axis infeed
G04X2. ;
G00X100.0 ;X axis escape
G50.2 ; Tool rotation stop
M05 ; Spindle stop

Specify G50.2 and G51.2 always in a single block.
The principle of polygonal turning is explained below. In the figure below the radius of tool and workpiece are A and B, and the angular speeds of tool and workpiece are α and β. The origin of XY cartesian coordinates is assumed to be the center of the workpiece.

Simplifying the explanation, consider that the tool center exists at the position Po (A,0) on the workpiece periphery, and the tool nose starts from position Pto(A–B, 0).

In this case, the tool nose position Pt (Xt,Yt) after time t is expressed by equation 1:

\[
\begin{align*}
X_t &= A \cos \alpha t - B \cos (\beta - \alpha) t \\
Y_t &= A \sin \alpha t + B \sin (\beta - \alpha) t
\end{align*}
\]

(Equation 1)

Assuming that the rotation ratio of workpiece to tool is 1:2, namely, \(\beta = 2\alpha\), equation 1 is modified as follows:

\[
\begin{align*}
X_t &= A \cos \alpha t - B \cos \alpha t = (A - B) \cos \alpha t \\
Y_t &= A \sin \alpha t + B \sin \alpha t = (A + B) \sin \alpha t
\end{align*}
\]

(Equation 2)

Equation 2 indicates that the tool nose path draws an ellipse with longer diameter A+B and shorter diameter A–B.
Then consider the case when one tool is set at 180° symmetrical positions, for a total of two. It is seen that a square can be machined with these tools as shown below.

If three tools are set at every 120°, the machining figure will be a hexagon as shown below.

**WARNING**

For the maximum rotational speed of the tool, refer to the manual supplied by the machine manufacturer. Do not specify a spindle speed that will exceed the maximum speed allowed for the tool or a ratio of the tool speed to the spindle speed by which the maximum tool speed will be exceeded.
WARNING
1 The starting point of the threading process becomes inconsistent when performed during synchronous operation.
Cancel the synchronizing by executing G50.2 when threading.
2 The following signals become either valid or invalid in relation to the Y axis in synchronous operation.
   Valid signals in relation to Y axis:
   - machine lock
   - servo off
   Invalid signals in relation to Y axis:
   - feed hold
   - interlock
   - override
   - dry run
   (During a dry run, however, there is no wait for a revolution signal in the G51.2 block.)

NOTE
1 The Y axis, unlike the other controlled axes, cannot be specified a move command as Y—. That is, an axis move command is unnecessary for the Y axis. Because, when G51.2 (polygonal turning mode) is specified, it is only necessary to control the Y axis so that the tool rotates at a certain ratio to the spindle rotation speed.
   However, only the reference point return command (G28V0;) can be specified since the Y axis rotation is stopped at the unstable position when G50.2 (polygonal turning mode cancel command) is specified. If the tool rotation start position is unstable, a problem may occur, for example, when the same figure is machined with a finishing tool after once machined with a roughing tool.
   Specification of G28V0; for Y axis is equal to the orientation command for the spindle. In the other axes, unlike the manual reference point return, G28 usually makes reference point return without detecting the deceleration limit. However, with G28V0;, for the Y axis, reference point return is executed by detecting the deceleration limit, like manual reference point return.
   To machine a workpiece into the same figure as the previous one, the tool and the spindle must be in the same position as the previous time when the tool starts rotating. The tool is set start rotation when the one–rotation signal of the position coder set on the spindle is detected.
2 The Y axis used to control tool rotation for polygonal turning uses the 4th axis. However, by setting parameters, (No.7610) the 3rd axis may also be used. In this case, that axis must be named C axis.
3 Among the position display of the Y axis, the display for the machine coordinate value (MECHINE) will change from a range of 0 to the parameter setting (the amount of movement per revolution) as the Y axis moves.
   Absolute or relative coordinate values are not renewed.
4 An absolute position detector cannot be set on the Y axis.
5 Manual continuous feed or handle feed is invalid when the Y axis is in synchronous operation.
6 The Y axis in synchronous operation is not included in the number of axis controlled simultaneously.
The roll–over function prevents coordinates for the rotation axis from overflowing. The roll–over function is enabled by setting bit 0 of parameter 1008 to 1.

For an incremental command, the tool moves the angle specified in the command. For an absolute command, the coordinates after the tool has moved are values set in parameter No. 1260, and rounded by the angle corresponding to one rotation. The tool moves in the direction in which the final coordinates are closest when bit 1 (ROAx) of parameter No. 1008 is set to 0. Displayed values for relative coordinates are also rounded by the angle corresponding to one rotation when bit 2 (ROAx) of parameter No. 1008 is set to 1.

Assume that axis C is the rotating axis and that the amount of movement per rotation is 360.000 (parameter No. 1260 = 360000). When the following program is executed using the roll–over function of the rotating axis, the axis moves as shown below.

<table>
<thead>
<tr>
<th>Sequence number</th>
<th>Actual movement value</th>
<th>Absolute coordinate value after movement</th>
</tr>
</thead>
<tbody>
<tr>
<td>N1 C–150.0 ;</td>
<td>–150</td>
<td>210</td>
</tr>
<tr>
<td>N2 C540.0 ;</td>
<td>–30</td>
<td>180</td>
</tr>
<tr>
<td>N3 C–620.0 ;</td>
<td>–80</td>
<td>100</td>
</tr>
<tr>
<td>N4 H380.0 ;</td>
<td>+380</td>
<td>120</td>
</tr>
<tr>
<td>N5 H–840.0 ;</td>
<td>–840</td>
<td>0</td>
</tr>
</tbody>
</table>

Relative coordinate value

<table>
<thead>
<tr>
<th>–720°</th>
<th>–360°</th>
<th>–0°</th>
<th>360°</th>
</tr>
</thead>
</table>

Absolute coordinate value

<table>
<thead>
<tr>
<th>–0°</th>
<th>–0°</th>
<th>–0°</th>
<th>–0°</th>
</tr>
</thead>
</table>

Assume that axis C is the rotating axis and that the amount of movement per rotation is 360.000 (parameter No. 1260 = 360000). When the following program is executed using the roll–over function of the rotating axis, the axis moves as shown below.
19.3 SIMPLE SYNCHRONIZATION CONTROL

The simple synchronization control function allows synchronous and normal operations on two specified axes to be switched, according to an input signal from the machine. For a machine with two tool posts that can be independently driven with different controlled axes, this function enables the operations described below.

This section describes the operations of a machine having two tool posts, both of which can be independently operated along the X–axis and Y–axis. If your machine uses other axes for the same purpose, substitute the corresponding axis names for X and Y.

Synchronous operation is possible on a machine having two tool posts. In synchronous operation mode, movement on one axis can be synchronized with movement specified for another axis. The move command can be specified for one of the two axes, which is referred to as the master axis. The other axis, for referred synchronization with the master axis is maintained, is referred to as the slave axis. If the master axis is X and the slave axis is Y, synchronous operation on the X–axis (master axis) and Y–axis (slave axis) are performed according to Xxxxx commands issued for the master axis.

In synchronous operation mode, a move command specified for the master axis results in simultaneous operation of the servo motors of the master and slave axes.

In this mode, synchronization error compensation is not performed. That is, any positioning error between the two servo motors is not monitored, nor is the servo motor of the slave axis adjusted to minimize any error. No synchronization error alarm is output. Automatic operations can be synchronized, but manual operations cannot.

Normal operation is performed when different workpieces are machined on different tables. As with normal CNC control, move commands for the master and slave axes are specified with the addresses of those axes (X and Y). Move commands for the two axes can be specified in an identical block.

According to the Xxxxx command programmed for the master axis, movement is performed along the X–axis, as in normal mode.
2. According to the Yyyyy command programmed for the slave axis, movement is performed along the Y–axis, as in normal mode.

3. According to the Xxxxx Yyyyy command, simultaneous movements are performed along both the X–axis and Y–axis, as in normal mode. Both automatic and manual operations can be controlled, as in normal CNC control.

**Switching synchronous and normal operations**

For details of how to switch the synchronous and normal operations, refer to the manual supplied by the machine tool builder.

**Automatic reference position return**

If a command for automatic reference position return (G28), or return to the second, third, or fourth reference position (G30), is issued in synchronous operation mode, a reference position return is performed for the X–axis, and an identical movement is performed for the Y–axis. If this Y–axis movement agrees with a return to the reference position on the Y–axis, a lamp indicating that reference position return has been completed for the Y–axis also lights. It is recommended, however, that G28 and G30 be specified in normal operation mode.

**Checking automatic reference position return**

If a command for checking automatic reference position return (G27) is issued in synchronous operation mode, identical movements are performed for the X–axis and Y–axis. If these X–axis and Y–axis movements correspond to returns to the reference positions on the X–axis and Y–axis, the lamps indicating that reference position return has been completed for the X–axis and Y–axis light. If not, an alarm is output. It is recommended, however, that G27 be specified in normal operation mode.

**Slave axis command**

If a move command is specified for the slave axis in synchronous operation mode, P/S alarm 213 is output.

**Master and slave axes**

The master axis is defined in parameter 8311. The slave axis is specified by an external signal.

**Limitations**

- **Coordinate system setting and tool compensation**

  If coordinate system setting or tool compensation causing a shift in the coordinate system is performed in synchronous operation mode, P/S alarm 214 is output.

- **External deceleration, interlock, machine lock**

  In synchronous operation mode, the signal for external deceleration, interlock, or machine lock of the master axis only is valid. The corresponding slave axis signal is ignored.

- **Pitch error compensation**

  Pitch error compensation and backlash compensation are performed separately for the master and slave axes.

- **Manual absolute switch**

  In synchronous operation mode, the manual absolute switch must be set to on (ABS must be set to 1). If the switch is set to off, the correct slave axis movement may not be made.

- **Manual operation**

  Manual operations cannot be synchronized.
19.4 TANDEM CONTROL

When enough torque for driving a large table cannot be produced by only one motor, two motors can be used for movement along a single axis. Positioning is performed by the main motor only. The submotor is used only to produce torque. With this tandem control function, the torque produced can be doubled.

Fig. 19.4 Example of operation

In general, the NC regards tandem control as being performed for one axis. However, for servo parameter management and servo alarm monitoring, tandem control is regarded as being performed for two axes. For details, refer to the relevant manual published by the machine tool builder.
When the angular axis makes an angle other than 90° with the perpendicular axis, the angular axis control function controls the distance traveled along each axis according to the inclination angle. For the ordinary angular axis control function, the X-axis is always used as the angular axis and the Z-axis is always used as the perpendicular axis. For angular axis control B, however, arbitrary axes can be specified as the angular and perpendicular axes, by specifying parameters accordingly. A program, when created, assumes that the angular axis and perpendicular axis intersect at right angles. However, the actual distance traveled is controlled according to an inclination angle.

When the angular axis is the X-axis and the perpendicular axis is the Z-axis, the amount of travel along each axis is controlled according to the formulas shown below.

The distance to be traveled along the X-axis is determined by the following formula:

\[ X_a = \frac{X_p}{\cos \theta} \]

The distance traveled along the Z-axis is corrected by the inclination of the X-axis, and is determined by the following formula:

\[ Z_a = Z_p - \frac{1}{2} X_p \tan \theta \]

The speed component along the X-axis of feed rate is determined by the following formula:

\[ F_a = \frac{F_p}{\cos \theta} \]

**Xa, Za, Fa:** Actual distance and speed

**Xp, Zp, Fp:** Programmed distance and speed

---

**Method of use**

The angular and perpendicular axes to which angular axis control is to be applied must be specified beforehand, using parameters (No. 8211 and 8212).

Parameter AAC (No. 8200#0) enables or disables the inclined axis control function. If the function is enabled, the distance traveled along each axis is controlled according to an inclination angle (No. 8210).

Parameter AZR (No. 8200#2) enables angular axis manual reference point return only with a distance along the angular axis.

If perpendicular/angular axis control disable signal NOZAGC has been set to 1, the angular axis control function is enabled only for the angular axis. In such a case, the move command for the angular axis is converted to angular coordinates. The perpendicular axis is not affected by the move command for the angular axis.
• **Absolute and relative position display**

An absolute and a relative position are indicated in the programmed Cartesian coordinate system. Machine position display

• **Machine position display**

A machine position indication is provided in the machine coordinate system where an actual movement is taking place according to an inclination angle. However, when inch/metric conversion is performed, a position is indicated which incorporates inch/metric conversion applied to the results of inclination angle operation.

**WARNING**

1. After inclined axis control parameter setting, be sure to perform manual reference point return operation.
2. If bit 2 (AZR) of parameter No. 8200 has been set to 0, such that manual reference position return along the angular axis also causes movement along the perpendicular axis, once manual reference position return has been performed along the angular axis, also perform manual reference position return along the perpendicular axis.
3. Once the tool has been moved along the angular axis with perpendicular/angular axis control disable signal NOZAGC set to 1, manual reference position return must be performed.
4. Before attempting to manually move the tool along both the angular and perpendicular axes simultaneously, set perpendicular/angular axis control disable signal NOZAGC to 1.

**NOTE**

1. If an inclination angle close to 0° or ±90° is set, an error can occur. A range from ±20° to ±60° should be used.
2. Before a perpendicular axis reference point return check (G37) can be made, angular axis reference point return operation must be completed.
3. For arbitrary angular axis control, if the same axis number has been specified in both parameters No. 8211 and 8212, or if a value outside the valid data range has been specified for either parameter, the angular and perpendicular axes will be as follows:
   - Angular axis: First axis
   - Perpendicular axis: Second axis
20 PATTERN DATA INPUT FUNCTION

This function enables users to perform programming simply by extracting numeric data (pattern data) from a drawing and specifying the numerical values from the MDI panel. This eliminates the need for programming using an existing NC language.

With the aid of this function, a machine tool builder can prepare the program of a hole machining cycle (such as a boring cycle or tapping cycle) using the custom macro function, and can store it into the program memory. This cycle is assigned pattern names, such as BOR1, TAP3, and DRL2.

An operator can select a pattern from the menu of pattern names displayed on the screen. Data (pattern data) which is to be specified by the operator should be created in advance with variables in a drilling cycle. The operator can identify these variables using names such as DEPTH, RETURN RELIEF, FEED, MATERIAL or other pattern data names. The operator assigns values (pattern data) to these names.
20.1 DISPLAYING THE PATTERN MENU

Pressing the 
OFFSET key and [MENU] is displayed on the following pattern menu screen.

MENU : HOLE PATTERN
1. BOLT HOLE
2. GRID
3. LINE ANGLE
4. TAPPING
5. DRILLING
6. BORING
7. POCKET
8. PECK
9. TEST PATRN
10. BACK

HOLE PATTERN:
This is the menu title. An arbitrary character string consisting of up to 12 characters can be specified.

BOLT HOLE:
This is the pattern name. An arbitrary character string consisting of up to 10 characters can be specified, including katakana.

The machine tool builder should specify the character strings for the menu title and pattern name using the custom macro, and load the character strings into program memory as a subprogram of program No. 9500.
Macro commands specifying the menu title

Menu title: C1 C2 C3 C4 C5 C6 C7 C8 C9 C10 C11 C12
C1, C2, ..., C12: Characters in the menu title (12 characters)

Macro instruction
G65 H90 Pp Qq Rr Ii Jj Kk:
H90: Specifies the menu title

p: Assume a1 and a2 to be the codes of characters C1 and C2. Then,

Code a1 of character C1

q: Assume a3 and a4 to be the codes of characters C3 and C4. Then,

q = a3 \times 10^3 + a4

r: Assume a5 and a6 to be the codes of characters C5 and C6. Then,

r = a5 \times 10^3 + a6

i: Assume a7 and a8 to be the codes of characters C7 and C8. Then,

i = a7 \times 10^3 + a8

j: Assume a9 and a10 to be the codes of characters C9 and C10. Then,

j = a9 \times 10^3 + a10

k: Assume a11 and a12 to be the codes of characters C11 and C12. Then,

k = a11 \times 10^3 + a12

Example)
If the title of the menu is “HOLE PATTERN” then the macro instruction is as follows:

G65 H90 P072079 Q076069 R032080
I065084 J084069 K082078;

For codes corresponding to these characters, refer to the Table 20.3(a) in II–20.3.
• **Macro instruction describing the pattern name**

Pattern name: \( C_1 \ C_2 \ C_3 \ C_4 \ C_5 \ C_6 \ C_7 \ C_8 \ C_9 \ C_{10} \)

- \( C_1, C_2, \ldots, C_{10} \): Characters in the pattern name (10 characters)
- **Macro instruction**
  - `G65 H91 Pn Qq Rr Ii Jj Kk ;`
  - `H91`: Specifies the menu title
  - `n`: Specifies the menu No. of the pattern name
    - \( n = 1 \) to 10
  - `q`: Assume \( a_1 \) and \( a_2 \) to be the codes of characters \( C_1 \) and \( C_2 \). Then, \( a_1 = 10^3 a_2 \)
  - `r`: Assume \( a_3 \) and \( a_4 \) to be the codes of characters \( C_3 \) and \( C_4 \). Then, \( a_3 = 10^3 a_4 \)
  - `i`: Assume \( a_5 \) and \( a_6 \) to be the codes of characters \( C_5 \) and \( C_6 \). Then, \( a_5 = 10^3 a_6 \)
  - `j`: Assume \( a_7 \) and \( a_8 \) to be the codes of characters \( C_7 \) and \( C_8 \). Then, \( a_7 = 10^3 a_8 \)
  - `k`: Assume \( a_9 \) and \( a_{10} \) to be the codes of characters \( C_9 \) and \( C_{10} \). Then, \( a_9 = 10^3 a_{10} \)

**Example**

If the pattern name of menu No. 1 is “BOLT HOLE” then the macro instruction is as follows.

```plaintext
G65 H91 P1 Q066079 R076084 I032072 J079076 K069032 ;
```

For codes corresponding to these characters, refer to the Table 20.3(a) in II–20.3.

• **Pattern No. selection**

To select a pattern from the pattern menu screen, enter the corresponding pattern No. The following is an example.

```plaintext
1 [INPUT]
```

The selected pattern No. is assigned to system variable \#5900. The custom macro of the selected pattern can be started by starting a fixed program (external program No. search) with an external signal then referring to the system variable \#5900 in the program.

**NOTE**

- If each characters of P, Q, R, I, J, and K are not specified in a macro instruction, two spaces are assigned to each omitted character.
Custom macros for the menu title and hole pattern names.

```

Example

Custom macros for the menu title and hole pattern names.

<table>
<thead>
<tr>
<th>MENU : HOLE PATTERN</th>
<th>00000 N00000</th>
</tr>
</thead>
<tbody>
<tr>
<td>1. BOLT HOLE</td>
<td></td>
</tr>
<tr>
<td>2. GRID</td>
<td></td>
</tr>
<tr>
<td>3. LINE ANGLE</td>
<td></td>
</tr>
<tr>
<td>4. TAPPING</td>
<td></td>
</tr>
<tr>
<td>5. DRILLING</td>
<td></td>
</tr>
<tr>
<td>6. BORING</td>
<td></td>
</tr>
<tr>
<td>7. POCKET</td>
<td></td>
</tr>
<tr>
<td>8. PECK</td>
<td></td>
</tr>
<tr>
<td>9. TEST PATRN</td>
<td></td>
</tr>
<tr>
<td>10. BACK</td>
<td></td>
</tr>
</tbody>
</table>

> MDI **** *** *** 16:05:59

[MACRO] [MENU] [OPR] [] [(OPRT)]

O9500 ;
N1G65 H90 P072 079 Q076 069 R032 080 I 065 084 J 084 069 K082 078 ; HOLE PATTERN
N2G65 H91 P1 Q066 079 R076 084 I 032 072 J 079 076 K069 032 ; 1.BOLT HOLE
N3G65 H91 P2 Q071 082 R073 068 ; 2.GRID
N4G65 H91 P3 Q076 073 R078 069 I 032 065 J 078 071 K076 069 ; 3.LINE ANGLE
N5G65 H91 P4 Q084 065 R080 080 I 073 078 J 071 032 ; 4.TAPPING
N6G65 H91 P5 Q068 082 R073 076 I 076 073 J 078 071 ; 5.DRILLING
N7G65 H91 P6 Q066079 R082073 I 078 071 ; 6.BORING
N8G65 H91 P7 Q080 079 R067 075 I 069 084 ; 7.POCKET
N9G65 H91 P8 Q080069 R067075 ; 8.PECK
N10G65 H91 P9 Q084 069 R083 084 I032 080 J065 084 K082 078 ; 9.TEST PATRN
N11G65 H91 P10 Q066 065 R067 0750 ; 10.BACK
N12M99 ;
```

Example
20.2 PATTERN DATA DISPLAY

When a pattern menu is selected, the necessary pattern data is displayed.

<table>
<thead>
<tr>
<th>VAR.</th>
<th>DATA</th>
<th>COMMENT</th>
</tr>
</thead>
<tbody>
<tr>
<td>NO. 500 TOOL</td>
<td>0.000</td>
<td></td>
</tr>
<tr>
<td>NO. 501 STANDARD X</td>
<td>0.000</td>
<td>*BOLT HOLE</td>
</tr>
<tr>
<td>NO. 502 STANDARD Y</td>
<td>0.000</td>
<td>CIRCLE*</td>
</tr>
<tr>
<td>NO. 503 RADIUS</td>
<td>0.000</td>
<td>SET PATTERN</td>
</tr>
<tr>
<td>NO. 504 S. ANGL</td>
<td>0.000</td>
<td>DATA TO VAR.</td>
</tr>
<tr>
<td>NO. 505 HOLES NO</td>
<td>0.000</td>
<td>NO.500-505.</td>
</tr>
<tr>
<td>NO. 506</td>
<td>0.000</td>
<td></td>
</tr>
<tr>
<td>NO. 507</td>
<td>0.000</td>
<td></td>
</tr>
</tbody>
</table>

ACTUAL POSITION (RELATIVE)

<table>
<thead>
<tr>
<th>X</th>
<th>0.000</th>
</tr>
</thead>
<tbody>
<tr>
<td>Y</td>
<td>0.000</td>
</tr>
<tr>
<td>Z</td>
<td>0.000</td>
</tr>
</tbody>
</table>

MDI **** *** *** 16:05:59

BOLT HOLE :
This is the pattern data title. A character string consisting of up to 12 characters can be set.

TOOL :
This is the variable name. A character string consisting of up to 10 characters can be set.

*BOLT HOLE CIRCLE* :
This is a comment statement. A character string can be displayed consisting of up to 8 lines, 12 characters per line.

(It is permissible to use katakana in a character string or line.)

The machine tool builder should program the character strings of pattern data title, pattern name, and variable name using the custom macro, and load them into the program memory as a subprogram whose No. is 9500 plus the pattern No. (O9501 to O9510).
20. PATTERN DATA INPUT

**Macro instruction specifying the pattern data title (the menu title)**

Menu title: \( C_1 \ C_2 \ C_3 \ C_4 \ C_5 \ C_6 \ C_7 \ C_8 \ C_9 \ C_{10} \ C_{11} \ C_{12} \)

\( C_1 \ C_2 \ldots \ C_{12} \): Characters in the menu title (12 characters)

Macro instruction

\[
G65 \ H92 \ P_q \ Q_r \ I_i \ J_j \ K_k ;
\]

H92: Specifies the pattern name

p: Assume \( a_1 \) and \( a_2 \) to be the codes of characters \( C_1 \) and \( C_2 \). Then,
\[
p = a_1 . 10^3 + a_2
\]

q: Assume \( a_3 \) and \( a_4 \) to be the codes of characters \( C_3 \) and \( C_4 \). Then,
\[
q = a_3 . 10^3 + a_4
\]

r: Assume \( a_5 \) and \( a_6 \) to be the codes of characters \( C_5 \) and \( C_6 \). Then,
\[
r = a_5 . 10^3 + a_6
\]

i: Assume \( a_7 \) and \( a_8 \) to be the codes of characters \( C_7 \) and \( C_8 \). Then,
\[
i = a_7 . 10^3 + a_8
\]

j: Assume \( a_9 \) and \( a_{10} \) to be the codes of characters \( C_9 \) and \( C_{10} \). Then,
\[
j = a_9 . 10^3 + a_{10}
\]

k: Assume \( a_{11} \) and \( a_{12} \) to be the codes of characters \( C_{11} \) and \( C_{12} \). Then,
\[
k = a_{11} . 10^3 + a_{12}
\]

Example)

Assume that the pattern data title is “BOLT HOLE.” The macro instruction is given as follows:

\[
G65 \ H92 \ P066079 \ Q076084 \ R032072 \ I079076 \ J069032 ;
\]

For codes corresponding to these characters, refer to the Table 20.3(a) in II–20.3.

**Macro instruction specifying the variable name**

Variable name: \( C_1 \ C_2 \ C_3 \ C_4 \ C_5 \ C_6 \ C_7 \ C_8 \ C_9 \ C_{10} \)

\( C_1 \ C_2 \ldots \ C_{10} \): Characters in the variable name (10 characters)

Macro instruction

\[
G65 \ H93 \ P_n \ Q_q \ R_r \ I_i \ J_j \ K_k ;
\]

H93: Specifies the variable name

n: Specifies the menu No. of the variable name

n=1 to 10

q: Assume \( a_1 \) and \( a_2 \) to be the codes of characters \( C_1 \) and \( C_2 \). Then,
\[
q = a_1 . 10^3 + a_2
\]

r: Assume \( a_3 \) and \( a_4 \) to be the codes of characters \( C_3 \) and \( C_4 \). Then,
\[
r = a_3 . 10^3 + a_4
\]

i: Assume \( a_5 \) and \( a_6 \) to be the codes of characters \( C_5 \) and \( C_6 \). Then,
\[
i = a_5 . 10^3 + a_6
\]

j: Assume \( a_7 \) and \( a_8 \) to be the codes of characters \( C_7 \) and \( C_8 \). Then,
\[
j = a_7 . 10^3 + a_8
\]

k: Assume \( a_9 \) and \( a_{10} \) to be the codes of characters \( C_9 \) and \( C_{10} \). Then,
\[
k = a_9 . 10^3 + a_{10}
\]

Example)

Assume that the variable name of the variable No. 503 is “RADIUS.” The macro instruction is given as follows:

\[
G65 \ H93 \ P503 \ Q082065 \ R068073 \ I085083 ;
\]

For codes corresponding to these characters, refer to the Table 20.3(a) in II–20.3.
One comment line: $C_1 \ C_2 \ C_3 \ C_4 \ C_5 \ C_6 \ C_7 \ C_8 \ C_9 \ C_{10} \ C_{11} \ C_{12}$

$C_1, C_2, \ldots, C_{12}$: Character string in one comment line (12 characters)

Macro instruction

G65 H94 P_n Q_q R_r I_i J_j K_k ;

H94 : Specifies the comment

p : Assume $a_1$ and $a_2$ to be the codes of characters $C_1$ and $C_2$. Then,

$$p = a_1 \cdot 10^3 + a_2$$

q : Assume $a_3$ and $a_4$ to be the codes of characters $C_3$ and $C_4$. Then,

$$q = a_3 \cdot 10^3 + a_4$$

r : Assume $a_5$ and $a_6$ to be the codes of characters $C_5$ and $C_6$. Then,

$$r = a_5 \cdot 10^3 + a_6$$

i : Assume $a_7$ and $a_8$ to be the codes of characters $C_7$ and $C_8$. Then,

$$i = a_7 \cdot 10^3 + a_8$$

j : Assume $a_9$ and $a_{10}$ to be the codes of characters $C_9$ and $C_{10}$. Then,

$$j = a_9 \cdot 10^3 + a_{10}$$

k : Assume $a_{11}$ and $a_{12}$ to be the codes of characters $C_{11}$ and $C_{12}$. Then,

$$k = a_{11} \cdot 10^3 + a_{12}$$

A comment can be displayed in up to eight lines. The comment consists of the first line to the eighth line in the programmed sequence of G65 H94 for each line.

Example)

Assume that the comment is “BOLT HOLE.” The macro instruction is given as follows:

G65 H94 P042066 Q079076 R084032 I072079 J076069 ;

*|B |OLT|HO|LE |

For codes corresponding to these characters, refer to the Table 20.3(a) in II–20.3.
20. PATTERN DATA INPUT
FUNCTION

Examples

Macro instruction to describe a parameter title, the variable name, and a comment.

```
VAR. : BOLT HOLE

<table>
<thead>
<tr>
<th>NO.</th>
<th>NAME</th>
<th>DATA</th>
<th>COMMENT</th>
</tr>
</thead>
<tbody>
<tr>
<td>500</td>
<td>TOOL</td>
<td>0.000</td>
<td></td>
</tr>
<tr>
<td>501</td>
<td>STANDARD X</td>
<td>0.000</td>
<td>*BOLT HOLE</td>
</tr>
<tr>
<td>502</td>
<td>STANDARD Y</td>
<td>0.000</td>
<td>CIRCLE</td>
</tr>
<tr>
<td>503</td>
<td>RADIUS</td>
<td>0.000</td>
<td>SET PATTERN</td>
</tr>
<tr>
<td>504</td>
<td>S. ANGL</td>
<td>0.000</td>
<td>DATA TO VAR.</td>
</tr>
<tr>
<td>505</td>
<td>HOLES NO</td>
<td>0.000</td>
<td>NO.500–505</td>
</tr>
<tr>
<td>506</td>
<td></td>
<td>0.000</td>
<td></td>
</tr>
<tr>
<td>507</td>
<td></td>
<td>0.000</td>
<td></td>
</tr>
</tbody>
</table>

ACTUAL POSITION (RELATIVE)
X 0.000 Y 0.000
Z 0.000

MDI ***** *** *** 16:05:59
```

O9501 ;
N1G65 H92 P066 079 Q076 084 R032 072 I 079 076 J069 032 ; VAR : BOLT HOLE
N2G65 H93 P500 Q084 079 R079076 ; #500 TOOL
N3G65 H93 P501 Q075 073 R074 085 I078 032 J088 032 ; #501 KIJUN X
N4G65 H93 P502 Q075 073 R074 085 I 078 032 J089 032 ; #502 KIJUN Y
N5G65 H93 P503 Q082 065 R068 073 I 085 083 ; #503 RADIUS
N6G65 H93 P504 Q083 046 R032 065 I 078 071 J 076 032 ; #504 S.ANGL
N7G65 H93 P505 Q072 079 R076 069 I 083 032 J078 079 K046 032 ; #505 HOLES NO
N8G65 H94 ; Comment
N9G65 H94 P042 066 Q079 076 R084 032 I072 079 J076 069 ; 'BOLT HOLE
N10G65 H94 R032 067 I073 082 J067 076 K069 042 ; CIRCLE’
N11G65 H94 P083 069 Q084 032 080 065 I084 084 J069 082 K078 032 ; SET PATTERN
N12G65 H94 P068 065 Q084 065 R032 084 I079 032 J086 065 K082046 ; DATA NO VAR.
N13G65 H94 P078 079 Q046 053 R048 048 I045 053 J048 053 K046 032 ; No.500–505
N14M99 ;
### 20.3 CHARACTERS AND CODES TO BE USED FOR THE PATTERN DATA INPUT FUNCTION

<table>
<thead>
<tr>
<th>Character</th>
<th>Code</th>
<th>Comment</th>
<th>Character</th>
<th>Code</th>
<th>Comment</th>
</tr>
</thead>
<tbody>
<tr>
<td>A</td>
<td>065</td>
<td></td>
<td>E</td>
<td>069</td>
<td></td>
</tr>
<tr>
<td>B</td>
<td>066</td>
<td></td>
<td>F</td>
<td>070</td>
<td></td>
</tr>
<tr>
<td>C</td>
<td>067</td>
<td></td>
<td>G</td>
<td>071</td>
<td></td>
</tr>
<tr>
<td>D</td>
<td>068</td>
<td></td>
<td>H</td>
<td>072</td>
<td></td>
</tr>
<tr>
<td>E</td>
<td>069</td>
<td></td>
<td>I</td>
<td>073</td>
<td></td>
</tr>
<tr>
<td>F</td>
<td>070</td>
<td></td>
<td>J</td>
<td>074</td>
<td></td>
</tr>
<tr>
<td>G</td>
<td>071</td>
<td></td>
<td>K</td>
<td>075</td>
<td></td>
</tr>
<tr>
<td>H</td>
<td>072</td>
<td></td>
<td>L</td>
<td>076</td>
<td></td>
</tr>
<tr>
<td>I</td>
<td>073</td>
<td></td>
<td>M</td>
<td>077</td>
<td></td>
</tr>
<tr>
<td>J</td>
<td>074</td>
<td></td>
<td>N</td>
<td>078</td>
<td></td>
</tr>
<tr>
<td>K</td>
<td>075</td>
<td></td>
<td>O</td>
<td>079</td>
<td></td>
</tr>
<tr>
<td>L</td>
<td>076</td>
<td></td>
<td>P</td>
<td>080</td>
<td></td>
</tr>
<tr>
<td>M</td>
<td>077</td>
<td></td>
<td>Q</td>
<td>081</td>
<td></td>
</tr>
<tr>
<td>N</td>
<td>078</td>
<td></td>
<td>R</td>
<td>082</td>
<td></td>
</tr>
<tr>
<td>O</td>
<td>079</td>
<td></td>
<td>S</td>
<td>083</td>
<td></td>
</tr>
<tr>
<td>P</td>
<td>080</td>
<td></td>
<td>T</td>
<td>084</td>
<td></td>
</tr>
<tr>
<td>Q</td>
<td>081</td>
<td></td>
<td>U</td>
<td>085</td>
<td></td>
</tr>
<tr>
<td>R</td>
<td>082</td>
<td></td>
<td>V</td>
<td>086</td>
<td></td>
</tr>
<tr>
<td>S</td>
<td>083</td>
<td></td>
<td>W</td>
<td>087</td>
<td></td>
</tr>
<tr>
<td>T</td>
<td>084</td>
<td></td>
<td>X</td>
<td>088</td>
<td></td>
</tr>
<tr>
<td>U</td>
<td>085</td>
<td></td>
<td>Y</td>
<td>089</td>
<td></td>
</tr>
<tr>
<td>V</td>
<td>086</td>
<td></td>
<td>Z</td>
<td>090</td>
<td></td>
</tr>
<tr>
<td>W</td>
<td>087</td>
<td></td>
<td>0</td>
<td>048</td>
<td>@</td>
</tr>
<tr>
<td>X</td>
<td>088</td>
<td></td>
<td>1</td>
<td>049</td>
<td>[</td>
</tr>
<tr>
<td>Y</td>
<td>089</td>
<td></td>
<td>2</td>
<td>050</td>
<td>^</td>
</tr>
<tr>
<td>Z</td>
<td>090</td>
<td></td>
<td>3</td>
<td>051</td>
<td>¥</td>
</tr>
<tr>
<td>0</td>
<td>048</td>
<td></td>
<td>4</td>
<td>052</td>
<td>]</td>
</tr>
<tr>
<td>1</td>
<td>049</td>
<td></td>
<td>5</td>
<td>053</td>
<td>_</td>
</tr>
</tbody>
</table>

**NOTE**

Right and left parentheses cannot be used.
### Table 20.3 (b) Numbers of subprograms employed in the pattern data input function

<table>
<thead>
<tr>
<th>Subprogram No.</th>
<th>Function</th>
</tr>
</thead>
<tbody>
<tr>
<td>O9500</td>
<td>Specifies character strings displayed on the pattern data menu.</td>
</tr>
<tr>
<td>O9501</td>
<td>Specifies a character string of the pattern data corresponding to pattern No.1</td>
</tr>
<tr>
<td>O9502</td>
<td>Specifies a character string of the pattern data corresponding to pattern No.2</td>
</tr>
<tr>
<td>O9503</td>
<td>Specifies a character string of the pattern data corresponding to pattern No.3</td>
</tr>
<tr>
<td>O9504</td>
<td>Specifies a character string of the pattern data corresponding to pattern No.4</td>
</tr>
<tr>
<td>O9505</td>
<td>Specifies a character string of the pattern data corresponding to pattern No.5</td>
</tr>
<tr>
<td>O9506</td>
<td>Specifies a character string of the pattern data corresponding to pattern No.6</td>
</tr>
<tr>
<td>O9507</td>
<td>Specifies a character string of the pattern data corresponding to pattern No.7</td>
</tr>
<tr>
<td>O9508</td>
<td>Specifies a character string of the pattern data corresponding to pattern No.8</td>
</tr>
<tr>
<td>O9509</td>
<td>Specifies a character string of the pattern data corresponding to pattern No.9</td>
</tr>
<tr>
<td>O9510</td>
<td>Specifies a character string of the pattern data corresponding to pattern No.10</td>
</tr>
</tbody>
</table>

### Table 20.3 (c) Macro instructions used in the pattern data input function

<table>
<thead>
<tr>
<th>G code</th>
<th>H code</th>
<th>Function</th>
</tr>
</thead>
<tbody>
<tr>
<td>G65</td>
<td>H90</td>
<td>Specifies the menu title.</td>
</tr>
<tr>
<td>G65</td>
<td>H91</td>
<td>Specifies the pattern name.</td>
</tr>
<tr>
<td>G65</td>
<td>H92</td>
<td>Specifies the pattern data title.</td>
</tr>
<tr>
<td>G65</td>
<td>G93</td>
<td>Specifies the variable name.</td>
</tr>
<tr>
<td>G65</td>
<td>H94</td>
<td>Specifies the comment.</td>
</tr>
</tbody>
</table>

### Table 20.3 (d) System variables employed in the pattern data input function

<table>
<thead>
<tr>
<th>System variable</th>
<th>Function</th>
</tr>
</thead>
<tbody>
<tr>
<td>#5900</td>
<td>Pattern No. selected by user.</td>
</tr>
</tbody>
</table>
III. OPERATION
1. GENERAL
1.1 MANUAL OPERATION

Explanations
- Manual reference position return

The CNC machine tool has a position used to determine the machine position. This position is called the reference position, where the tool is replaced or the coordinate are set. Ordinarily, after the power is turned on, the tool is moved to the reference position. Manual reference position return (See III–3.1) is to move the tool to the reference position using switches and pushbuttons located on the operator’s panel.

![Manual reference position return](image)

*Fig. 1.1 (a) Manual reference position return*

The tool can be moved to the reference position also with program commands. This operation is called automatic reference position return (See Section II–6).
The tool movement by manual operation

Using machine operator’s panel switches, push buttons, or the manual handle, the tool can be moved along each axis.

The tool can be moved in the following ways:

(i) Jog feed (See Section III–3.2)
    The tool moves continuously while a push button remains pressed.

(ii) Incremental feed (See Section III–3.3)
    The tool moves by the predetermined distance each time a button is pressed.

(iii) Manual handle feed (See Section III–3.4)
    By rotating the manual handle, the tool moves by the distance corresponding to the degree of handle rotation.

Fig. 1.1 (b) The tool movement by manual operation
1.2 TOOL MOVEMENT BY PROGRAMMING – AUTOMATIC OPERATION

Automatic operation is to operate the machine according to the created program. It includes memory, MDI, and DNC operations. (See Section III–4).

Fig.1.2 (a) Tool movement by programming

Explanations

- **Memory operation**

After the program is once registered in memory of CNC, the machine can be run according to the program instructions. This operation is called memory operation.

Fig.1.2 (b) Memory operation

- **MDI operation**

After the program is entered, as an command group, from the MDI keyboard, the machine can be run according to the program. This operation is called MDI operation.

Fig.1.2 (c) MDI operation

- **DNC operation**

The machine can be operated by reading a program directly from an external input/output device, without having to register the program in CNC memory. This is called DNC operation.
1.3 AUTOMATIC OPERATION

Explanations

- Program selection

Select the program used for the workpiece. Ordinarily, one program is prepared for one workpiece. If two or more programs are in memory, select the program to be used, by searching the program number (Section III–9.3).

In memory or on a tape

<table>
<thead>
<tr>
<th>Program number</th>
<th>Work–1 program</th>
<th>Program number</th>
<th>Program number</th>
<th>Program number</th>
</tr>
</thead>
<tbody>
<tr>
<td>O1001 G92</td>
<td></td>
<td>O1002 G92</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>M30 O1003 G92</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Fig.1.3 (a) Program Selection for Automatic Operation

- Start and stop (See Section III–4)

Pressing the cycle start push button causes automatic operation to start. By pressing the feed hold or reset push button, automatic operation pauses or stops. By specifying the program stop or program termination command in the program, the running will stop during automatic operation. When one process machining is completed, automatic operation stops.

Fig.1.3 (b) Start and stop for automatic operation
While automatic operation is being executed, tool movement can overlap automatic operation by rotating the manual handle.

Fig. 1.3 (c) Handle interruption for automatic operation
Before machining is started, the automatic running check can be executed. It checks whether the created program can operate the machine as desired. This check can be accomplished by running the machine actually or viewing the position display change (without running the machine) (See Section III–5).

**1.4 TESTING A PROGRAM**

**1.4.1 Check by Running the Machine**

Explanations

- **Dry run**

  Remove the workpiece, check only movement of the tool. Select the tool movement rate using the dial on the operator’s panel (See Section III–5.4).

- **Feedrate override**

  Check the program by changing the rate specified in the program (See Section III–5.2).
• **Single block**

When the cycle start push button is pressed, the tool executes one operation then stops. By pressing the cycle start again, the tool executes the next operation then stops. The program is checked in this manner (See Section III–5.5).

![Fig.1.4.1 (c) Single block](image)

1.4.2

**How to View the Position Display Change without Running the Machine**

**Explanations**

• **Machine lock**

![Fig1.4.2 Machine lock](image)

• **Auxiliary function lock**

When automatic running is placed into the auxiliary function lock mode during the machine lock mode, all auxiliary functions (spindle rotation, tool replacement, coolant on/off, etc.) are disabled (See Section III–5.1).
1.5 EDITING A PART PROGRAM

After a created program is once registered in memory, it can be corrected or modified from the MDI panel (See Section III–9). This operation can be executed using the part program storage/edit function.

Fig.1.5 Part program editing
1.6 DISPLAYING AND SETTING DATA

The operator can display or change a value stored in CNC internal memory by key operation on the MDI screen (See III–11).

Explanations

- Offset value

The tool has the tool dimension (length, diameter). When a workpiece is machined, the tool movement value depends on the tool dimensions. By setting tool dimension data in CNC memory beforehand, automatically generates tool routes that permit any tool to cut the workpiece specified by the program. Tool dimension data is called the offset value (See Section III–11.4.1).
• Displaying and setting operator’s setting data

Apart from parameters, there is data that is set by the operator in operation. This data causes machine characteristics to change. For example, the following data can be set:
- Inch/Metric switching
- I/O devices selection
- Mirror image cutting on/off
The above data is called setting data (See Section III–11.4.7).
The CNC functions have versatility in order to take action in characteristics of various machines.

For example, CNC can specify the following:

- Rapid traverse rate of each axis
- Whether increment system is based on metric system or inch system.
- How to set command multiply/detect multiply (CMR/DMR)

Data to make the above specification is called parameters (See Section III–11.5.1).

Parameters differ depending on machine tool.

**Displaying and setting parameters**

A key called the data protection key can be defined. It is used to prevent part programs, offset values, parameters, and setting data from being registered, modified, or deleted erroneously (See Section III–11).
1.7 DISPLAY

1.7.1 Program Display

The contents of the currently active program are displayed. In addition, the programs scheduled next and the program list are displayed. (See Section III–11.2.1)

The cursor indicates the currently executed location.
1.7.2 Current Position Display

The current position of the tool is displayed with the coordinate values. The distance from the current position to the target position can also be displayed. (See Section III–11.1 to 11.1.3)

![Diagram of Workpiece coordinate system]

1.7.3 Alarm Display

When a trouble occurs during operation, alarm numbers and alarm message are displayed on CRT screen (See Section III–7.1). See APPENDIX G for the list of alarms and their meanings.
1.7.4 Parts Count Display, Run Time Display

Two types of run time and number of parts are displayed on the screen. (See Section III–11.4.9)

```
ACTUAL POSITION (ABSOLUTE) O0003 N00003
X 150.000
Z 100.000
C 90.000
PART COUNT 18
RUN TIME 0H16M CYCLE TIME 0H 1M0S
MEM STRT *** FIN 20:22:23
[ABS] [REL] [ALL] [OPRT]
```

1.7.5 Graphic Display (See Section III–12)

The graphic can be used to draw a tool path for automatic operation and manual operation, thereby indicating the progress of cutting and the position of the tool. (See Section III–12)

1-path control
1.8 DATA OUTPUT

Programs, offset values, parameters, etc. input in CNC memory can be output to paper tape, cassette, or a floppy disk for saving. After once output to a medium, the data can be input into CNC memory.

Fig. 1.8 Data Output
2 OPERATIONAL DEVICES

The available operational devices include the setting and display unit attached to the CNC, the machine operator’s panel, and external input/output devices such as a Handy File.
2.1
SETTING AND DISPLAY UNITS

The setting and display units are shown in Subsections 2.1.1 to 2.1.4 of Part III.

7.2” monochrome / 8.4” color LCD/MDI unit
   (horizontal type) .............................. III–2.1.1
7.2” monochrome / 8.4” color LCD/MDI unit
   (vertical type) ................................. III–2.1.2
Key location of MDI (horizontal type LCD/MDI unit) .... III–2.1.3
Key location of MDI (vertical type LCD/MDI unit) ....... III–2.1.4
2.1.1
7.2” Monochrome/
8.4” Color LCD/MDI
Unit (Horizontal Type)
2.1.2
7.2” Monochrome/
8.4” Color LCD/MDI
Unit (Vertical Type)
2.1.3
Key Location of MDI
(Horizontal Type
LCD/MDI Unit)
2.1.4  
Key Location of MDI  
(Vertical Type LCD/MDI Unit)
## 2.2 EXPLANATION OF THE KEYBOARD

### Table 2.2 Explanation of the MDI keyboard

<table>
<thead>
<tr>
<th>Number</th>
<th>Name</th>
<th>Explanation</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>RESET key</td>
<td>Press this key to reset the CNC, to cancel an alarm, etc.</td>
</tr>
<tr>
<td>2</td>
<td>HELP key</td>
<td>Press this key to display how to operate the machine tool, such as MDI key operation, or the details of an alarm which occurred in the CNC (Help function).</td>
</tr>
<tr>
<td>3</td>
<td>Soft keys</td>
<td>The soft keys have various functions, according to the Applications. The soft key functions are displayed at the bottom of the screen.</td>
</tr>
<tr>
<td>4</td>
<td>Address and numeric keys</td>
<td>Press these keys to input alphabetic, numeric, and other characters.</td>
</tr>
<tr>
<td>5</td>
<td>SHIFT key</td>
<td>Some keys have two characters on their keytop. Pressing the &lt;SHIFT&gt; key switches the characters. Special character $\wedge$ is displayed on the screen when a character indicated at the bottom right corner on the keytop can be entered.</td>
</tr>
<tr>
<td>6</td>
<td>INPUT key</td>
<td>When an address or a numerical key is pressed, the data is input to the buffer, and it is displayed on the screen. To copy the data in the key input buffer to the offset register, etc., press the &lt;INPUT&gt; key. This key is equivalent to the [INPUT] key of the soft keys, and either can be pressed to produce the same result.</td>
</tr>
<tr>
<td>7</td>
<td>Cancel key</td>
<td>Press this key to delete the last character or symbol input to the key input buffer. When the key input buffer displays $&gt;N001X100Z_$, and the cancel CAN key is pressed, Z is canceled and $&gt;N001X100_-$ is displayed.</td>
</tr>
<tr>
<td>8</td>
<td>Program edit keys</td>
<td>Press these keys when editing the program.</td>
</tr>
<tr>
<td>9</td>
<td>Function keys</td>
<td>Press these keys to switch display screens for each function. See sec. III–2.3 for details of the function keys.</td>
</tr>
</tbody>
</table>
### Table 2.2 Explanation of the MDI keyboard

<table>
<thead>
<tr>
<th>Number</th>
<th>Name</th>
<th>Explanation</th>
</tr>
</thead>
<tbody>
<tr>
<td>10</td>
<td>Cursor move keys</td>
<td>There are four different cursor move keys.</td>
</tr>
<tr>
<td></td>
<td></td>
<td><img src="image" alt="Cursor move keys" /></td>
</tr>
<tr>
<td></td>
<td></td>
<td>- <img src="image" alt="→" /> This key is used to move the cursor to the right or in the forward direction. The cursor is moved in short units in the forward direction.</td>
</tr>
<tr>
<td></td>
<td></td>
<td>- <img src="image" alt="←" /> This key is used to move the cursor to the left or in the reverse direction. The cursor is moved in short units in the reverse direction.</td>
</tr>
<tr>
<td></td>
<td></td>
<td>- <img src="image" alt="↓" /> This key is used to move the cursor in a downward or forward direction. The cursor is moved in large units in the forward direction.</td>
</tr>
<tr>
<td></td>
<td></td>
<td>- <img src="image" alt="↑" /> This key is used to move the cursor in an upward or reverse direction. The cursor is moved in large units in the reverse direction.</td>
</tr>
<tr>
<td>11</td>
<td>Page change keys</td>
<td>Two kinds of page change keys are described below.</td>
</tr>
<tr>
<td></td>
<td></td>
<td><img src="image" alt="Page change keys" /></td>
</tr>
<tr>
<td></td>
<td></td>
<td>- <img src="image" alt="PAGE" /> This key is used to changeover the page on the screen in the forward direction.</td>
</tr>
<tr>
<td></td>
<td></td>
<td>- <img src="image" alt="PAGE" /> This key is used to changeover the page on the screen in the reverse direction.</td>
</tr>
</tbody>
</table>
2.3 FUNCTION KEYS AND SOFT KEYS

The function keys are used to select the type of screen (function) to be displayed. When a soft key (section select soft key) is pressed immediately after a function key, the screen (section) corresponding to the selected function can be selected.

2.3.1 General Screen Operations

1. Press a function key on the MDI panel. The chapter selection soft keys that belong to the selected function appear.

2. Press one of the chapter selection soft keys. The screen for the selected chapter appears. If the soft key for a target chapter is not displayed, press the continuous menu key (next–menu key). In some cases, additional chapters can be selected within a chapter.

3. When the target chapter screen is displayed, press the operation selection key to display data to be manipulated.

4. To redisplay the chapter selection soft keys, press the return menu key.

The general screen display procedure is explained above. However, the actual display procedure varies from one screen to another. For details, see the description of individual operations.
Function keys are provided to select the type of screen to be displayed. The following function keys are provided on the MDI panel:

- Press this key to display the **position screen**.

- Press this key to display the **program screen**.

- Press this key to display the **offset/setting screen**.

- Press this key to display the **system screen**.

- Press this key to display the **message screen**.

- Press this key to display the **custom screen (conversational macro screen) or graphics screen**.
2.3.3  Soft Keys

To display a more detailed screen, press a function key followed by a soft key. Soft keys are also used for actual operations. The following illustrates how soft key displays are changed by pressing each function key.

The symbols in the following figures mean as shown below:

- : Indicates screens
- : Indicates a screen that can be displayed by pressing a function key(*1)
[ ] : Indicates a green-lettered soft key.
( ) : Indicates input from the MDI panel.
[____] : Indicates a black-lettered soft key.
[ ] : Indicates the continuous menu key (rightmost soft key).

*1 Press function keys to switch between screens that are used frequently.

*2 Some soft keys are not displayed depending on the option configuration.
POSITION SCREEN

Soft key transition triggered by the function key POS

- **Absolute coordinate display**
  - [ABS]  [OPRT]  [PTSPRE]  [EXEC]
  - [RUNPRE]  [EXEC]
  - [WRK-CD]  [ALLEXE]

- **Relative coordinate display**
  - [REL]  [OPRT]  (Axis or numeral)  [PRESET]
  - [ORIGIN]  [ALLEXE]
  - (Axis name)  [EXEC]

- **Current position display**
  - [ALL]  [OPRT]  (Axis or numeral)  [PRESET]
  - [ORIGIN]  [ALLEXE]
  - (Axis name)  [EXEC]

- **Manual handle interruption**
  - [HNDL]  [OPRT]  [PTSPRE]  [EXEC]
  - [RUNPRE]  [EXEC]

- **Monitor screen**
  - [MONI]  [OPRT]  [PTSPRE]  [EXEC]
  - [RUNPRE]  [EXEC]
PROGRAM SCREEN

Soft key transition triggered by the function key in the MEM mode

1. Program display screen

2. Program check display screen

3. Current block display screen

4. Next block display screen

5. Program restart display screen

(2)(Continued on the next page)
Program directory screen

[DIR]  [OPRT]  [BG-EDT]  (O number)  [OSRH]  ➔ Return to the program

File directory display screen

(DIR)  [OPRT]  [SELECT]  (File No.)  [F SET]  [EXEC]

Schedule operation display screen

[SCHDUL]  [OPRT]  [CLEAR]  [CAN]  [EXEC]  [INPUT]

Return to (1) (Program display)

[PRGRM]

See “When the soft key [BG-EDT] is pressed”
Soft key transition triggered by the function key in the EDIT mode

Program display

[PRGRM] — [(OPRT)]

[BG–EDT] — See “When the soft key [BG–EDT] is pressed”

(O number) — [O SRH]

(Address) — [SRFL]

[REWIND]

[F SRH]

[CAN] — [EXEC]

[N number] — [EXEC]

[READ]

[CHAIN] — (The cursor moves to the end of a program.)

[STOP]

[CAN]

[(O number)] — [EXEC]

[PUNCH]

[STOP]

[CAN]

[(O number)] — [EXEC]

[DELETE]

[CAN]

[(N number)] — [EXEC]

[EX–EDT]

[COPY] — [(O number)] — [EXEC]

[CRSR–]

[-CRSR]

[-BTTM]

[ALL]

[MOVE]

[CRSR–]

[-CRSR]

[-BTTM]

[ALL]

[MERGE]

[-CRSR]

[-BTTM]

[CHANGE] — [(Address)] — [BEFORE]

[(Address)] — [AFTER]

[SKIP]

[T–EXEC]

[EXEC]

(1)(Continued on the next page)
2. OPERATIONAL DEVICES

Program directory display

[DIR] [OPRT] [BG–EDT] [O number] [SRH] [EXEC]

[READ] [CHAIN] [STOP] [CAN] [O number] [EXEC]

[PUNCH] [STOP] [CAN] [O number] [EXEC]

Graphic Conversational Programming

[C.A.P.] [PRGRM] [G.MENU] [G number] [BLOCK] (Data) [OPRT] [LINE] [CHAMF] [CNR.R] [INPUT]

When a G number is omitted, the standard screen appears.

Floppy directory display

[FLOPPY] [PRGRM] [DIR] [OPRT]

[SRH] [F SRH] [CAN] [EXEC]

[READ] [FSET] [CAN] [EXEC]

[PUNCH] [FSET] [CAN] [EXEC]

[DELETE] [FSET] [CAN] [EXEC]
PROGRAM SCREEN

Soft key transition triggered by the function key in the MDI mode.

Program display

[PRGRM] → [OPRT] → [BG–EDT] → See "When the soft key [BG–EDT] is pressed"

Program input screen

[MDI] → [OPRT] → [BG–EDT] → See "When the soft key [BG–EDT] is pressed"

Current block display screen

[CURRNT] → [OPRT] → [BG–EDT] → See "When the soft key [BG–EDT] is pressed"

Next block display screen

[NEXT] → [OPRT] → [BG–EDT] → See "When the soft key [BG–EDT] is pressed"

Program restart display screen

[RSTR] → [OPRT] → [BG–EDT] → See "When the soft key [BG–EDT] is pressed"

Program directory display screen

[DIR] → [OPRT] → [BG–EDT] → See "When the soft key [BG–EDT] is pressed"
**PROGRAM SCREEN**  
Soft key transition triggered by the function key in the HNDL, JOG, or REF mode

**Program display**

- **[PRGRM]**-[OPRT]-[BG–EDT]  
  ➔ See “When the soft key [BG–EDT] is pressed”

**Current block display screen**

- **[CURRNT]**-[OPRT]-[BG–EDT]  
  ➔ See “When the soft key [BG–EDT] is pressed”

**Next block display screen**

- **[NEXT]**-[OPRT]-[BG–EDT]  
  ➔ See “When the soft key [BG–EDT] is pressed”

**Program restart display screen**

- **[RSTR]**-[OPRT]-[BG–EDT]  
  ➔ See “When the soft key [BG–EDT] is pressed”

**Program directory display screen**

- **[DIR]**-[OPRT]-[BG–EDT]  
  ➔ See “When the soft key [BG–EDT] is pressed”

---

**PROGRAM SCREEN**  
Soft key transition triggered by the function key in the TJOG or THDL mode

**Program display**

- **[PRGRM]**-[OPRT]-[BG–EDT]  
  ➔ See “When the soft key [BG–EDT] is pressed”

**Program directory display**

- **[DIR]**-[OPRT]-[BG–EDT]  
  ➔ See “When the soft key [BG–EDT] is pressed”

---

---

---
Soft key transition triggered by the function key
(When the soft key [BG–EDT] is pressed in all modes)

Program display

(PRGRM) 

(O number) 
(Address) 
(REWIND) 

[PROG]

[BG–END] 
[O number] 
(Address) 
[O SRH] 
[SRFL] 
[SRHT] 

[F SRH] 
[CAN] 
(N number) 
[EXEC] 

[READ] 
[CHAIN] 
(The cursor moves to the end of a program.) 

[STOP] 
[CAN] 
[EXEC] 

[PUNCH] 
[STOP] 
[CAN] 
(O number) 
[EXEC] 

[DELETE] 
[CAN] 
(O number) 
[EXEC] 

[EX–EDT] 
[COPY] 
[CRSR–] 
[CRSR] 
[BTTM] 
[ALL] 

[MOVE] 
[CRSR–] 
[CRSR] 
[BTTM] 
[ALL] 

[MERGE] 
[CRSR] 
[BTTM] 

[CHANGE] 
(Address) 
[BEFORE] 

(Address) 
[AFTER] 
[SKIP] 
[T–EXEC] 
[EXEC] 

(1) (Continued on the next page)
Program directory display

(DIR) (OPRT) (O number) [BG–EDT] [O SRH] ➔ Return to the program

[CHAIN] [STOP] [CAN] (O number) ➔ EXEC

[READ] [PUNCH]

Graphic Conversational Programming

[C.A.P.] [PRGRM] ➔ Return to the program

[G.MENU] (G number) [BLOCK] (Data) [(OPRT)]

When a G number is omitted, the standard screen appears.

[LIN] [CHAMF] [CNR.R] [INPUT]

Floppy directory display

[FLOPPY] [PRGRM] ➔ Return to the program

(DIR) (OPRT) [F SRH]

(F numeral) [F SET] [CAN] [EXEC]

[READ] (Numeral) [F SET] (Numeral) [O SET] [STOP] [CAN] [EXEC]

[PUNCH] (Numeral) [F SET] (Numeral) [O SET] [STOP] [CAN] [EXEC]

[DELETE] (Numeral) [F SET] [CAN] [EXEC]
OFFSET/SETTING SCREEN

Soft key transition triggered by the function key

Tool offset screen

Setting screen

Workpiece coordinate system setting screen

Macro variables display screen

(1)(Continued on the next page)
1. Pattern data input screen

[Menu] — [(OPRT)] — (Number) — [Select]

2. Software operator’s panel screen

[(OPR)]

3. Tool life management setting screen


4. Y axis tool offset screen


5. Workpiece shift screen

[WK.SHFT] — [(OPRT)] — (Numeral) — [+INPUT] — [INPUT]

6. Chuck and tailstock barriers setting screen

SYSTEM SCREEN

Parameter screen

[PARAM] 

(Number) 

[ON:1] 

[OFF:0] 

[+INPUT] 

[INPUT] 

[READ] 

[CAN] 

[EXEC] 

[PUNCH] 

[ALL] 

[CAN] 

[EXEC] 

[ON:1] 

[OFF:0] 

[+INPUT] 

[INPUT] 

[READ] 

[CAN] 

[EXEC] 

[PUNCH] 

[ALL] 

[CAN] 

[EXEC] 

[NO SRH] 

(Continued on the next page)
MESSAGE SCREEN
Soft key transition triggered by the function key

- Alarm display screen
  - [ALARM]
- Message display screen
  - [MSG]
- Alarm history screen
  - [HISTORY] (OPRT) [CLEAR]

HELP SCREEN
Soft key transition triggered by the function key

- Alarm detail screen
  - [ALAM] (OPRT) [SELECT]
- Operation method screen
  - [OPR] (OPRT) [SELECT]
- Parameter table screen
  - [PARA]
GRAPHIC SCREEN

Soft key transition triggered by the function key

Tool path graphics

Mode 0

[CSTM/GR]

Tool path graphics

[OPRT]

[NORMAL]

[GRAPH]

[OPRT]

[ERASE]

[ZOOM]

[OPRT]

[ACT]

[HI/LO]

CUSTOM SCREEN

Soft key transition triggered by the function key

CUSTOM screen

[CSTM/GR]

CUSTOM screen

CUSTOM screen

The layout of the CUSTOM screen is customized by the machine tool builder. For details of the screen, refer to the manual issued by the machine tool builder.
To switch from the CUSTOM screen to another screen, press the desired function key.
When an address and a numerical key are pressed, the character corresponding to that key is input once into the key input buffer. The contents of the key input buffer is displayed at the bottom of the screen. In order to indicate that it is key input data, a “>” symbol is displayed immediately in front of it. A “_” is displayed at the end of the key input data indicating the input position of the next character.

To input the lower character of the keys that have two characters inscribed on them, first press the \texttt{SHIFT} key and then the key in question.

When the \texttt{SHIFT} key is pressed, “_” indicating the next character input position changes to “\wedge”. Now lowercase characters can be entered (shift state).

When a character is input in shift status the shift status is canceled. Furthermore, if the \texttt{SHIFT} key is pressed in shift status, the shift status is canceled.

It is possible to input up to 32 characters at a time in the key input buffer.

Press the \texttt{CAN} key to cancel a character or symbol input in the key input buffer.

(Example)

When the key input buffer displays
\texttt{>N001X100Z_}

and the cancel \texttt{CAN} key is pressed, Z is canceled and
\texttt{>N001X100_}
is displayed.
After a character or number has been input from the MDI panel, a data check is executed when the INPUT key or a soft key is pressed. In the case of incorrect input data or the wrong operation a flashing warning message will be displayed on the status display line.

![Diagram of warning message display]

**Warning Messages**

<table>
<thead>
<tr>
<th>Warning message</th>
<th>Content</th>
</tr>
</thead>
<tbody>
<tr>
<td>FORMAT ERROR</td>
<td>The format is incorrect.</td>
</tr>
<tr>
<td>WRITE PROTECT</td>
<td>Key input is invalid because of data protection key or the parameter is not write enabled.</td>
</tr>
<tr>
<td>DATA IS OUT OF RANGE</td>
<td>The input value exceeds the permitted range.</td>
</tr>
<tr>
<td>TOO MANY DIGITS</td>
<td>The input value exceeds the permitted number of digits.</td>
</tr>
<tr>
<td>WRONG MODE</td>
<td>Parameter input is not possible in any mode other than MDI mode.</td>
</tr>
<tr>
<td>EDIT REJECTED</td>
<td>It is not possible to edit in the current CNC status.</td>
</tr>
</tbody>
</table>
2.4 EXTERNAL I/O DEVICES

Handy File of external input/output device is available. For detail on Handy File, refer to the corresponding manual listed below.

<table>
<thead>
<tr>
<th>Device name</th>
<th>Usage</th>
<th>Max. storage capacity</th>
<th>Reference manual</th>
</tr>
</thead>
<tbody>
<tr>
<td>FANUC Handy File</td>
<td>Easy-to-use, multi function input/output device. It is designed for FA equipment and uses floppy disks.</td>
<td>3600m</td>
<td>B–61834E</td>
</tr>
</tbody>
</table>

The following data can be input/output to or from external input/output devices:
1. Programs
2. Offset data
3. Parameters
4. Custom macro common variables
5. Pitch error compensation data

For an explanation of data input/output and how to use a memory card to input and output data, see Chapter III–8.
Before an external input/output device can be used, parameters must be set as follows.

CNC has two channels of reader/punch interfaces. The CNC has a memory card interface as well. The input/output device to be used is specified by setting the channel (interface) connected to that device in setting parameter I/O CHANNEL.

The specified data, such as a baud rate and the number of stop bits, of an input/output device connected to a specific channel must be set in parameters for that channel in advance. (No data need be set for the memory card interface.)

For channel 1, two combinations of parameters to specify the input/output device data are provided.

The following shows the interrelation between the reader/punch interface parameters for the channels.
2.4.1 FANUC Handy File

The Handy File is an easy-to-use, multi function floppy disk input/output device designed for FA equipment. By operating the Handy File directly or remotely from a unit connected to the Handy File, programs can be transferred and edited.

The Handy File uses 3.5-inch floppy disks, which do not have the problems of paper tape (i.e., noisy during input/output, easily broken, and bulky).

One or more programs (up to 1.44M bytes, which is equivalent to the memory capacity of 3600-m paper tape) can be stored on one floppy disk.
2.5 POWER ON/OFF

2.5.1 Turning on the Power

Procedure of turning on the power

1. Check that the appearance of the CNC machine tool is normal. (For example, check that front door and rear door are closed.)

2. Turn on the power according to the manual issued by the machine tool builder.

3. After the power is turned on, check that the position screen is displayed. An alarm screen is displayed if an alarm occurs upon power-on. If the screen shown in Section III–2.5.2 is displayed, a system failure may have occurred.

4. Check that the fan motor is rotating.

WARNING

Until the positional or alarm screen is displayed at the power on, do not touch them. Some keys are used for the maintenance or special operation purpose. When they are pressed, unexpected operation may be caused.
2.5.2 Screen Displayed at Power–on

If a hardware failure or installation error occurs, the system displays one of the following three types of screens then stops. Information such as the type of printed circuit board installed in each slot is indicated. This information and the LED states are useful for failure recovery.

Slot status display

For more information about the types of printed circuit boards and module functions, refer to the maintenance manual (B–63835EN).
Screen indicating module setting status

D6B1 – 01

SLOT 01 (3046) : END
SLOT 02 (3050) : Blank: Setting not completed
END: Setting completed
Module ID
Slot number

Display of software configuration

D6B1 – 01

CNC control software

OMM : yyyy–yy
PMC : zzzz–zz

Order–made macro/macro compiler
PMC

The software configuration can be displayed on the system configuration screen also.
Refer to the MAINTENANCE MANUAL (B–64115EN) for the system configuration screen.

2.5.3 Power Disconnection

Procedure for Poser Disconnection

1. Check that the LED indicating the cycle start is off on the operator’s panel.
2. Check that all movable parts of the CNC machine tool is stopping.
3. If an external input/output device such as the Handy File is connected to the CNC, turn off the external input/output device.
4. Continue to press the POWER OFF pushbutton for about 5 seconds.
5. Refer to the machine tool builder’s manual for turning off the power to the machine.
3 MANUAL OPERATION

MANUAL OPERATION are six kinds as follows:

3.1 Manual reference position return
3.2 Jog feed
3.3 Incremental feed
3.4 Manual handle feed
3.5 Manual absolute on and off
3.1 MANUAL REFERENCE POSITION RETURN

The tool is returned to the reference position as follows:
The tool is moved in the direction specified in parameter ZMI (bit 5 of No. 1006) for each axis with the reference position return switch on the machine operator’s panel. The tool moves to the deceleration point at the rapid traverse rate, then moves to the reference position at the FL speed. The rapid traverse rate and FL speed are specified in parameters (No. 1420, 1421, and 1425).

Four step rapid traverse override is effective during rapid traverse. When the tool has returned to the reference position, the reference position return completion LED goes on. The tool generally moves along only a single axis, but can move along three axes simultaneously when specified so in parameter JAX (bit 0 of No. 1002).

Rapid traverse rate

Rapid traverse motion

Decelerated motion

FL speed

Reference position

Rapid traverse rate and FL speed are specified in parameters (No. 1420, 1421, and 1425).

Procedure for Manual Reference Position Return

1. Press the reference position return switch, one of the mode selection switches.

2. To decrease the feedrate, press a rapid traverse override switch.

3. Press the feed axis and direction selection switch corresponding to the axis and direction for reference position return. Continue pressing the switch until the tool returns to the reference position. The tool can be moved along three axes simultaneously when specified so in an appropriate parameter setting. The tool moves to the deceleration point at the rapid traverse rate, then moves to the reference position at the FL speed set in a parameter. When the tool has returned to the reference position, the reference position return completion LED goes on.

4. Perform the same operations for other axes, if necessary.
The above is an example. Refer to the appropriate manual provided by the machine tool builder for the actual operations.
The coordinate system is automatically determined when manual reference position return is performed. When \( \alpha \) and \( \gamma \) are set in workpiece zero point offset, the workpiece coordinate system is determined so that the reference point on the tool holder or the position of the tip of the reference tool is \( X=\alpha, Z=\gamma \) when reference position return is performed. This has the same effect as specifying the following command for reference position return:

\[
G50X\alpha Z\gamma;
\]

Once the REFERENCE POSITION RETURN COMPLETION LED lights at the completion of reference position return, the tool does not move unless the REFERENCE POSITION RETURN switch is turned off.

The REFERENCE POSITION RETURN COMPLETION LED is extinguished by either of the following operations:

- Moving from the reference position.
- Entering an emergency stop state.

For the distance (Not in the deceleration condition) to return the tool to the reference position, refer to the manual issued by the machine tool builder.
3.2 JOG FEED

In the JOG mode, pressing a feed axis and direction selection switch on the machine operator’s panel continuously moves the tool along the selected axis in the selected direction.

The manual continuous feedrate is specified in a parameter (No.1423)

The manual continuous feedrate can be adjusted with the manual continuous feedrate override dial.

Pressing the rapid traverse switch moves the tool at the rapid traverse feedrate (No.1424) regardless of the position of the JOG feedrate override dial. This function is called the manual rapid traverse.

Manual operation is allowed for one axis at a time. 3 axes can be selected at a time by parameter JAX (No.1002#0).

Procedure for JOG Feed

1. Press the manual continuous switch, one of the mode selection switches.

2. Press the feed axis and direction selection switch corresponding to the axis and direction the tool is to be moved. While the switch is pressed, the tool moves at the feedrate specified in a parameter (No. 1423). The tool stops when the switch is released.

3. The manual continuous feedrate can be adjusted with the manual continuous feedrate override dial.

4. Pressing the rapid traverse switch while pressing a feed axis and direction selection switch moves the tool at the rapid traverse rate while the rapid traverse switch is pressed. Rapid traverse override by the rapid traverse override switches is effective during rapid traverse.

The above is an example. Refer to the appropriate manual provided by the machine tool builder for the actual operations.
Depending on the setting of JRV (bit 4 of parameter No. 1402), jog feed changes to manual feed per revolution.
In manual feed per revolution, jog feed is performed at the feedrate equal to the feed amount per revolution (which is determined by multiplying the feed amount per revolution specified for parameter No. 1423 by the jog feedrate override) multiplied by the spindle speed.
During manual per revolution feed, the tool is jogged at the following feedrate:
Feed distance per rotation of the spindle (mm/rev) (specified with parameter No. 1423) x JOG feedrate override x actual spindle speed (rev/min).

Feedrate, time constant and method of automatic acceleration/deceleration for manual rapid traverse are the same as G00 in programmed command.

Changing the mode to the JOG feed mode while pressing a feed axis and direction selection switch does not enable JOG feed. To enable JOG feed, enter the JOG feed mode first, then press a feed axis and direction selection switch.

If reference position return is not performed after power–on, pushing RAPID TRAVERSE button does not actuate the rapid traverse but the remains at the manual continuous feedrate. This function can be disabled by setting parameter RPD (No.1401#01).
3.3 INCREMENTAL FEED

In the incremental (INC) mode, pressing a feed axis and direction selection switch on the machine operator’s panel moves the tool one step along the selected axis in the selected direction. The minimum distance the tool is moved is the least input increment. Each step can be 10, 100, or 1000 times the least input increment. This mode is effective when a manual pulse generator is not connected.

Each time a switch is pressed, the tool moves one step in the direction specified by the switch.

Procedure for Incremental Feed

1. Press the INC switch, one of the mode selection switches.
2. Select the distance to be moved for each step with the magnification dial.
3. Press the feed axis and direction selection switch corresponding to the axis and direction the tool is to be moved. Each time a switch is pressed, the tool moves one step. The feedrate is the same as the jog feedrate.
4. Pressing the rapid traverse switch while pressing a feed axis and direction selection switch moves the tool at the rapid traverse rate. Rapid traverse override by the rapid traverse override switch is effective during rapid traverse.

The above is an example. Refer to the appropriate manual provided by the machine tool builder for the actual operations.

Explanation

- Travel distance specified with a diameter

The distance the tool travels along the X-axis can be specified with a diameter.
In the handle mode, the tool can be minutely moved by rotating the manual pulse generator on the machine operator’s panel. Select the axis along which the tool is to be moved with the handle feed axis selection switches.

The minimum distance the tool is moved when the manual pulse generator is rotated by one graduation is equal to the least input increment. Or the distance the tool is moved when the manual pulse generator is rotated by one graduation can be magnified by 1 times, 10 times, or by one of the two magnifications (total four magnifications) specified by parameters (No. 7113 and 7114).

In addition to using parameters No. 7113 and No. 7114 to set arbitrary magnifications common to all axes, the user can use parameters No. 12350 and No. 12351 to set arbitrary magnifications independently for individual axes.

When parameter No. 12350 has no value, parameter No. 7113 is used; when parameter No. 12351 has no value, parameter No. 7114 is used. These parameters are also valid for manual handle interruption.

**Procedure for Manual Handle Feed**

1. Press the HANDLE switch, one of the mode selection switches.
2. Select the axis along which the tool is to be moved by pressing a handle feed axis selection switch.
3. Select the magnification for the distance the tool is to be moved by pressing a handle feed magnification switch. The distance the tool is moved when the manual pulse generator is rotated by one graduation is: Least input increment multiplied by magnification
4. Move the tool along the selected axis by rotating the handle. Rotating the handle 360 degrees moves the tool the distance equivalent to 100 graduations.

The above is an example. Refer to the appropriate manual provided by the machine tool builder for the actual operations.
Parameter JHD (bit 0 of No. 7100) enables or disables the manual pulse generator in the JOG mode. When the parameter JHD (bit 0 of No. 7100) is set 1, both manual handle feed and incremental feed are enabled.

Parameter THD (bit 1 of No. 7100) enables or disables the manual pulse generator in the TEACH IN JOG mode.

Parameter HPF (bit 4 of No. 7100) or (No. 7117) specifies as follows:

- **Set value 0**: The feedrate is clamped at the rapid traverse rate and generated pulses exceeding the rapid traverse rate are ignored. (The distance the tool is moved may not match the graduations on the manual pulse generator.)

- **Set value 1**: The feedrate is clamped at the rapid traverse rate and generated pulses exceeding the rapid traverse rate are not ignored but accumulated in the CNC. (No longer rotating the handle does not immediately stop the tool. The tool is moved by the pulses accumulated in the CNC before it stops.)

Parameter HPF (No. 7117) (It is available when parameter HPF is 0.)

- **Set value 0**: The feedrate is clamped at the rapid traverse rate and generated pulses exceeding the rapid traverse rate are ignored. (The distance the tool is moved may not match the graduations on the manual pulse generator.)

- **Other than 0**: The feedrate is clamped at the rapid traverse rate and generated pulses exceeding the rapid traverse rate are not ignored but accumulated in the CNC until the limit specified in parameter No. 7117 is reached. (No longer rotating the handle does not immediately stop the tool. The tool is moved by the pulses accumulated in the CNC before it stops.)

Parameter HNGx (bit 0 of No. 7102) switches the direction of MPG in which the tool moves along an axis, corresponding to the direction in which the handle of the manual pulse generator is rotated.
Manual pulse generators for up to two axes can be set. The two axes can be moved simultaneously.

**WARNING**
Rotating the handle quickly with a large magnification such as x100 moves the tool too fast. The feedrate is clamped at the rapid traverse feedrate.

**NOTE**
Rotate the manual pulse generator at a rate of five rotations per second or lower. If the manual pulse generator is rotated at a rate higher than five rotations per second, the tool may not stop immediately after the handle is no longer rotated or the distance the tool moves may not match the graduations on the manual pulse generator.
3.5 MANUAL ABSOLUTE ON AND OFF

Whether the distance the tool is moved by manual operation is added to the coordinates can be selected by turning the manual absolute switch on or off on the machine operator’s panel. When the switch is turned on, the distance the tool is moved by manual operation is added to the coordinates. When the switch is turned off, the distance the tool is moved by manual operation is not added to the coordinates.

Fig. 3.5(a) Coordinates with the switch ON

Fig. 3.5(b) Coordinates with the switch OFF
The following describes the relation between manual operation and coordinates when the manual absolute switch is turned on or off, using a program example.

```
G01G90 X100.0Z100.0F010 ; (1)
X200.0Z150.0 ; (2)
X300.0Z200.0 ; (3)
```

The subsequent figures use the following notation:

- Movement of the tool when the switch is on
- Movement of the tool when the switch is off

The coordinates after manual operation include the distance the tool is moved by the manual operation. When the switch is off, therefore, subtract the distance the tool is moved by the manual operation.

**Manual operation after the end of block**

Coordinates when block (2) has been executed after manual operation (X-axis +20.0, Z-axis +100.0) at the end of movement of block (1).

**Manual operation after a feed hold**

Coordinates when the feed hold button is pressed while block (2) is being executed, manual operation (X-axis + 75.0) is performed, and the cycle start button is pressed and released.
• When reset after a manual operation following a feed hold

Coordinates when the feed hold button is pressed while block (2) is being executed, manual operation (Y-axis +75.0) is performed, the control unit is reset with the RESET button, and block (2) is read again.

When there is only one axis in the following command, only the commanded axis returns.

When the next move block is an incremental.

Manual operation during tool nose radius compensation

When the switch is OFF

After manual operation is performed with the switch OFF during tool nose radius compensation, automatic operation is restarted then the tool moves parallel to the movement that would have been performed if manual movement had not been performed. The amount of separation equals to the amount that was performed manually.
When the switch is ON during tool nose radius compensation
Operation of the machine upon return to automatic operation after manual intervention with the switch is ON during execution with an absolute command program in the tool nose radius compensation mode will be described. The vector created from the remaining part of the current block and the beginning of the next block is shifted in parallel. A new vector is created based on the next block, the block following the next block and the amount of manual movement. This also applies when manual operation is performed during cornering.

Manual operation performed in other than cornering
Assume that the feed hold was applied at point PH while moving from PA to PB of programmed path PA, PB, and PC and that the tool was manually moved to PH'. The block end point PB moves to the point PB' by the amount of manual movement, and vectors VB1 and VB2 at PB also move to VB1' and VB2'. Vectors VC1 and VC2 between the next two blocks PB – PC and PC – PD are discarded and new vectors VC1' and VC2' (VC2' = VC2 in this example) are produced from the relation between PB' – PC and PC – PD. However, since VB2' is not a newly calculated vector, correct offset is not performed at block PB' – PC. Offset is correctly performed after PC.
Manual operation during cornering
This is an example when manual operation is performed during cornering. \( V_{A2}', V_{B1}', \) and \( V_{B2}' \) are vectors moved in parallel with \( V_{A2}, V_{B1} \) and \( V_{B2} \) by the amount of manual movement. The new vectors are calculated from \( V_{C1} \) and \( V_{C2} \). Then correct tool nose radius compensation is performed for the blocks following \( P_c \).

Manual operation after single block stop
Manual operation was performed when execution of a block was terminated by single block stop. Vectors \( V_{B1} \) and \( V_{B2} \) are shifted by the amount of manual operation. Subsequent processing is the same as case a described above. An MDI operation can also be intervened as well as manual operation. The movement is the same as that by manual operation.
Programmed operation of a CNC machine tool is referred to as automatic operation.
This chapter explains the following types of automatic operation:

- **MEMORY OPERATION**
  Operation by executing a program registered in CNC memory

- **MDI OPERATION**
  Operation by executing a program entered from the MDI panel

- **DNC operation**
  Operation while reading a program from external input/output device

- **PROGRAM RESTART**
  Restarting a program for automatic operation from an intermediate point

- **SCHEDULING FUNCTION**
  Scheduled operation by executing programs (files) registered in an external input/output device (Handy File, Floppy Cassette, or FA Card)

- **SUBPROGRAM CALL FUNCTION**
  Function for calling and executing subprograms (files) registered in an external input/output device (Handy File, Floppy Cassette, or FA Card) during memory operation

- **MANUAL HANDLE INTERRUPTION**
  Function for performing manual feed during movement executed by automatic operation

- **MIRROR IMAGE**
  Function for enabling mirror–image movement along an axis during automatic operation

- **MANUAL INTERVENTION AND RETURN**
  Function restarting automatic operation by returning the tool the position where manual intervention was started during automatic operation.

- **MEMORY CARD–BASED DNC OPERATION**
  Automatic operation by a program written to a memory card
Programs are registered in memory in advance. When one of these programs is selected and the cycle start switch on the machine operator’s panel is pressed, automatic operation starts, and the cycle start LED goes on.

When the feed hold switch on the machine operator’s panel is pressed during automatic operation, automatic operation is stopped temporarily. When the cycle start switch is pressed again, automatic operation is restarted.

When the \[\text{RESET}\] key on the MDI panel is pressed, automatic operation terminates and the reset state is entered.

The following procedure is given as an example. For actual operation, refer to the manual supplied by the machine tool builder.

---

### Procedure for Memory Operation

1. Press the \texttt{MEMORY} mode selection switch.
2. Select a program from the registered programs. To do this, follow the steps below.
   - \texttt{2–1} Press \texttt{PROG} to display the program screen.
   - \texttt{2–2} Press address \texttt{O}.
   - \texttt{2–3} Enter a program number using the numeric keys.
   - \texttt{2–4} Press the \texttt{[O SRH]} soft key.
3. Press the cycle start switch on the machine operator’s panel. Automatic operation starts, and the cycle start LED goes on. When automatic operation terminates, the cycle start LED goes off.
4. To stop or cancel memory operation midway through, follow the steps below.
   - **a. Stopping memory operation**
     - Press the feed hold switch on the machine operator’s panel. The feed hold LED goes on and the cycle start LED goes off. The machine responds as follows:
       - (i) When the machine was moving, feed operation decelerates and stops.
       - (ii) When dwell was being performed, dwell is stopped.
       - (iii) When M, S, or T was being executed, the operation is stopped after M, S, or T is finished.
     - When the cycle start switch on the machine operator’s panel is pressed while the feed hold LED is on, machine operation restarts.
   - **b. Terminating memory operation**
     - Press the \[\text{RESET}\] key on the MDI panel.
     - Automatic operation is terminated and the reset state is entered.
When a reset is applied during movement, movement decelerates then stops.

Explanation

Memory operation

After memory operation is started, the following are executed:
1. A one–block command is read from the specified program.
2. The block command is decoded.
3. The command execution is started.
4. The command in the next block is read.
5. Buffering is executed. That is, the command is decoded to allow immediate execution.
6. Immediately after the preceding block is executed, execution of the next block can be started. This is because buffering has been executed.
7. Hereafter, memory operation can be executed by repeating the steps (4) to (6).

Stopping and terminating memory operation

Memory operation can be stopped using one of two methods: Specify a stop command, or press a key on the machine operator’s panel.

- The stop commands include M00 (program stop), M01 (optional stop), and M02 and M30 (program end).
- There are two keys to stop memory operation: The feed hold key and reset key.

- Program stop (M00)

Memory operation is stopped after a block containing M00 is executed. When the program is stopped, all existing modal information remains unchanged as in single block operation. The memory operation can be restarted by pressing the cycle start button. Operation may vary depending on the machine tool builder. Refer to the manual supplied by the machine tool builder.

- Optional stop (M01)

Similarly to M00, memory operation is stopped after a block containing M01 is executed. This code is only effective when the Optional Stop switch on the machine operator’s panel is set to ON. Operation may vary depending on the machine tool builder. Refer to the manual supplied by the machine tool builder.

- Program end (M02, M30)

When M02 or M30 (specified at the end of the main program) is read, memory operation is terminated and the reset state is entered. In some machines, M30 returns control to the top of the program. For details, refer to the manual supplied by the machine tool builder.

- Feed hold

When Feed Hold button on the operator’s panel is pressed during memory operation, the tool decelerates to a stop at a time.

- Reset

Automatic operation can be stopped and the system can be made to the reset state by using the key on the MDI or external reset signal. When reset operation is applied to the system during a tool moving status, the motion is slowed down then stops.

- Optional block skip

When the optional block skip switch on the machine operator’s panel is turned on, blocks containing a slash (/) are ignored.
Calling a subprogram stored in an external input/output device

A file (subprogram) in an external input/output device such as a Floppy Cassette can be called and executed during memory operation. For details, see Section III–4.5.
4.2 MDI OPERATION

In the MDI mode, a program consisting of up to 10 lines can be created in the same format as normal programs and executed from the MDI panel. MDI operation is used for simple test operations. The following procedure is given as an example. For actual operation, refer to the manual supplied by the machine tool builder.

**Procedure for MDI Operation**

1. Press the **MDI** mode selection switch.

2. Press the **PROG** function key on the MDI panel to select the program screen. The following screen appears:

   ![MDI Program Screen](image)

   Program number O0000 is entered automatically.

3. Prepare a program to be executed by an operation similar to normal program editing. M99 specified in the last block can return control to the beginning of the program after operation ends. Word insertion, modification, deletion, word search, address search, and program search are available for programs created in the MDI mode. For program editing, see Chapter III–9.

4. To entirely erase a program created in MDI mode, use one of the following methods:
   
   a. Enter address O, then press the **DELETE** key on the MDI panel.
   
   b. Alternatively, press the **RESET** key. In this case, set bit 7 of parameter 3203 to 1 in advance.

5. To execute a program, set the cursor on the head of the program. (Start from an intermediate point is possible.) Push Cycle Start button on the operator’s panel. By this action, the prepared program will start. When the program end (M02, M30) or ER(%) is executed, the prepared program will be automatically erased and the operation will end.
By command of M99, control returns to the head of the prepared program.

```
PROGRAM (MDI) O0001 N00003
O0000 G00 X100.0 Z200. ;
M03 ;
G01 Z120.0 F500 ;
M93 P9010 ;
G00 Z0.0 ;
%
G00 G90 G94 G40 G80 G50 G54 G69
G17 G22 G21 G49 G98 G67 G64 G15
B H M
T D
F S
>_.
MDI 12 : 42 : 39
(MD1) (PRGRM (M01) (CURRENT) (NEXT) (OPRT))
```

6 To stop or terminate MDI operation in midway through, follow the steps below.

a. Stopping MDI operation

Press the feed hold switch on the machine operator’s panel. The feed hold LED goes on and the cycle start LED goes off. The machine responds as follows:

(i) When the machine was moving, feed operation decelerates and stops.

(ii) When dwell was being performed, dwell is stopped.

(iii) When M, S, or T was being executed, the operation is stopped after M, S, or T is finished.

When the cycle start switch on the machine operator’s panel is pressed, machine operation restarts.

b. Terminating MDI operation

Press the [RESET] key on the MDI panel.

Automatic operation is terminated and the reset state is entered. When a reset is applied during movement, movement decelerates then stops.

**Explanation**

The previous explanation of how to execute and stop memory operation also applies to MDI operation, except that in MDI operation, M30 does not return control to the beginning of the program (M99 performs this function).

- Erasing the program

  Programs prepared in the MDI mode will be erased in the following cases:

  - In MDI operation, if M02, M30 or ER(%) is executed.
    (If bit 6 (MER) of parameter No. 3203 is set to 1, however, the program is erased when execution of the last block of the program is completed by single–block operation.)
  - In MEMORY mode, if memory operation is performed.
  - In EDIT mode, if any editing is performed.
Background editing is performed.

When the \texttt{O} and \texttt{DELETE} keys were pressed.

Upon reset when bit 7 (MCL) of parameter No. 3203 is set to 1

**Restart**

After the editing operation during the stop of MDI operation was done, operation starts from the current cursor position.

**Editing a program during MDI operation**

A program can be edited during MDI operation. The editing of a program, however, is disabled until the CNC is reset, when bit 5 (MIE) of parameter No. 3203 is set accordingly.

**Limitation**

**Program registration**

Programs created in MDI mode cannot be registered.

**Number of lines in a program**

A program can have as many lines as can fit on one page of the screen. A program consisting of up to six lines can be created. When parameter MDL (No. 3107 #7) is set to 0 to specify a mode that suppresses the display of continuous-state information, a program of up to 10 lines can be created.

If the created program exceeds the specified number of lines, \% (ER) is deleted (prevents insertion and modification).

**Subprogram nesting**

Calls to subprograms (M98) can be specified in a program created in the MDI mode. This means that a program registered in memory can be called and executed during MDI operation. In addition to the main program executed by automatic operation, up to four levels of subprogram nesting are allowed (when the custom macro option is provided, up to four levels are allowed).

<table>
<thead>
<tr>
<th>Main program</th>
<th>Subprogram</th>
<th>Subprogram</th>
<th>Subprogram</th>
<th>Subprogram</th>
</tr>
</thead>
<tbody>
<tr>
<td>O0001 ;</td>
<td>O1000 ;</td>
<td>O2000 ;</td>
<td>O3000 ;</td>
<td>O4000 ;</td>
</tr>
<tr>
<td>M98P1000 ;</td>
<td>M98P2000 ;</td>
<td>M98P3000 ;</td>
<td>M98P4000 ;</td>
<td></td>
</tr>
<tr>
<td>M30 ;</td>
<td>M99 ;</td>
<td>M99 ;</td>
<td>M99 ;</td>
<td>M99 ;</td>
</tr>
<tr>
<td></td>
<td>(One-level)</td>
<td>(Two-level)</td>
<td>(Three-level)</td>
<td>(Four-level)</td>
</tr>
</tbody>
</table>

**Fig. 4.2 Nesting level of subprograms called from the MDI program**

**Macro call**

Macro programs can also be created, called, and executed in the MDI mode. However, macro call commands cannot be executed when the mode is changed to MDI mode after memory operation is stopped during execution of a subprogram.

**Memory area**

When a program is created in the MDI mode, an empty area in program memory is used. If program memory is full, no programs can be created in the MDI mode.
4.3
DNC OPERATION

By activating automatic operation during the DNC operation mode (RMT), it is possible to perform machining (DNC operation) while a program is being read in via reader/puncher interface. It is possible to select files (programs) saved in an external input/output unit of a floppy format (Handy File, Floppy Cassettes, or FA card) and specify (schedule) the sequence and frequency of execution for automatic operation.

To use the DNC operation function, it is necessary to set the parameters related to the reader/punch interface in advance.

DNC OPERATION

Procedure

1. Search for the program (file) to be executed.
2. Press the REMOTE switch on the machine operator’s panel to set RMT mode, then press the cycle start switch. The selected file is executed. For details of the use of the REMOTE switch, refer to the relevant manual supplied by the machine tool builder.

- Program check screen

- Program screen
During DNC operation, the program currently being executed is displayed on the program check screen and program screen. The number of displayed program blocks depends on the program being executed. Any comment enclosed between a control–out mark (()) and control–in mark (()) within a block is also displayed.

**Explanations**

- During DNC operation, programs and macro programs stored in memory can be called.

**Limitations**

- **Limit on number of characters**
  In program display, no more than 256 characters can be displayed. Accordingly, character display may be truncated in the middle of a block.

- **M198 (command for calling a program from within an external input/output unit)**
  In DNC operation, M198 cannot be executed. If M198 is executed, P/S alarm No. 210 is issued.

- **Custom macro**
  In DNC operation, custom macros can be specified, but no repeat instruction and branch instruction can be programmed. If a repeat instruction or branch instruction is executed, P/S alarm No. 123 is issued. When reserved words (such as IF, WHILE, COS, and NE) used with custom macros in DNC operation are displayed during program display, a blank is inserted between adjacent characters.

  Example

  
  | During DNC operation | #102=SIN[#100] ; | → | #102=S I N[#100] ; |
  | IF[#100NE0]GOTO5 ; | → | I F[#100NE0] G O T O 5 ; |

- **M99**
  When control is returned from a subprogram or macro program to the calling program during DNC operation, it becomes impossible to use a return command (M99P****) for which a sequence number is specified.

- **Multiple repetitive canned cycles**
  During DNC operation, the main program cannot specify multiple repetitive canned cycles (G70 to G78).

**Alarm**

<table>
<thead>
<tr>
<th>Number</th>
<th>Message</th>
<th>Contents</th>
</tr>
</thead>
<tbody>
<tr>
<td>086</td>
<td>DR SIGNAL OFF</td>
<td>When entering data in the memory by using Reader / Puncher interface, the ready signal (DR) of reader / puncher was turned off. Power supply of I/O unit is off or cable is not connected or a P.C.B. is defective.</td>
</tr>
<tr>
<td>123</td>
<td>CAN NOT USE MACRO COMMAND IN DNC</td>
<td>Macro control command is used during DNC operation. Modify the program.</td>
</tr>
<tr>
<td>210</td>
<td>CAN NOT COMMAND M198/M199</td>
<td>Or M198 is executed in the DNC operation. Modify the program.</td>
</tr>
</tbody>
</table>
4.4 PROGRAM RESTART

This function specifies Sequence No. or Block No. of a block to be restarted when a tool is broken down or when it is desired to restart machining operation after a day off, and restarts the machining operation from that block. It can also be used as a high-speed program check function.

There are two restart methods: the P-type method and Q-type method.

<table>
<thead>
<tr>
<th>P TYPE</th>
<th>Operation can be restarted anywhere. This restart method is used when operation is stopped because of a broken tool.</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td><img src="image" alt="Diagram of P-type restart" /></td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Q TYPE</th>
<th>Before operation can be restarted, the machine must be moved to the programmed start point (machining start point)</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td><img src="image" alt="Diagram of Q-type restart" /></td>
</tr>
</tbody>
</table>
Procedure for Program restart by Specifying a sequence number

Procedure 1

1. Retract the tool and replace it with a new one. When necessary, change the offset. (Go to step 2.)

2. When power is turned ON or emergency stop is released, perform all necessary operations at that time, including the reference position return.

3. Move the machine manually to the program starting point (machining start point), and keep the modal data and coordinate system in the same conditions as at the machining start.

4. If necessary, modify the offset amount.

Procedure 2

1. Turn the program restart switch on the machine operator’s panel ON.

2. Press function [PROG] key to display the desired program.

3. Find the program head.

4. Enter the sequence number of the block to be restarted, then press the [P TYPE] or [Q TYPE] soft key.

If the same sequence number appears more than once, the location of the target block must be specified. Specify a frequency and a sequence number.
5 The sequence number is searched for, and the program restart screen appears on the screen.

<table>
<thead>
<tr>
<th>PROGRAM RESTART</th>
<th>O0002 N00100</th>
</tr>
</thead>
<tbody>
<tr>
<td>DESTINATION</td>
<td>M1 2</td>
</tr>
<tr>
<td>X 57.096</td>
<td>1 2</td>
</tr>
<tr>
<td>Z 56.943</td>
<td>1 2</td>
</tr>
<tr>
<td>1 2</td>
<td>1 2</td>
</tr>
<tr>
<td>*</td>
<td>*</td>
</tr>
<tr>
<td>DISTANCE TO GO</td>
<td>***</td>
</tr>
<tr>
<td>1 X 1.459</td>
<td>T</td>
</tr>
<tr>
<td>2 Z 7.320</td>
<td>S</td>
</tr>
<tr>
<td>MEM</td>
<td>S 0 T0000</td>
</tr>
<tr>
<td>RSTR</td>
<td>10 : 10 : 40</td>
</tr>
</tbody>
</table>

DESTINATION shows the position at which machining is to restart. DISTANCE TO GO shows the distance from the current tool position to the position where machining is to restart. A number to the left of each axis name indicates the order of axes (determined by parameter setting) along which the tool moves to the restart position. The coordinates and amount of travel for restarting the program can be displayed for up to four axes. (The program restart screen displays only the data for CNC-controlled axes.)

M: Fourteen most recently specified M codes
T: Two most recently specified T codes
S: Most recently specified S code

Codes are displayed in the order in which they are specified. All codes are cleared by a program restart command or cycle start in the reset state.

6 Turn the program re-start switch OFF. At this time, the figure at the left side of axis name DISTANCE TO GO blinks.

7 Check the screen for the M, S, and T codes to be executed. If they are found, enter the MDI mode, then execute the M, S and T functions. After execution, restore the previous mode. These codes are not displayed on the program restart screen.

8 Check that the distance indicated under DISTANCE TO GO is correct. Also check whether there is the possibility that the tool might hit a workpiece or other objects when it moves to the machining restart position. If such a possibility exists, move the tool manually to a position from which the tool can move to the machining restart position without encountering any obstacles.

9 Press the cycle start button. The tool moves to the machining restart position at the dry run feedrate sequentially along axes in the order specified by parameter settings (No. 7310). Machining is then restarted.
Procedure for Program Restart by Specifying a Block Number

**Procedure 1**

1. Retract the tool and replace it with a new one. When necessary, change the offset. (Go to step 2.)

2. When power is turned ON or emergency stop is released, perform all necessary operations at that time, including the reference position return.

3. Move the machine manually to the program starting point (machining start point), and keep the modal data and coordinate system in the same conditions as at the machining start.

4. If necessary, modify the offset amount.

**Procedure 2**

1. Turn the program restart switch on the machine operator’s panel ON.

2. Press function **PROG** key to display the desired program.

3. Find the program head. Press function **RESET** key.

4. Enter the number of the block to be restarted then press the **P TYPE** or **Q TYPE** soft key. The block number cannot exceed eight digits.

5. The block number is searched for, and the program restart screen appears on the CRT display.

<table>
<thead>
<tr>
<th>DESTINATION</th>
<th>DISTANCE TO GO</th>
<th>MEM</th>
</tr>
</thead>
<tbody>
<tr>
<td>X 57.096</td>
<td>1.459</td>
<td></td>
</tr>
<tr>
<td>Z 56.943</td>
<td>Z 7.320</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>10:10:40</td>
</tr>
</tbody>
</table>

**PROGRAM RESTART** O0002 N01000

DESTINATION shows the position at which machining is to restart. DISTANCE TO GO shows the distance from the current tool position to the position where machining is to restart. A number to the left of each axis name indicates the order of axes (determined by parameter setting) along which the tool moves to the restart position.
The coordinates and amount of travel for restarting the program can be displayed for up to four axes. (The program restart screen displays only the data for CNC–controlled axes.)

M: Fourteen most recently specified M codes
T: Two most recently specified T codes
S: Most recently specified S code
B: Most recently specified B code

Codes are displayed in the order in which they are specified. All codes are cleared by a program restart command or cycle start in the reset state.

6 Turn the program re–start switch OFF. At this time, the figure at the left side of axis name DISTANCE TO GO blinks.

7 Check the screen for the M, S, T, and B codes to be executed. If they are found, enter the MDI mode, then execute the M, S, T, and B functions. After execution, restore the previous mode. These codes are not displayed on the program restart screen.

8 Check that the distance indicated under DISTANCE TO GO is correct. Also check whether there is the possibility that the tool might hit a workpiece or other objects when it moves to the machining restart position. If such a possibility exists, move the tool manually to a position from which the tool can move to the machining restart position without encountering any obstacles.

9 Press the cycle start button. The tool moves to the machining restart position at the dry run feedrate sequentially along axes in the order specified by parameter settings (No. 7310). Machining is then restarted.

**Explanations**

**• Block number**

When the CNC is stopped, the number of executed blocks is displayed on the program screen or program restart screen. The operator can specify the number of the block from which the program is to be restarted, by referencing the number displayed. The displayed number indicates the number of the block that was executed most recently. For example, to restart the program from the block at which execution stopped, specify the displayed number, plus one.

The number of blocks is counted from the start of machining, assuming one NC line of a CNC program to be one block.

**< Example 1 >**

<table>
<thead>
<tr>
<th>CNC Program</th>
<th>Number of blocks</th>
</tr>
</thead>
<tbody>
<tr>
<td>O 0001 ;</td>
<td>1</td>
</tr>
<tr>
<td>G90 G92 X0 Y0 Z0 ;</td>
<td>2</td>
</tr>
<tr>
<td>G01 X100. F100 ;</td>
<td>3</td>
</tr>
<tr>
<td>G03 X01 –50. F50 ;</td>
<td>4</td>
</tr>
<tr>
<td>M30 ;</td>
<td>5</td>
</tr>
</tbody>
</table>
< Example 2 >

<table>
<thead>
<tr>
<th>CNC Program</th>
<th>Number of blocks</th>
</tr>
</thead>
<tbody>
<tr>
<td>O 0001 ;</td>
<td>1</td>
</tr>
<tr>
<td>G90 G92 X0 Y0 Z0 ;</td>
<td>2</td>
</tr>
<tr>
<td>G90 G00 Z100. ;</td>
<td>3</td>
</tr>
<tr>
<td>G81 X100. Y0. Z–120. R–80. F50. ;</td>
<td>4</td>
</tr>
<tr>
<td>#1 = #1 + 1 ;</td>
<td>4</td>
</tr>
<tr>
<td>#2 = #2 + 1 ;</td>
<td>4</td>
</tr>
<tr>
<td>#3 = #3 + 1 ;</td>
<td>4</td>
</tr>
<tr>
<td>G00 X0 Z0 ;</td>
<td>5</td>
</tr>
<tr>
<td>M30 ;</td>
<td>6</td>
</tr>
</tbody>
</table>

Macro statements are not counted as blocks.

- **Storing / clearing the block number**
  
  The block number is held in memory while no power is supplied. The number can be cleared by cycle start in the reset state.

- **Block number when a program is halted or stopped**
  
  The program screen usually displays the number of the block currently being executed. When the execution of a block is completed, the CNC is reset, or the program is executed in single–block stop mode, the program screen displays the number of the program that was executed most recently.

  - When a CNC program is halted or stopped by feed hold, reset, or single–block stop, the following block numbers are displayed:
    - Feed hold : Block being executed
    - Reset : Block executed most recently
    - Single–block stop : Block executed most recently

  For example, when the CNC is reset during the execution of block 10, the displayed block number changes from 10 to 9.

- **MDI intervention**
  
  When MDI intervention is performed while the program is stopped by single–block stop, the CNC commands used for intervention are not counted as a block.

- **Block number exceeding eight digits**
  
  When the block number displayed on the program screen exceeds eight digits, the block number is reset to 0 and counting continues.

### Limitation

- **P–type restart**
  
  Under any of the following conditions, P–type restart cannot be performed:
  
  - When automatic operation has not been performed since the power was turned on
  - When automatic operation has not been performed since an emergency stop was released
  - When automatic operation has not been performed since the coordinate system was changed or shifted (change in an external offset from the workpiece reference point)

- **Restart block**
  
  The block to be restarted need not be the block which was interrupted; operation can restart with any block. When P–type restart is performed, the restart block must use the same coordinate system as when operation was interrupted.
• **Single block**

When single block operation is ON during movement to the restart position, operation stops every time the tool completes movement along an axis. When operation is stopped in the single block mode, MDI intervention cannot be performed.

• **Manual intervention**

During movement to the restart position, manual intervention can be used to perform a return operation for an axis if it has not yet been performed for the axis. A return operation cannot be done further on axes for which a return has already been completed.

• **Reset**

Never reset during the time from the start of a search at restart until machining is restarted. Otherwise, restart must be performed again from the first step.

• **Manual absolute**

Regardless of whether machining has started or not, manual operation must be performed when the manual absolute mode is on.

• **Reference position return**

If no absolute–position detector (absolute pulse coder) is provided, be sure to perform reference position return after turning on the power and before performing restart.

### Alarm

<table>
<thead>
<tr>
<th>Alarm No.</th>
<th>Contents</th>
</tr>
</thead>
<tbody>
<tr>
<td>071</td>
<td>The specified block number for restarting the program is not found.</td>
</tr>
<tr>
<td>094</td>
<td>After interruption, a coordinate system was set, then P–type restart was specified.</td>
</tr>
<tr>
<td>095</td>
<td>After interruption, the coordinate system shift was changed, then P–type restart was specified.</td>
</tr>
<tr>
<td>096</td>
<td>After interruption, the coordinate system was changed, then P–type restart was specified.</td>
</tr>
<tr>
<td>097</td>
<td>When automatic operation has not been performed since the power was turned on, emergency stop was released, or P/S alarm (Nos. 094 to 097) was reset, P–type restart was specified.</td>
</tr>
<tr>
<td>098</td>
<td>After the power was turned on, restart operation was performed without reference position return, but a G28 command was found in the program.</td>
</tr>
<tr>
<td>099</td>
<td>A move command was specified from the MDI panel during a restart operation.</td>
</tr>
<tr>
<td>5020</td>
<td>An erroneous parameter was specified for restarting a program.</td>
</tr>
</tbody>
</table>
WARNING
As a rule, the tool cannot be returned to a correct position under the following conditions.
Special care must be taken in the following cases since none of them cause an alarm:
- Manual operation is performed when the manual absolute mode is OFF.
- Manual operation is performed when the machine is locked.
- When the mirror image is used.
- When manual operation is performed in the course of axis movement for returning operation.
- When the program restart is commanded for a block between the block for skip cutting and subsequent absolute command block.
- When program restart specified for an intermediate block for a multiple repetitive canned cycle.
The schedule function allows the operator to select files (programs) registered on a floppy–disk in an external input/output device (Handy File, Floppy Cassette, or FA Card) and specify the execution order and number of repetitions (scheduling) for performing automatic operation. It is also possible to select only one file from the files in the external input/output device and execute it during automatic operation.

### FILE DIRECTORY

<table>
<thead>
<tr>
<th>FILE NO</th>
<th>FILE NAME</th>
</tr>
</thead>
<tbody>
<tr>
<td>0001</td>
<td>O0010</td>
</tr>
<tr>
<td>0002</td>
<td>O0020</td>
</tr>
<tr>
<td>0003</td>
<td>O0030</td>
</tr>
<tr>
<td>0004</td>
<td>O0040</td>
</tr>
</tbody>
</table>

List of files in an external input/output device

Set file number and number of repetitions.

### ORDER FILE NO REPETITION

<table>
<thead>
<tr>
<th>ORDER FILE NO</th>
<th>FILE NO</th>
<th>REPETITION</th>
</tr>
</thead>
<tbody>
<tr>
<td>01</td>
<td>0002</td>
<td>2</td>
</tr>
<tr>
<td>02</td>
<td>0003</td>
<td>1</td>
</tr>
<tr>
<td>03</td>
<td>0004</td>
<td>3</td>
</tr>
<tr>
<td>04</td>
<td>0001</td>
<td>2</td>
</tr>
</tbody>
</table>

Scheduling screen

Executing automatic operation

---

**Procedure for Scheduling Function**

**Procedure for executing one file**

1. Press the **MEMORY** switch on the machine operator’s panel, then press the **PROG** function key on the MDI panel.

2. Press the rightmost soft key (continuous menu key), then press the **[FL. SDL]** soft key. A list of files registered in the Floppy Cassette is displayed on screen No. 1. To display more files that are not displayed on this screen, press the page key on the MDI panel. Files registered in the Floppy Cassette can also be displayed successively.
FILE DIRECTORY

CURRENT SELECTED: SCHEDULE

<table>
<thead>
<tr>
<th>NO.</th>
<th>FILE NAME</th>
<th>(METER) VOL</th>
</tr>
</thead>
<tbody>
<tr>
<td>0000</td>
<td>SCHEDULE</td>
<td></td>
</tr>
<tr>
<td>0001</td>
<td>PARAMETER</td>
<td>58.5</td>
</tr>
<tr>
<td>0002</td>
<td>ALL PROGRAM</td>
<td>11.0</td>
</tr>
<tr>
<td>0003</td>
<td>O0001</td>
<td>1.9</td>
</tr>
<tr>
<td>0004</td>
<td>O0002</td>
<td>1.9</td>
</tr>
<tr>
<td>0005</td>
<td>O0010</td>
<td>1.9</td>
</tr>
<tr>
<td>0006</td>
<td>O0020</td>
<td>1.9</td>
</tr>
<tr>
<td>0007</td>
<td>O0040</td>
<td>1.9</td>
</tr>
<tr>
<td>0008</td>
<td>O0050</td>
<td>1.9</td>
</tr>
</tbody>
</table>

MEM  ••••  ••••  19:14:47

Press the [(OPRT)] and [SELECT] soft keys to display “SELECT FILE NO.” (on screen No. 2). Enter a file number, then press the [F SET] and [EXEC] soft keys. The file for the entered file number is selected, and the file name is indicated after “CURRENT SELECTED:”.

FILE DIRECTORY

CURRENT SELECTED: O0040

<table>
<thead>
<tr>
<th>NO.</th>
<th>FILE NAME</th>
<th>(METER) VOL</th>
</tr>
</thead>
<tbody>
<tr>
<td>0000</td>
<td>SCHEDULE</td>
<td></td>
</tr>
<tr>
<td>0001</td>
<td>PARAMETER</td>
<td>58.5</td>
</tr>
<tr>
<td>0002</td>
<td>ALL PROGRAM</td>
<td>11.0</td>
</tr>
<tr>
<td>0003</td>
<td>O0001</td>
<td>1.9</td>
</tr>
<tr>
<td>0004</td>
<td>O0002</td>
<td>1.9</td>
</tr>
<tr>
<td>0005</td>
<td>O0010</td>
<td>1.9</td>
</tr>
<tr>
<td>0006</td>
<td>O0020</td>
<td>1.9</td>
</tr>
<tr>
<td>0007</td>
<td>O0040</td>
<td>1.9</td>
</tr>
<tr>
<td>0008</td>
<td>O0050</td>
<td>1.9</td>
</tr>
</tbody>
</table>

SELECT FILE NO.=7

Press the REMOTE switch on the machine operator’s panel to enter the RMT mode, then press the cycle start switch. The selected file is executed. For details on the REMOTE switch, refer to the manual supplied by the machine tool builder. The selected file number is indicated at the upper right corner of the screen as an F number (instead of an O number).
• Procedure for executing the scheduling function

1. Display the list of files registered in the Floppy Cassette. The display procedure is the same as in steps 1 and 2 for executing one file.

2. On screen No. 2, press the [OPRT] and SELECT soft keys to display “SELECT FILE NO.”

3. Enter file number 0, and press the [F SET] and [EXEC] soft keys. “SCHEDULE” is indicated after “CURRENT SELECTED:”.

4. Press the left most soft key (return menu key) and the [SCHEDUL] soft key. Screen No. 4 appears.

Move the cursor and enter the file numbers and number of repetitions in the order in which to execute the files. At this time, the current number of repetitions “CUR.REP” is 0.

5. Press the REMOTE switch on the machine operator’s panel to enter the RMT “mode, then press the start switch. The files are executed in the specified order. When a file is being executed, the cursor is positioned at the number of that file.

The current number of repetitions CUR.REP is increased when M02 or M30 is executed in the program being run.
4. AUTOMATIC OPERATION

<table>
<thead>
<tr>
<th>ORDER</th>
<th>FILE NO.</th>
<th>REQ.REP</th>
<th>CUR.REP</th>
</tr>
</thead>
<tbody>
<tr>
<td>01</td>
<td>0007</td>
<td>5</td>
<td>5</td>
</tr>
<tr>
<td>02</td>
<td>0003</td>
<td>23</td>
<td>23</td>
</tr>
<tr>
<td>03</td>
<td>0004</td>
<td>9999</td>
<td>156</td>
</tr>
<tr>
<td>04</td>
<td>0005</td>
<td>LOOP</td>
<td>0</td>
</tr>
<tr>
<td>05</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>06</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>07</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>08</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>09</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>10</td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

RMT 10:10:40

**FILE DIRECTORY**

**Screen No.5**

Explanations

- **Specifying no file number**
  
  If no file number is specified on screen No. 4 (the file number field is left blank), program execution is stopped at that point. To leave the file number field blank, press numeric key 0 then INPUT.

- **Endless repetition**
  
  If a negative value is set as the number of repetitions, <LOOP> is displayed, and the file is repeated indefinitely.

- **Clear**
  
  When the [(OPRT)], [CLEAR], and [EXEC] soft keys are pressed on screen No. 4, all data is cleared. However, these keys do not function while a file is being executed.

- **Return to the program screen**
  
  When the [PRGRM] soft key is pressed on screen No. 1, 2, 3, 4, or 5, the program screen is displayed.

Limitation

- **Number of repetitions**
  
  Up to 9999 can be specified as the number of repetitions. If 0 is set for a file, the file becomes invalid and is not executed.

- **Number of files registered**
  
  By pressing the page key on screen No. 4, up to 20 files can be registered.

- **M code**
  
  When M codes other than M02 and M30 are executed in a program, the current number of repetitions is not increased.

- **Displaying the floppy disk directory during file execution**
  
  During the execution of file, the floppy directory display of background editing cannot be referenced.

- **Restarting automatic operation**
  
  To resume automatic operation after it is suspended for scheduled operation, press the reset button.
### Alarm

<table>
<thead>
<tr>
<th>Alarm No.</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>086</td>
<td>An attempt was made to execute a file that was not registered in the floppy disk.</td>
</tr>
<tr>
<td>210</td>
<td>M198 and M99 were executed during scheduled operation, or M198 was executed during DNC operation.</td>
</tr>
</tbody>
</table>
4.6 SUBPROGRAM CALL FUNCTION (M198)

The subprogram call function is provided to call and execute subprogram files stored in an external input/output device (Handy File, FLOPPY CASSETTE, FA Card) during memory operation. When the following block in a program in CNC memory is executed, a subprogram file in the external input/output device is called:

To use this function, the Floppy Cassette directory display option must be installed.

Format

1. FS15 tape format

M198 PLLLL LAAAA ;

- Number of repetitions
- File number for a file in the I/O device
- I/O devices call instruction

2. Other than FS15 tape format

M198 PLLLL AAAAA ;

- File number for a file in the I/O device
- Number of repetitions
- I/O devices call instruction

Explanation

The subprogram call function is enabled when parameter No. 0102 for the input/output device is set to 3. Either format 1 or 2 can be used. A different M code can be used for a subprogram call depending on the setting of parameter No. 6030. In this case, M198 is executed as a normal M code. The file number is specified at address P. If the SBP bit (bit 2) of parameter No. 3404 is set to 1, a program number can be specified. When a file number is specified at address P, Fxxxx is indicated instead of Oxxxx.

Programs in memory execution mode

Program in the external input/output device

N1
N2
N3 M198 P0003 0123 ;
N4
N5

0123 .... File number

: First call/return
: Second call/return
: Third call/return

Fig. 4.6 Program flow when M198 is specified
Restrictions

NOTE

1. When M198 in the program of the file saved in a floppy cassette is executed, a P/S alarm (No.210) is given. When a program in the memory of CNC is called and M198 is executed during execution of a program of the file saved in a floppy cassette, M198 is changed to an ordinary M-code.

2. When MDI is intervened and M198 is executed after M198 is commanded in the memory mode, M198 is changed to an ordinary M-code. When the reset operation is done in the MDI mode after M198 is commanded in the MEMORY mode, it does not influence on the memory operation and the operation is continued by restarting it in the MEMORY mode.
The movement by manual handle operation can be done by overlapping it with the movement by automatic operation in the automatic operation mode.

![Diagram showing manual handle interruption](image)

**Fig. 4.7 Manual handle interruption**

- Handle interruption axis selection signals
  For the handle interruption axis selection signals, refer to the manual supplied by the machine tool builder.

During automatic operation, handle interruption is enabled for an axis if the handle interruption axis selection signal for that axis is on. Handle interruption is performed by turning the handle of the manual pulse generator.

**WARNING**

The travel distance by handle interruption is determined according to the amount by which the manual pulse generator is turned and the handle feed magnification (x1, x10, xM, xN).

Since this movement is not accelerated or decelerated, it is very dangerous to use a large magnification value for handle interruption.

The move amount per scale at x1 magnification is 0.001 mm (metric output) or 0.0001 inch (inch output).

**NOTE**

Handle interruption is disabled when the machine is locked during automatic operation.
Explanations

- **Relation with other functions**

The following table indicates the relation between other functions and the movement by handle interrupt.

<table>
<thead>
<tr>
<th>Display</th>
<th>Relation</th>
</tr>
</thead>
<tbody>
<tr>
<td>Machine lock</td>
<td>Machine lock is effective. The tool does not move even when this signal turns on.</td>
</tr>
<tr>
<td>Interlock</td>
<td>Interlock is effective. The tool does not move even when this signal turns on.</td>
</tr>
<tr>
<td>Mirror image</td>
<td>Mirror image is not effective. Interrupt functions on the plus direction by plus direction command, even if this signal turns on.</td>
</tr>
</tbody>
</table>

- **Position display**

The following table shows the relation between various position display data and the movement by handle interrupt.

<table>
<thead>
<tr>
<th>Display</th>
<th>Relation</th>
</tr>
</thead>
<tbody>
<tr>
<td>Absolute coordinate value</td>
<td>Handle interruption does not change absolute coordinates.</td>
</tr>
<tr>
<td>Relative coordinate value</td>
<td>Handle interruption does not change relative coordinates.</td>
</tr>
<tr>
<td>Machine coordinate value</td>
<td>Machine coordinates are changed by the travel distance specified by handle interruption.</td>
</tr>
</tbody>
</table>

- **Travel distance display**

Press the function key [POS], then press the chapter selection soft key [HNDL].

The move amount by the handle interrupt is displayed. The following 4 kinds of data are displayed concurrently.

```
HANDLE INTERRUPTION
(INPUT UNIT) (OUTPUT UNIT)
X 69.594 X 69.594
Z –61.439 Z –61.439

(RELATIVE) (DISTANCE TO GO)
U 0.000 X 0.000
W0.000 Z 0.000

PART COUNT 287
RUN TIME 1H 12M CYCLE TIME 0H 0M 0S
MDI 10 : 29 : 51
ABS REL ALL HNDL OPRT
```

(a) **INPUT UNIT** :
Handle interrupt move amount in input unit system
Indicates the travel distance specified by handle interruption according to the least input increment.

(b) **OUTPUT UNIT** :
Handle interrupt move amount in output unit system
Indicates the travel distance specified by handle interruption according to the least command increment.
(c) RELATIVE:
  Position in relative coordinate system
  These values have no effect on the travel distance specified by handle interruption.

(d) DISTANCE TO GO:
  The remaining travel distance in the current block has no effect on the travel distance specified by handle interruption.

The handle interrupt move amount is cleared when the manual reference position return ends every axis.

- **Independent acceleration/deceleration**

  By setting bit 2 (IHD) of parameter No. 7100 and bit 5 (HIE) of parameter No. 7103 to 1, acceleration/deceleration for manual handle interruption can always be of the acceleration/deceleration type for manual feed, without being affected by automatic operation or some other mode. More specifically, the acceleration/deceleration type set with bit 4 (JGLx) of parameter No. 1610 and bit 0 (CTLx) of parameter No. 1610 is applied. Set a time constant with parameter No. 1624, and an FL feedrate with parameter No. 1625.
4.8 MIRROR IMAGE

During automatic operation, the mirror image function can be used for movement along an axis. To use this function, set the mirror image switch to ON on the machine operator’s panel, or set the mirror image setting to ON from the MDI.

![Diagram of X-axis mirror image and tool paths](image)

**Fig. 4.8 Mirror image**

**Procedure**

The following procedure is given as an example. For actual operation, refer to the manual supplied by the machine tool builder.

1. Press the single block switch to stop automatic operation. When the mirror image function is used from the beginning of operation, this step is omitted.

2. Press the mirror image switch for the target axis on the machine operator’s panel. Alternatively, turn on the mirror image setting by following the steps below:

2–1 Set the MDI mode.

2–2 Press the OFFSET function key.

2–3 Press the [SETTING] soft key for chapter selection to display the setting screen.

![Setting screen](image)

2–4 Move the cursor to the mirror image setting position, then set the target axis to 1.
3 Enter an automatic operation mode (memory mode or MDI mode), then press the cycle start button to start automatic operation.

**Explanations**

- The mirror image function can also be turned on and off by setting bit 0 (MIRx) of parameter (No.0012) to 1 or 0.
- For the mirror image switches, refer to the manual supplied by the machine tool builder.

**Restrictions**

The direction of movement during manual operation, the direction of movement from an intermediate point to the reference position during automatic reference position return (G28).
In cases such as when tool movement along an axis is stopped by feed hold during automatic operation so that manual intervention can be used to replace the tool: When automatic operation is restarted, this function returns the tool to the position where manual intervention was started. To use the conventional program restart function and tool withdrawal and return function, the switches on the operator’s panel must be used in conjunction with the MDI keys. This function does not require such operations.

Explanations

- **Manual absolute on/off**: In manual absolute off mode, the tool does not return to the stop position, but instead operates according to the manual absolute on/off function.

- **Override**: For the return operation, the dry run feedrate is used, and the jog feedrate override function is enabled.

- **Return operation**: Return operation is performed according to positioning based on nonlinear interpolation.

- **Single block**: If the single block stop switch is on during return operation, the tool stops at the stop position and restarts movement when the cycle start switch is pressed.

- **Cancellation**: If a reset occurs or an alarm is issued during manual intervention or the return operation, this function is cancelled.

- **MDI mode**: This function can be used in the MDI mode as well.

Restrictions

- **Enabling and disabling manual intervention and return**: This function is enabled only when the automatic operation hold LED is on. When there is no travel distance remaining, this function has no effect even if a feed hold stop is performed with the automatic operation hold signal *SP (bit 5 of G008).

- **Offset**: When the tool is replaced using manual intervention for a reason such as damage, the tool movement cannot be restarted by a changed offset in the middle of the interrupted block.

- **Machine lock, mirror image, and scaling**: When performing manual intervention, never use the machine lock, mirror image, or scaling functions.
Example

1. The N1 block cuts a workpiece

2. The tool is stopped by pressing the feed hold switch in the middle of the N1 block (point A).

3. After retracting the tool manually to point B, tool movement is restarted.

4. After automatic return to point A at the dry run feedrate, the remaining move command of the N1 block is executed.

**WARNING**
When performing manual intervention, pay particular attention of machining and the shape of the workpiece so that the machine and tool are not damaged.
4.10 DNC OPERATION WITH MEMORY CARD

4.10.1 Specification

“DNC operation with Memory Card” is a function that it is possible to perform machining with executing the program in the memory card, which is assembled to the memory card interface, where is the left side of the screen.

There are two methods to use this function as follows.

(a) By starting automatic operation (cycle start) during the DNC operation mode (RMT), it is possible to perform machining (DNC operation) while a program is being read from a memory card, as by using the external input/output unit such as a floppy cassette and so on. (Fig. 4.10.1 (a))

(b) It is possible to read sub–programs written in the memory card and execute them by the command Subprogram call (M198). (Fig. 4.10.1 (b))
4. AUTOMATIC OPERATION

**NOTE**
To use this function, it is necessary to set the parameter of No.20 to 4 by setting screen.
No.20 [I/O CHANNEL: Setting to select an input/output unit]
Setting value is 4.: It means using the memory card interface.

4.10.2 Operations

4.10.2.1 DNC Operation

**Procedure**

Please set the parameter of No.0020 to 4 in the setting screen in advance.

1. Change to RMT mode.
3. Push [>] soft key (continuance menu).
4. When [DNC–CD] soft key is pushed, the following screen is displayed.
5. The screen can be scrolled by page key. An arbitrary file number is input, and [F SRH] soft key is pushed. Then the arbitrary file name is displayed at the top of DNC operation (memory card) screen.
6. When the file number that is executed is input and the [DNC–ST] soft key is pushed, the file name that is selected is set to DNC FILE.
7. When the cycle start is done, the program that is selected is executed.

![DNC Operation Screen](image)

**DNC OPERATION (M CARD)  00001  N00001**

<table>
<thead>
<tr>
<th>NO.</th>
<th>FILE NAME</th>
<th>SIZE</th>
<th>DATE</th>
</tr>
</thead>
<tbody>
<tr>
<td>0001</td>
<td>MAIN. PRG</td>
<td>000013 99 02 03</td>
<td></td>
</tr>
<tr>
<td>0002</td>
<td>DNC1. PRG</td>
<td>50 99-03-23</td>
<td></td>
</tr>
<tr>
<td>0003</td>
<td>DNC2. PRG</td>
<td>30 99 03 24</td>
<td></td>
</tr>
<tr>
<td>0004</td>
<td>DNC3. PRG</td>
<td>32 99-03-24</td>
<td></td>
</tr>
<tr>
<td>0005</td>
<td>DNC4. PRG</td>
<td>50 99 03 24</td>
<td></td>
</tr>
<tr>
<td>0006</td>
<td>CNCPARAM. DAT</td>
<td>2304 99-03-24</td>
<td></td>
</tr>
<tr>
<td>0007</td>
<td>TOOLGFST. DAT</td>
<td>830 99 03 24</td>
<td></td>
</tr>
<tr>
<td>0008</td>
<td>01234</td>
<td>170 99-03-24</td>
<td></td>
</tr>
<tr>
<td>0009</td>
<td>07777</td>
<td>520 99 03 24</td>
<td></td>
</tr>
</tbody>
</table>

**DNC FILE NAME : MAIN. PRG**

![DNC File Selection Screen](image)
### 4.10.2.2 Subprogram Call (M198)

When the following block in a program in CNC memory is executed, a subprogram file in memory card is called.

#### Format

<table>
<thead>
<tr>
<th>1. Normal format</th>
</tr>
</thead>
<tbody>
<tr>
<td>M198 Pxxxx ΔAAA ΔAAA ΔAAA ΔAAA ;</td>
</tr>
<tr>
<td>File number for a file in the memory card</td>
</tr>
<tr>
<td>Number of repetition</td>
</tr>
<tr>
<td>Memory card call instruction</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>2. FS15 tape format</th>
</tr>
</thead>
<tbody>
<tr>
<td>M198 Pxxxx LAAAA ;</td>
</tr>
<tr>
<td>File number of repetition</td>
</tr>
<tr>
<td>File number for a file in the memory card</td>
</tr>
<tr>
<td>Memory card call instruction</td>
</tr>
</tbody>
</table>

#### Explanation

Both format 1 and 2 can be used. A different M code can be used for a subprogram call depending on the setting of parameter No. 6030. In this case, M198 is executed as a normal M code. The file number is specified at address P. If the SBP (bit 2) of parameter No. 3404 is set to 1, a program number can be specified. When a file number is specified at address P, Fxxxx is indicated instead of Oxxxx.

#### NOTE

Please set the parameter of No. 0020 to 4 in the setting screen in advance.
4.10.3 Limitation and Notes

(1) The memory card can not be accessed, such as display of memory card list and so on, during the DNC operation with memory card.

(2) The selection of DNC operation file that is set at DNC OPERATION screen is cleared by the power supply turn off and on. After the power supply is turned on again, it is necessary to select the DNC operation file again.

(3) Please do not pull out and insert memory card during the DNC operation with memory card.

(4) It is not possible to call a program in the memory card from the DNC operation program.

(5) When this function is used, secure the memory card by following the procedure described later, to prevent the card from becoming disconnected or poorly connected due to vibration during operation or for some other reason.

4.10.4 Parameter

<table>
<thead>
<tr>
<th>#7</th>
<th>#6</th>
<th>#5</th>
<th>#4</th>
<th>#3</th>
<th>#2</th>
<th>#1</th>
<th>#0</th>
</tr>
</thead>
<tbody>
<tr>
<td>DNM</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

[Data type] Bit

#7 (DNM) The DNC operation with memory card function is
- 0 : disable.
- 1 : enable.

4.10.5 Procedure for Fixing the Memory Card

Follow the procedure below to fix the memory card.

1. Inserting the memory card into the fixing bracket

   Insert the memory card into the fixing bracket in the direction indicated by the arrow.

   Fix the memory card at this point.

   Fix the memory card to the fixing bracket.
2. Inserting the card into the PCMCIA port.

Loosen the screw of the fixing bracket and insert the memory card into the PCMCIA port with the claw of the fixing bracket raised.

Align the claw with the groove.

Align the claw of the fixing bracket with the groove of the PCMCIA port and then push the bracket in the direction indicated by the arrow.

Push the bracket to the right.

Tighten the screw of the bracket to fix the memory card.

Fix the card by tightening the screw.
The following functions are used to check before actual machining whether the machine operates as specified by the created program.

1. Machine Lock and Auxiliary Function Lock
2. Feedrate Override
3. Rapid Traverse Override
4. Dry Run
5. Single Block
5.1 MACHINE LOCK AND AUXILIARY FUNCTION LOCK

To display the change in the position without moving the tool, use machine lock. There are two types of machine lock, all-axis machine lock, which stops the movement along all axes, and specified-axis machine lock, which stops the movement along specified axes only. In addition, auxiliary function lock, which disables M, S, T, and B (2nd auxiliary function) commands, is available for checking a program together with machine lock.

![Fig. 5.1 Machine lock](image)

**Procedure for Machine Lock and Auxiliary Function Lock**

- **Machine Lock**
  
  Press the machine lock switch on the operator’s panel. The tool does not move but the position along each axis changes on the display as if the tool were moving. Some machines have a machine lock switch for each axis. On such machines, press the machine lock switches for the axes along which the tool is to be stopped. Refer to the appropriate manual provided by the machine tool builder for machine lock.

  **WARNING**

  The positional relationship between the workpiece coordinates and machine coordinates may differ before and after automatic operation using machine lock. In such a case, specify the workpiece coordinate system by using a coordinate setting command or by performing manual reference position return.

- **Auxiliary Function Lock**
  
  Press the auxiliary function lock switch on the operator’s panel. M, S, and T codes are disabled and not executed. Refer to the appropriate manual provided by the machine tool builder for auxiliary function lock.
### Restrictions

**M, S, T command by only machine lock**	M, S, and T commands are executed in the machine lock state.
**Reference position return under Machine Lock**	When a G27, G28, or G30 command is issued in the machine lock state, the command is accepted but the tool does not move to the reference position and the reference position return LED does not go on.
**M codes not locked by auxiliary function lock**	M00, M01, M02, M30, M98, M99, and M198 (sub-program call) commands are executed even in the auxiliary function lock state. Subprogram calling M codes (parameter Nos. 6071 to 6079) and custom macro calling M codes (parameter Nos. 6080 to 6089) can also be executed.
5.2 FEEDRATE OVERRIDE

A programmed feedrate can be reduced or increased by a percentage (%) selected by the override dial. This feature is used to check a program. For example, when a feedrate of 100 mm/min is specified in the program, setting the override dial to 50% moves the tool at 50 mm/min.

![Diagram of Feedrate Override](image)

**Procedure for Feedrate Override**

Set the feedrate override dial to the desired percentage (%) on the machine operator’s panel, before or during automatic operation. On some machines, the same dial is used for the feedrate override dial and manual continuous feedrate dial. Refer to the appropriate manual provided by the machine tool builder for feedrate override.

**Restrictions**

- **Override Range**
  
The override that can be specified ranges from 0 to 254%. For individual machines, the range depends on the specifications of the machine tool builder.

- **Override during thread**
  
  During threading, the override is ignored and the feedrate remains as specified by program.
5.3 RAPID TRAVERSE OVERRIDE

An override of four steps (F0, 25%, 50%, and 100%) can be applied to the rapid traverse rate. F0 is set by a parameter (No. 1421).

**Fig. 5.3 Rapid traverse override**

**Procedure for Rapid Traverse Override**

Select one of the four feedrates with the rapid traverse override switch during rapid traverse. Refer to the appropriate manual provided by the machine tool builder for rapid traverse override.

**Explanation**

The following types of rapid traverse are available. Rapid traverse override can be applied for each of them.

1) Rapid traverse by G00.
2) Rapid traverse during a canned cycle.
3) Rapid traverse in G27, G28 and G30.
4) Manual rapid traverse.
5) Rapid traverse of manual reference position return.
5.4 DRY RUN

The tool is moved at the feedrate specified by a parameter regardless of the feedrate specified in the program. This function is used for checking the movement of the tool under the state that the workpiece is removed from the table.

Procedure for Dry Run

Press the dry run switch on the machine operator’s panel during automatic operation. The tool moves at the feedrate specified in a parameter. The rapid traverse switch can also be used for changing the feedrate. Refer to the appropriate manual provided by the machine tool builder for dry run.

Explanation

- **Dry run feedrate**

The dry run feedrate changes as shown in the table below according to the rapid traverse switch and parameters.

<table>
<thead>
<tr>
<th>Rapid traverse button</th>
<th>Program command</th>
<th>Feed</th>
</tr>
</thead>
<tbody>
<tr>
<td>ON</td>
<td>Rapid traverse rate</td>
<td>Dry run feedrate $\times$ J V max $\times$ 2)</td>
</tr>
<tr>
<td>OFF</td>
<td>Dry run speed $\times$ J V, or rapid traverse rate $\times$ J V</td>
<td></td>
</tr>
</tbody>
</table>

Max. cutting feedrate . . . . . . . . . . . . . Setting by parameter No.1422
Rapid traverse rate . . . . . . . . . . . . . Setting by parameter No.1420
Dry run feedrate . . . . . . . . . . . . . Setting by parameter No.1410

J V: Jog feedrate override

*1) Dry run feedrate $\times$ J V when parameter RDR (bit 6 of No. 1401) is 1. Rapid traverse rate when parameter RDR is 0.

*2) Clamped to the maximum cutting feedrate

J V max: Maximum value of jog feedrate override
5.5 SINGLE BLOCK

Pressing the single block switch starts the single block mode. When the cycle start button is pressed in the single block mode, the tool stops after a single block in the program is executed. Check the program in the single block mode by executing the program block by block.

Procedure for Single Block

1. Press the single block switch on the machine operator’s panel. The execution of the program is stopped after the current block is executed.

2. Press the cycle start button to execute the next block. The tool stops after the block is executed.

Refer to the appropriate manual provided by the machine tool builder for single block execution.
Explanation

- **Reference position return and single block**

If G28 to G30 are issued, the single block function is effective at the intermediate point.

- **Single block during a canned cycle**

In a canned cycle, the single block stop points are as follows.

<table>
<thead>
<tr>
<th>Tool path</th>
<th>Explanation</th>
</tr>
</thead>
<tbody>
<tr>
<td><img src="image1" alt="Straight cutting cycle" /></td>
<td>Tool path 1 to 4 is assumed as one cycle. After 4 is finished, a stop is made.</td>
</tr>
<tr>
<td><img src="image2" alt="Taper cutting cycle" /></td>
<td></td>
</tr>
<tr>
<td><img src="image3" alt="Straight threading cycle" /></td>
<td>Tool path 1 to 4 is assumed as one cycle. After 4 is finished, a stop is made.</td>
</tr>
<tr>
<td><img src="image4" alt="Taper threading cycle" /></td>
<td></td>
</tr>
<tr>
<td><img src="image5" alt="Straight end surface cutting cycle" /></td>
<td>Tool path 1 to 4 is assumed as one cycle. After 4 is finished, a stop is made.</td>
</tr>
<tr>
<td><img src="image6" alt="Taper end surface cutting cycle" /></td>
<td></td>
</tr>
<tr>
<td><img src="image7" alt="Finishing cycle" /></td>
<td>Tool path 1 to 7 is assumed as one cycle. After 7 is finished, a stop is made.</td>
</tr>
<tr>
<td><img src="image8" alt="Outer surface rough machining cycle" /></td>
<td>Each tool path 1 to 4, 5 to 8, 9 to 12, 13 to 16 and 17 to 20 is assumed as one cycle. After each cycle is finished, a stop is made.</td>
</tr>
<tr>
<td><img src="image9" alt="End surface rough machining cycle" /></td>
<td></td>
</tr>
</tbody>
</table>

This figure shows the case for G71. G72 is the same.

**Fig. 5.5 Single block during canned cycle (1/2)**
5. TEST OPERATION

**G73**
(Closed-loop cutting cycle)

**G74**
(End surface cutting-off cycle)

**G75**
(Outer/inner surface cutting-off cycle)

**G76**
(Multiple repetitive threading cycle)

---

**Subprogram call and single block**

Single block stop is not performed in a block containing M98P_;, M99; or G65.
However, single block stop is even performed in a block with M98P_ or M99 command, if the block contains an address other than O, N or P.
SAFETY FUNCTIONS

To immediately stop the machine for safety, press the Emergency stop button. To prevent the tool from exceeding the stroke ends, Overtravel check and Stroke check are available. This chapter describes emergency stop, overtravel check, and stroke check.
6.1 EMERGENCY STOP

If you press Emergency Stop button on the machine operator’s panel, the machine movement stops in a moment.

This button is locked when it is pressed. Although it varies with the machine tool builder, the button can usually be unlocked by twisting it.

Explanation

EMERGENCY STOP interrupts the current to the motor.
Causes of trouble must be removed before the button is released.
When the tool tries to move beyond the stroke end set by the machine tool limit switch, the tool decelerates and stops because of working the limit switch and an OVER TRAVEL is displayed.

**Explanation**

- **Overtravel during automatic operation**
  
  When the tool touches a limit switch along an axis during automatic operation, the tool is decelerated and stopped along all axes and an overtravel alarm is displayed.

- **Overtravel during manual operation**
  
  In manual operation, the tool is decelerated and stopped only along the axis for which the tool has touched a limit switch. The tool still moves along the other axes.

- **Releasing overtravel**
  
  Press the reset button to reset the alarm after moving the tool to the safety direction by manual operation. For details on operation, refer to the operator’s manual of the machine tool builder.

<table>
<thead>
<tr>
<th>No.</th>
<th>Message</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>506</td>
<td>Overtravel: +n</td>
<td>The tool has exceeded the hardware-specified overtravel limit along the positive nth axis (n: 1 to 4).</td>
</tr>
<tr>
<td>507</td>
<td>Overtravel: −n</td>
<td>The tool has exceeded the hardware-specified overtravel limit along the negative nth axis (n: 1 to 4).</td>
</tr>
</tbody>
</table>
6.3 STORED STROKE CHECK

There are areas which the tool cannot enter can be specified with stored stroke check 1, stored stroke check 2, and stored stroke check 3.

When the tool exceeds a stored stroke limit, an alarm is displayed and the tool is decelerated and stopped.

When the tool enters a forbidden area and an alarm is generated, the tool can be moved in the reverse direction from which the tool came.

Explanation

• Stored stroke check 1

Parameters (Nos. 1320, 1321 or Nos. 1326, 1327) set boundary. Outside the area of the set limits is a forbidden area. The machine tool builder usually sets this area as the maximum stroke.

• Stored stroke check 2 (G22, G23)

Parameters (Nos. 1322, 1323) or commands set these boundaries. Inside or outside the area of the limit can be set as the forbidden area. Parameter OUT (No. 1300#0) selects either inside or outside as the forbidden area.

In case of program command a G22 command forbids the tool to enter the forbidden area, and a G23 command permits the tool to enter the forbidden area. Each of G22; and G23; should be commanded independently of another commands in a block.

The command below creates or changes the forbidden area:
G 22X_Z_I_K;

A(X,Z)

B(I,K)

\[ X > I, Z > K \]
\[ X - I > \zeta \]
\[ Z - K > \zeta \]

\( \zeta \) is the distance the tool travels in 8 ms. It is 2000 in least command increments when the feedrate is 15 m/min.

**Fig. 6.3 (b) Creating or changing the forbidden area using a program**

When setting the area by parameters, points A and B in the figure below must be set.

B(X2,Z2)

\[ X1 > X_2, Z1 > Z_2 \]
\[ X1 - X_2 > \zeta \]
\[ Z1 - Z_2 > \zeta \]

\( \zeta \) is the distance the tool travels in 8 ms. It is 2000 in least command increments when the feedrate is 15 m/min.

**Fig. 6.3 (c) Creating or changing the forbidden area using a parameters**

In stored stroke check 2, even if you mistake the order of the coordinate value of the two points, a rectangular, with the two points being the apexes, will be set as the area.

When you set the forbidden area \( X_1, Z_1, X_2, \) and \( Z_2 \) through parameters (Nos. 1322, 1323), the data should be specified by the distance from the reference position in the least command increment. (Output increment)

If set the forbidden area XZIK by a G22 command, specify the data by the distance from the reference position in the least input increment (Input increment.) The programmed data are then converted into the numerical values in the least command increment, and the values are set as the parameters.

**Stored stroke check 3**

Set the boundary with parameters No. 1324 and 1325. The area inside the boundary becomes the forbidden area.
The parameter setting or programmed value (X, Z, I, and K) depends on which part of the tool or tool holder is checked for entering the forbidden area.

Confirm the checking position (the top of the tool or the tool chuck) before programming the forbidden area.

If point C (The top of the tool) is checked in Fig. 6.3 (d), the distance “c” should be set as the data for the stored stroke limit function. If point D (The tool chuck) is checked, the distance “d” must be set.

Area can be set in piles.

Unnecessary limits should be set beyond the machine stroke.

Each limit becomes effective after the power is turned on and manual reference position return or automatic reference position return by G28 has been performed.

After the power is turned on, if the reference position is in the forbidden area of each limit, an alarm is generated immediately. (Only in G22 mode for stored stroke limit 2).

When the tool has become unmovable in the forbidden area, push the emergency stop button to release the forbidden condition and move the tool out of the forbidden area in the G23 mode; then, if the setting is wrong, correct it and perform the reference position return again.
• Change from G23 to G22 in a forbidden area

When G23 is switched to G22 in the forbidden area, the following results.

(1) When the forbidden area is inside, an alarm is informed in the next move.

(2) When the forbidden area is outside, an alarm is informed immediately.

NOTE

In setting a forbidden area, if the two points to be set are the same, the area is as follows:

(1) When the forbidden area is stored stroke check 1, all areas are forbidden areas.
(2) When the forbidden area is stored stroke check 2 or stored stroke check 3 all areas are movable areas.

• Overrun amount of stored stroke limit

If the maximum rapid traverse rate is \( F \) (mm/min), the maximum overrun amount, \( L \) (mm), of the stored stroke limit is obtained from the following expression:

\[ L \text{ (mm)} = \frac{F}{7500} \]

The tool enters the specified inhibited area by up to \( L \) (mm). Bit 7 (BFA) of parameter No. 1300 can be used to stop the tool when it reaches a point \( L \) mm short of the specified area. In the case, the tool will not enter the inhibited area.

• Timing for displaying an alarm

Parameter BFA (bit 7 of No. 1300) selects whether an alarm is displayed immediately before the tool enters the forbidden area or immediately after the tool has entered the forbidden area.

Alarm

<table>
<thead>
<tr>
<th>Number</th>
<th>Message</th>
<th>Contents</th>
</tr>
</thead>
<tbody>
<tr>
<td>500</td>
<td>OVER TRAVEL: +n</td>
<td>Exceeded the n-th axis (1–4) + side stored stroke limit 1.</td>
</tr>
<tr>
<td>501</td>
<td>OVER TRAVEL: −n</td>
<td>Exceeded the n-th axis (1–4) − side stored stroke limit 1.</td>
</tr>
<tr>
<td>502</td>
<td>OVER TRAVEL: +n</td>
<td>Exceeded the n-th axis (1–4) + side stored stroke limit 2.</td>
</tr>
<tr>
<td>503</td>
<td>OVER TRAVEL: −n</td>
<td>Exceeded the n-th axis (1–4) − side stored stroke limit 2.</td>
</tr>
<tr>
<td>504</td>
<td>OVER TRAVEL: +n</td>
<td>Exceeded the n-th axis (1–4) + side stored stroke limit 3.</td>
</tr>
<tr>
<td>505</td>
<td>OVER TRAVEL: −n</td>
<td>Exceeded the n-th axis (1–4) − side stored stroke limit 3.</td>
</tr>
</tbody>
</table>
6.4 CHUCK AND TAILSTOCK BARRIERS

The chuck-tailstock barrier function prevents damage to the machine by checking whether the tool tip fouls either the chuck or tailstock. Specify an area into which the tool may not enter (entry-inhibition area). This is done using the special setting screen, according to the shapes of the chuck and tailstock. If the tool tip should enter the set area during a machining operation, this function stops the tool and outputs an alarm message. The tool can be cleared from the area only by retracting it in the direction opposite to that in which the tool entered the area.

Setting the chuck and tailstock barriers

- Setting the shapes of the chuck and tailstock

1. Press the OFFSET SETTING function key.

2. Press the continuous menu key. Then, press the [BARIER] chapter selection soft key.

3. Pressing the page key toggles the display between the chuck barrier setting screen and tailstock barrier setting screen.

Chuck barrier setting screen
### Tailstock barrier setting screen

<table>
<thead>
<tr>
<th>BARRIER (TAILSTOCK)</th>
<th>00000 00000</th>
</tr>
</thead>
<tbody>
<tr>
<td>X</td>
<td>L = 100.000</td>
</tr>
<tr>
<td>D</td>
<td>D = 200.000</td>
</tr>
<tr>
<td>L1</td>
<td>L1 = 50.000</td>
</tr>
<tr>
<td>D1</td>
<td>D1 = 100.000</td>
</tr>
<tr>
<td>L2</td>
<td>L2 = 50.000</td>
</tr>
<tr>
<td>D2</td>
<td>D2 = 50.000</td>
</tr>
<tr>
<td>L3</td>
<td>D3 = 30.000</td>
</tr>
<tr>
<td>Z</td>
<td>TZ = 100.000</td>
</tr>
</tbody>
</table>

**ACTUAL POSITION (ABSOLUTE)**

<table>
<thead>
<tr>
<th>X</th>
<th>200.000</th>
</tr>
</thead>
<tbody>
<tr>
<td>Z</td>
<td>50.000</td>
</tr>
</tbody>
</table>

**MDI **** *** ***  14:46:09**

**[ INPUT ] [ +INPUT ] [ SET ] [ ] [ ]**

---

4 Position the cursor to each item defining the shape of the chuck or tailstock, enter the corresponding value, then press the [INPUT] soft key. The value is set. Pressing the [+INPUT] soft key after a value has been entered adds the entered value to the current value, the new setting being the sum of the two values.

Items CX and CZ, both on the chuck barrier setting screen, and item TZ on the tailstock barrier setting screen can also be set in another way. Manually move the tool to the desired position, then press the [SET] soft key to set the coordinate(s) of the tool in the workpiece coordinate system. If a tool having an offset other than 0 is manually moved to the desired position with no compensation applied, compensate for the tool offset in the set coordinate system.

Items other than CX, CZ, and TZ cannot be set by using the [SET] soft key.

**Example**

When the tool tip enters the entry–inhibition area during machining, the function stops the movement of the tool and displays an alarm message. Since the machine system can stop only a slight delay after the CNC stops, the tool will actually stop moving at a point within the specified boundary. For safety, therefore, set an area a little larger than the determined area. The distance between the boundaries of these two areas, L, is calculated from the following equation, based on the rapid traverse rate.

\[
L = \frac{\text{Rapid traverse Rate}}{7500}
\]

When the rapid traverse rate is 15 m/min, for example, set an area having a boundary 2 mm outside that of the determined area. The shapes of the chuck and tailstock can be set using parameters No. 1330 to 1345.

**CAUTION**

Set G23 mode before attempting to specify the shapes of the chuck and tailstock.
• **Reference position return**

1. Return the tool to the reference position along the X– and Z–axes. The chuck–tailstock barrier function becomes effective only once reference position return has been completed after power on. When an absolute position detector is provided, reference position return need not always be performed. The positional relationship between the machine and the absolute position detector, however, must be determined.

• **G22, G23**

1. After reference position return, specifying G22 (stored stroke limit on) makes the entry–inhibition areas for the chuck and tailstock effective. Specifying G23 (stored stroke limit off) disables the function. Even if G22 is specified, the entry–inhibition area for the tailstock can be disabled by issuing a tailstock barrier signal. When the tailstock is pushed up against a workpiece or separated from the workpiece by using the miscellaneous functions, PMC signals are used to enable or disable the tailstock setting area.

<table>
<thead>
<tr>
<th>G code</th>
<th>Tailstock barrier signal</th>
<th>Chuck barrier</th>
<th>Tailstock barrier</th>
</tr>
</thead>
<tbody>
<tr>
<td>G22</td>
<td>0</td>
<td>Effective</td>
<td>Effective</td>
</tr>
<tr>
<td></td>
<td>1</td>
<td>Effective</td>
<td>Ineffective</td>
</tr>
<tr>
<td>G23</td>
<td>No relation</td>
<td>Ineffective</td>
<td>Ineffective</td>
</tr>
</tbody>
</table>

G22 is usually selected when the power is turned on. Using G23, bit 7 of parameter No. 3402, however, it can be changed to G23.

**Explanations**

• **Setting the shape of the chuck barrier**

![Diagram of Chuck Barrier Settings]

Note: The hatched areas indicate entry–inhibition areas.
<table>
<thead>
<tr>
<th>Symbol</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>TY</td>
<td>Chuck–shape selection (0: Holding the inner face of a tool, 1: Holding the outer face of a tool)</td>
</tr>
<tr>
<td>CX</td>
<td>Chuck position (along X–axis)</td>
</tr>
<tr>
<td>CZ</td>
<td>Chuck position (along Z–axis)</td>
</tr>
<tr>
<td>L</td>
<td>Length of chuck jaws</td>
</tr>
<tr>
<td>W</td>
<td>Depth of chuck jaws (radius)</td>
</tr>
<tr>
<td>L1</td>
<td>Holding length of chuck jaws</td>
</tr>
<tr>
<td>W1</td>
<td>Holding depth of chuck jaws (radius)</td>
</tr>
</tbody>
</table>

**TY:**  
Selects a chuck type, based on its shape. Specifying 0 selects a chuck that holds the inner face of a tool. Specifying 1 selects a chuck that holds the outer face of a tool. A chuck is assumed to be symmetrical about its Z–axis.

**CX, CZ:**  
Specify the coordinates of a chuck position, point A, in the workpiece coordinate system. These coordinates are not the same as those in the machine coordinate system. Table 1 lists the units used to specify the data.

**WARNING**  
Whether diameter programming or radius programming is used for the axis determines the programming system. When diameter programming is used for the axis, use diameter programming to enter data for the axis.

<table>
<thead>
<tr>
<th>Increment system</th>
<th>Data unit</th>
<th>Valid data range</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>IS–B</td>
<td>IS–C</td>
</tr>
<tr>
<td>Metric input</td>
<td>0.001 mm</td>
<td>0.0001 mm</td>
</tr>
<tr>
<td>Inch input</td>
<td>0.0001 inch</td>
<td>0.00001 inch</td>
</tr>
</tbody>
</table>

**L, L1, W, W1:**  
Define the shape of a chuck. Table 2 lists the units used to specify the data.

**WARNING**  
Always specify W and W1 in radius. When radius programming is used for the Z–axis, specify L and L1 in radius.

<table>
<thead>
<tr>
<th>Increment system</th>
<th>Data unit</th>
<th>Valid data range</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>IS–B</td>
<td>IS–C</td>
</tr>
<tr>
<td>Metric input</td>
<td>0.001 mm</td>
<td>0.0001 mm</td>
</tr>
<tr>
<td>Inch input</td>
<td>0.0001 inch</td>
<td>0.00001 inch</td>
</tr>
</tbody>
</table>
### Setting the shape of a tailstock barrier

TZ :  
Specifies the Z coordinate of the chuck position, point B, in the workpiece coordinate system. These coordinates are not the same as those in the machine coordinate system. Table 3 lists the units used to specify the data. A tailstock is assumed to be symmetrical about its Z–axis.

#### WARNING
Whether diameter programming or radius programming is used for the Z–axis determines the programming system.

<table>
<thead>
<tr>
<th>Symbol</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>TZ</td>
<td>Tailstock position (along the Z–axis)</td>
</tr>
<tr>
<td>L</td>
<td>Tailstock length</td>
</tr>
<tr>
<td>D</td>
<td>Tailstock diameter</td>
</tr>
<tr>
<td>L1</td>
<td>Tailstock length (1)</td>
</tr>
<tr>
<td>D1</td>
<td>Tailstock diameter (1)</td>
</tr>
<tr>
<td>L2</td>
<td>Tailstock length (2)</td>
</tr>
<tr>
<td>D2</td>
<td>Tailstock diameter (2)</td>
</tr>
<tr>
<td>D3</td>
<td>Tailstock diameter (3)</td>
</tr>
</tbody>
</table>

### Table 3 Units

<table>
<thead>
<tr>
<th>Increment system</th>
<th>Data unit</th>
<th>Valid data range</th>
</tr>
</thead>
<tbody>
<tr>
<td>IS – B</td>
<td>IS – C</td>
<td></td>
</tr>
<tr>
<td>Metric input</td>
<td>0.001 mm</td>
<td>0.0001 mm, –99999999 to +99999999</td>
</tr>
<tr>
<td>Inch input</td>
<td>0.0001 inch</td>
<td>0.00001 inch, –99999999 to +99999999</td>
</tr>
</tbody>
</table>

L, L1, L2, D, D1, D2, D3:
Define the shape of a tailstock. Table 4 lists the units used to specify the data.

#### WARNING
Always specify D, D1, D2, and D3 in diameter programming. When radius programming is used for the Z–axis, specify L, L1, and L2 in radius.
The tip angle of the tailstock is 60 degrees. The entry-inhibition area is set around the tip, assuming the angle to be 90 degrees, as shown below.

### Limitations

- **Correct setting of an entry-inhibition area**
  
  If an entry-inhibition area is incorrectly set, it may not be possible to make the area effective. Avoid making the following settings:
  
  - \( L < L_1 \) or \( W < W_1 \) in the chuck-shape settings.
  - \( D_2 < D_3 \) in the tailstock-shape settings.
  - A chuck setting overlapping that of the tailstock.

- **Retraction from the entry-inhibition area**
  
  If the tool enters the entry-inhibition area and an alarm is issued, switch to manual mode, retract the tool manually, then reset the system to release the alarm. In manual mode, the tool can be moved only in the opposite direction to that in which the tool entered the area. The tool cannot be moved in the same direction (further into the area) as it was travelling when the tool entered the area.

  When the entry-inhibition areas for the chuck and tailstock are enabled, and the tool is already positioned within those areas, an alarm is issued when the tool moves. When the tool cannot be retracted, change the setting of the entry-inhibition areas, such that the tool is outside the areas, reset the system to release the alarm, then retract the tool. Finally, reinstall the original settings.

---

**Table 4 Units**

<table>
<thead>
<tr>
<th>Increment system</th>
<th>Data unit</th>
<th>Valid data range</th>
</tr>
</thead>
<tbody>
<tr>
<td>Metric input</td>
<td>0.001 mm</td>
<td>0.0001 mm</td>
</tr>
<tr>
<td>Inch input</td>
<td>0.0001 inch</td>
<td>0.00001 inch</td>
</tr>
</tbody>
</table>
• Coordinate system

An entry–inhibition area is defined using the workpiece coordinate system. Note the following.

1 When the workpiece coordinate system is shifted by means of a command or operation, the entry–inhibition area is also shifted by the same amount.

![Diagram showing entry-inhibition areas in different coordinate systems]

Use of the following commands and operations will shift the workpiece coordinate system.

Commands:
- G54 to G59, G52, G50 (G92 in G code system B or C)

Operations:
- Manual handle interrupt, change in offset relative to the workpiece reference point, change in tool offset (tool geometry compensation), operation with machine lock, manual operation with manual absolute signal off

2 When the tool enters an entry–inhibition area during automatic operation, set the manual absolute signal, *ABSM, to 0 (on), then manually retract the tool from the area. If this signal is 1, the distance the tool moves in manual operation is not counted in the tool coordinates in the workpiece coordinate system. This results in the state where the tool can never be retracted from the entry–inhibition area.

• Stored stroke limit 2, 3

When both stored stroke limit 2, 3 and the chuck–tailstock barrier function are provided, the barrier takes priority over the stroke limit. Stored stroke limit 2, 3 is ignored.

Alarms

<table>
<thead>
<tr>
<th>Number</th>
<th>Message</th>
<th>Contents</th>
</tr>
</thead>
<tbody>
<tr>
<td>502</td>
<td>OVER TRAVEL: +X</td>
<td>The tool has entered the entry–inhibition area during positive–direction movement along the X–axis.</td>
</tr>
<tr>
<td></td>
<td>OVER TRAVEL: +Z</td>
<td>The tool has entered the entry–inhibition area during positive–direction movement along the Z–axis.</td>
</tr>
<tr>
<td>503</td>
<td>OVER TRAVEL: –X</td>
<td>The tool has entered the entry–inhibition area during negative–direction movement along the X–axis.</td>
</tr>
<tr>
<td></td>
<td>OVER TRAVEL: –Z</td>
<td>The tool has entered the entry–inhibition area during negative–direction movement along the Z–axis.</td>
</tr>
</tbody>
</table>
During automatic operation, before the movement specified by a given block is started, whether the tool enters the inhibited area defined by stored stroke limit 1, 2, or 3 is checked by determining the position of the end point from the current position of the machine and a specified amount of travel. If the tool is found to enter the inhibited area defined by a stored stroke limit, the tool is stopped immediately upon the start of movement for that block, and an alarm is displayed.

**WARNING**

Whether the coordinates of the end point, reached as a result of traversing the distance specified in each block, are in an inhibited area is checked. In this case, the path followed by a move command is not checked. However, if the tool enters the inhibited area defined by stored stroke limit 1, 2, or 3, an alarm is issued. (See the examples below.)

**Example 1)**

- The tool is stopped at point a according to stored stroke limit 1 or 2.
- Immediately upon movement commencing from the start point, the tool is stopped to enable a stroke limit check to be performed before movement.
Example 2)

Inhibited area defined by stored stroke limit 2 or 3

Inhibited area defined by stored stroke limit 2 or 3

Immediate upon movement commencing from the start point, the tool is stopped to enable a stroke limit check to be performed before movement.

Explanations

When a stroke limit check prior to movement is performed, whether to check the movement performed by a G31 (skip) block and G37 (automatic tool length measurement) block can be determined using NPC (bit 2 of parameter No. 1301).

Limitations

• Machine lock
  If machine lock is applied at the start of movement, no stroke limit check made before movement is performed.

• G23
  When stored stroke limit 2 is disabled (G23 mode), no check is made to determine whether the tool enters the inhibited area defined by stored stroke limit 2.

• Program restart
  When a program is restarted, an alarm is issued if the restart position is within a inhibited area.

• Manual intervention following a feed hold stop
  When the execution of a block is restarted after manual intervention following a feed hold stop, no alarm is issued even if the end point after manual intervention is within a inhibited area.

• A block consisting of multiple operations
  If a block consisting of multiple operations (such as a canned cycle and exponential interpolation) is executed, an alarm is issued at the start point of any operation whose end point falls within a inhibited area.
In cylindrical interpolation mode, no check is made.

In polar coordinate interpolation mode, no check is made.

When the slanted axis control option is selected, no check is made.

In simple synchronous control, only the master axis is checked; no slave axes are checked.

During drawing (while only drawing (no machining) is being performed), no check is made.

No check is made for a movement based on PMC axis control.

No check is made for a chuck/tailstock barrier area (lathe system).

<table>
<thead>
<tr>
<th>Number</th>
<th>Message</th>
<th>Contents</th>
</tr>
</thead>
<tbody>
<tr>
<td>506</td>
<td>OVER TRAVEL : +n</td>
<td>The pre–movement stroke limit check reveals that the block end point enters the prohibited area for the positive stroke limit along the n axis. Correct the program.</td>
</tr>
<tr>
<td>507</td>
<td>OVER TRAVEL : –n</td>
<td>The pre–movement stroke limit check reveals that the block end point enters the prohibited area for the negative stroke limit along the n axis. Correct the program.</td>
</tr>
</tbody>
</table>
7 ALARM AND SELF–DIAGNOSIS FUNCTIONS

When an alarm occurs, the corresponding alarm screen appears to indicate the cause of the alarm. The causes of alarms are classified by alarm numbers. Up to 50 previous alarms can be stored and displayed on the screen (alarm history display).

The system may sometimes seem to be at a halt, although no alarm is displayed. In this case, the system may be performing some processing. The state of the system can be checked using the self–diagnostic function.
7. ALARM AND SELF–DIAGNOSIS FUNCTIONS

7.1 ALARM DISPLAY

Explanations

• Alarm screen

When an alarm occurs, the alarm screen appears.

```
ALARM MESSAGE
 100 PARAMETER WRITE ENABLE
 510 OVER TRAVEL :+X
 417 SERVO ALARM : X AXIS DGTL PARAM
 417 SERVO ALARM : Z AXIS DGTL PARAM
```

In some cases, the alarm screen does not appear, but an ALM is displayed at the bottom of the screen.

```
PARAMETER (AXIS/UNIT)
 1001 INM
 1002 NFD XIK DLZ JAX
 1003 0 0 0 0 0 0 0 0
 1004 IPR ISC
 0 0 0 0 0 0 0 0

MEM ***** ***** ALM 08:41:27
 (NO.SRH) (ON:1) (OFF:0) (INPUT) (INPUT)
```

In this case, display the alarm screen as follows:

1. Press the function key [MSG].
2. Press the chapter selection soft key [ALARM].

• Another method for alarm displays

Another method for alarm displays
• Reset of the alarm

Alarm numbers and messages indicate the cause of an alarm. To recover from an alarm, eliminate the cause and press the reset key.

• Alarm numbers

The error codes are classified as follows:
- No. 000 to 255: P/S alarm (Program errors) (*)
- No. 300 to 349: Absolute pulse coder (APC) alarms
- No. 350 to 399: Serial pulse coder (SPC) alarms
- No. 400 to 499: Servo alarms (1/2)
- No. 500 to 599: Overtravel alarms
- No. 600 to 699: Servo alarms (2/2)
- No. 700 to 739: Overheat alarms
- No. 740 to 748: Rigid tapping alarms
- No. 749 to 799: Spindle alarms
- No. 900 to 999: System alarms
- No. 5000 to later: P/S alarm (Program errors)

* For an alarm (No. 000 to 255) that occurs in association with background operation, the indication “xxxBP/S alarm” is provided (where xxx is an alarm number). Only a BP/S alarm is provided for No. 140.

See the alarm list in the appendix G for details of the alarms.
7.2 ALARM HISTORY DISPLAY

Up to 50 of the most recent CNC alarms are stored and displayed on the screen.
Display the alarm history as follows:

Procedure for Alarm History Display

1. Press the function key [MESSAGE].

2. Press the chapter selection soft key [HISTORY].
The alarm history appears. The following information items are displayed.
   (1) The date the alarm was issued
   (2) Alarm No.
   (3) Alarm message (some contains no message)
   (4) Page number

3. Change the page by page key [PAGE] or [PAGE].

4. To delete the recorded information, press the softkey [(OPRT)]
   then the [DELETE] key.
The system may sometimes seem to be at a halt, although no alarm has occurred. In this case, the system may be performing some processing. The state of the system can be checked by displaying the self–diagnostic screen.

**Procedure for Diagnostic**

1. Press the function key \textbf{SYSTEM}.
2. Press the chapter select key \textbf{[DGNOS]}.
3. The diagnostic screen has more than 1 pages. Select the screen by the following operation.
   (1) Change the page by page key \textbf{PAGE} or \textbf{PAGE}.
   (2) Method by soft key
      - Key input the number of the diagnostic data to be displayed.
      - Press \textbf{[N SRCH]}.

```
DIAGNOSTIC (GENERAL) O0020 N00001

000 WAITING FOR FIN SIGNAL :0
001 MOTION :0
002 DWELL :0
003 IN–POSITION CHECK :0
004 FEEDRATE OVERRIDE 0% :0
005 INTERLOCK/START–LOCK :0
006 SPINDLE SPEED ARRIVAL CHECK :0

>–

EDIT **** *** ** 14 : 51 : 55

PARAM DGNOS PMC SYSTEM (OPRT)
```
Explanations

Diagnostic numbers 000 to 015 indicate states when a command is being specified but appears as if it were not being executed. The table below lists the internal states when 1 is displayed at the right end of each line on the screen.

Table 7.3 (a) Alarm displays when a command is specified but appears as if it were not being executed

<table>
<thead>
<tr>
<th>No.</th>
<th>Display</th>
<th>Internal status when 1 is displayed</th>
</tr>
</thead>
<tbody>
<tr>
<td>000</td>
<td>WAITING FOR FIN SIGNAL</td>
<td>M, S, T function being executed</td>
</tr>
<tr>
<td>001</td>
<td>MOTION</td>
<td>Move command in automatic operation being executed</td>
</tr>
<tr>
<td>002</td>
<td>Dwell</td>
<td>Dwell being executed</td>
</tr>
<tr>
<td>003</td>
<td>IN–POSITION CHECK</td>
<td>In–position check being executed</td>
</tr>
<tr>
<td>004</td>
<td>FEEDRATE OVERRIDE 0%</td>
<td>Cutting feed override 0%</td>
</tr>
<tr>
<td>005</td>
<td>INTERLOCK/START–LOCK</td>
<td>Interlock ON</td>
</tr>
<tr>
<td>006</td>
<td>SPINDLE SPEED ARRIVAL CHECK</td>
<td>Waiting for spindle speed arrival signal to turn on</td>
</tr>
<tr>
<td>010</td>
<td>PUNCHING</td>
<td>Data being output via reader puncher interface</td>
</tr>
<tr>
<td>011</td>
<td>READING</td>
<td>Data being input via reader puncher interface</td>
</tr>
<tr>
<td>012</td>
<td>WAITING FOR (UN) CLAMP</td>
<td>Waiting for index table clamp/unclamp before B axis index table indexing start/after B axis index table indexing end to complete</td>
</tr>
<tr>
<td>013</td>
<td>JOG FEEDRATE OVERRIDE 0%</td>
<td>Jog override 0%</td>
</tr>
<tr>
<td>014</td>
<td>WAITING FOR RESET.ESP.RRW.OFF</td>
<td>Emergency stop, external reset, reset &amp; rewind, or MDI panel reset key on</td>
</tr>
<tr>
<td>015</td>
<td>EXTERNAL PROGRAM NUMBER SEARCH</td>
<td>External program number searching</td>
</tr>
</tbody>
</table>

Diagnostic numbers 020 to 025 indicate the states when automatic operation is stopped or paused.

Table 7.3 (b) Alarm displays when an automatic operation is stopped or paused.

<table>
<thead>
<tr>
<th>No.</th>
<th>Display</th>
<th>Internal status when 1 is displayed</th>
</tr>
</thead>
<tbody>
<tr>
<td>020</td>
<td>CUT SPEED UP/DOWN</td>
<td>Set when emergency stop turns on or when servo alarm occurs</td>
</tr>
<tr>
<td>021</td>
<td>RESET BUTTON ON</td>
<td>Set when reset key turns on</td>
</tr>
<tr>
<td>022</td>
<td>RESET AND REWIND ON</td>
<td>Reset and rewind turned on</td>
</tr>
<tr>
<td>023</td>
<td>EMERGENCY STOP ON</td>
<td>Set when emergency stop turns on</td>
</tr>
<tr>
<td>024</td>
<td>RESET ON</td>
<td>Set when external reset, emergency stop, reset, or reset &amp; rewind key turns on</td>
</tr>
<tr>
<td>025</td>
<td>STOP MOTION OR DWELL</td>
<td>A flag which stops pulse distribution. It is set in the following cases.</td>
</tr>
<tr>
<td></td>
<td></td>
<td>(1) External reset turned on.</td>
</tr>
<tr>
<td></td>
<td></td>
<td>(2) Reset &amp; rewind turned on.</td>
</tr>
<tr>
<td></td>
<td></td>
<td>(3) Emergency stop turned on.</td>
</tr>
<tr>
<td></td>
<td></td>
<td>(4) Feed hold turned on.</td>
</tr>
<tr>
<td></td>
<td></td>
<td>(5) The MDI panel reset key turned on.</td>
</tr>
<tr>
<td></td>
<td></td>
<td>(6) Switched to the manual mode(JOG/HANDLE/INC).</td>
</tr>
<tr>
<td></td>
<td></td>
<td>(7) Other alarm occurred. (There is also alarm which is not set.)</td>
</tr>
</tbody>
</table>
The table below shows the signals and states which are enabled when each diagnostic data item is 1. Each combination of the values of the diagnostic data indicates a unique state.

<table>
<thead>
<tr>
<th>No.</th>
<th>Display</th>
<th>Meaning of data</th>
</tr>
</thead>
<tbody>
<tr>
<td>020</td>
<td>CUT SPEED UP/DOWN</td>
<td></td>
</tr>
<tr>
<td>021</td>
<td>RESET BUTTON ON</td>
<td></td>
</tr>
<tr>
<td>022</td>
<td>RESET AND REWIND ON</td>
<td></td>
</tr>
<tr>
<td>023</td>
<td>EMERGENCY STOP ON</td>
<td></td>
</tr>
<tr>
<td>024</td>
<td>RESET ON</td>
<td></td>
</tr>
<tr>
<td>025</td>
<td>STOP MOTION OR DWELL</td>
<td></td>
</tr>
</tbody>
</table>

Diagnostic numbers 030 and 031 indicate TH alarm states.

<table>
<thead>
<tr>
<th>No.</th>
<th>Display</th>
<th>Meaning of data</th>
</tr>
</thead>
<tbody>
<tr>
<td>030</td>
<td>CHARACTER NUMBER TH DATA</td>
<td>The position of the character which caused TH alarm is displayed by the number of characters from the beginning of the block at TH alarm</td>
</tr>
<tr>
<td>031</td>
<td>TH DATA</td>
<td>Read code of character which caused TH alarm</td>
</tr>
</tbody>
</table>
NC data is transferred between the NC and external input/output devices such as the Handy File.
The memory card interface located to the left of the display can be used to read information on a memory card in the CNC or write it to the card.
The following types of data can be entered and output:
1. Program
2. Offset data
3. Parameter
4. Pitch error compensation data
5. Custom macro common variable
Before an input/output device can be used, the input/output related parameters must be set.
For how to set parameters, see III–2 “OPERATIONAL DEVICES”.

---

![Diagram of memory card interface and Handy File connection with RS-232-C or RS-422 interface]
8.1 FILES

Of the external input/output devices, the FANUC Handy File use floppy disks as their input/output medium.
In this manual, an input/output medium is generally referred to as a floppy.
Unlike an NC tape, a floppy allows the user to freely choose from several types of data stored on one medium on a file–by–file basis.
Input/output is possible with data extending over more than one floppy disk.

Explanations

• What is a File

The unit of data, which is input/output between the floppy and the CNC by one input/output operation (pressing the VREADW or VPUNCHW key), is called a HfileI. When inputting CNC programs from, or outputting them to the floppy, for example, one or all programs within the CNC memory are handled as one file.
Files are assigned automatically file numbers 1,2,3,4 and so on, with the lead file as 1.

```
File 1 File 2 File 3 File n Blank
```

• Request for floppy replacement

When one file has been entered over two floppies, LEDs on the adaptor flash alternately on completion of data input/output between the first floppy and the CNC, prompting floppy replacement. In this case, take the first floppy out of the adaptor and insert a second floppy in its place. Then, data input/output will continue automatically.
Floppy replacement is prompted when the second floppy and later is required during file search–out, data input/output between the CNC and the floppy, or file deletion.

Floppy 1

```
File 1 File 2 File 3 File (k–1) File k
```

Floppy 2

```
Continuation of file k File (k+1) File n Blank
```

Since floppy replacement is processed by the input/output device, no special operation is required. The CNC will interrupt data input/output operation until the next floppy is inserted into the adaptor.
When reset operation is applied to the CNC during a request for floppy replacement, the CNC is not reset at once, but reset after the floppy has been replaced.
The floppy is provided with the write protect switch. Set the switch to the write enable state. Then, start output operation.

![Write protect switch of a cassette](image)

1. Write-protected (Only reading is possible.)
2. Write-enabled (Reading, writing, and deletion are possible.)

**Fig. 8.1 Protect switch**

**Writing memo**

Once written in the cassette or card, data can subsequently be read out by correspondence between the data contents and file numbers. This correspondence cannot be verified, unless the data contents and file numbers are output to the CNC and displayed. The data contents can be displayed with display function for directory of floppy disk (See Section III–8.8).

To display the contents, write the file numbers and the contents on the memo column which is the back of floppy.

(Entry example on MEMO)

File 1  NC parameters
File 2  Offset data
File 3  NC program O0100
      ...
      ...
File (n–1)  NC program O0500
File n  NC program O0600
8.2 FILE SEARCH

When the program is input from the floppy, the file to be input first must be searched.
For this purpose, proceed as follows:

1. Press the EDIT or MEMORY switch on the machine operator’s panel.
2. Press function key PROG, then the program contents display screen or program check screen appears.
3. Press soft key [(OPRT)]
4. Press the rightmost soft key (next-menu key).
5. Enter address N.
6. Enter the number of the file to search for.
   - N0
     The beginning of the cassette or card is searched.
   - N1 to N9999
     Of the file Nos. 1 to 9999, a designated file is searched.
   - N–9999
     The file next to that accessed just before is searched.
   - N–9998
     When N–9998 is designated, N–9999 is automatically inserted each time a file is input or output. This condition is reset by the designation of N0,N1 to 9999, or N–9999 or reset.
7. Press soft keys [FSRH] and [EXEC]
   The specified file is searched for.

Explanations

- File search by N–9999

The same result is obtained both by sequentially searching the files by specifying Nos. N1 to N9999 and by first searching one of N1 to N9999 and then using the N–9999 searching method. The searching time is shorter in the latter case.
Alarm

<table>
<thead>
<tr>
<th>No.</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>86</td>
<td>The ready signal (DR) of an input/output device is off. An alarm is not immediately indicated in the CNC even when an alarm occurs during head searching (when a file is not found, or the like). An alarm is given when the input/output operation is performed after that. This alarm is also raised when N1 is specified for writing data to an empty floppy. (In this case, specify N0.)</td>
</tr>
</tbody>
</table>
8.3 FILE DELETION

Files stored on a floppy can be deleted file by file as required.

**Procedure for File Deletion**

1. Insert the floppy into the input/output device so that it is ready for writing.
2. Press the EDIT switch on the machine operator’s panel.
3. Press function key [PROG], then the program contents display screen appears.
4. Press soft key [(OPRT)]
5. Press the rightmost soft key (next–menu key).
6. Enter address N.
7. Enter the number (from 1 to 9999) of the file to delete.
8. Press soft key [DELETE], then press soft key [EXEC].
   The file specified in step 7 is deleted.

**Explanations**

- **File number after the file is deleted**
  When a file is deleted, the file numbers after the deleted file are each decremented by one. Suppose that a file numbered k was deleted. In this case, files are renumbered as follows:
  
<table>
<thead>
<tr>
<th>Before deletion</th>
<th>after deletion</th>
</tr>
</thead>
<tbody>
<tr>
<td>1 to (k–1)</td>
<td>1 to (k–1)</td>
</tr>
<tr>
<td>k</td>
<td>Deleted</td>
</tr>
<tr>
<td>(k+1) to n</td>
<td>k to (n–1)</td>
</tr>
</tbody>
</table>

- **Protect switch**
  Set the write protect switch to the write enable state to delete the files.
8.4 PROGRAM INPUT/OUTPUT

8.4.1 Inputting a Program

This section describes how to load a program into the CNC from a floppy or NC tape.

**Procedure for Inputting a Program**

1. Make sure the input device is ready for reading.
2. Press the EDIT switch on the machine operator’s panel.
3. When using a floppy, search for the required file according to the procedure in Section III–8.2.
4. Press function key [PROG], then the program contents display screen or program directory screen appears.
5. Press soft key [(OPRT)]
6. Press the rightmost soft key (next-menu key).
7. After entering address O, specify a program number to be assigned to the program. When no program number is specified here, the program number used on the floppy or NC tape is assigned.
8. Press soft keys [READ] and [EXEC]
   The program is input and the program number specified in step 7 is assigned to the program.

**Explanations**

- **Collation**

  If a program is input while the data protect key on the machine operator’s panel turns ON, the program loaded into the memory is verified against the contents of the floppy or NC tape.

  If a mismatch is found during collation, the collation is terminated with an P/S alarm (No. 79).

  If the operation above is performed with the data protection key turns OFF, collation is not performed, but programs are registered in memory.

- **Inputting multiple programs from an NC tape**

  When a tape holds multiple programs, the tape is read up to ER (or %).

  ![Program Input Example](O1111 - - - - M02; O2222 - - M30; O3333 - - - M02; ER%)
When a program is entered without specifying a program number.

- The O-number of the program on the NC tape is assigned to the program. If the program has no O-number, the N-number in the first block is assigned to the program.
- When the program has neither an O-number nor N-number, the previous program number is incremented by one and the result is assigned to the program.
- When the program does not have an O-number but has a five-digit sequence number at the start of the program, the lower four digits of the sequence number are used as the program number. If the lower four digits are zeros, the previously registered program number is incremented by one and the result is assigned to the program.

When a program is entered with a program number

The O-number on the NC tape is ignored and the specified number is assigned to the program. When the program is followed by additional programs, the first additional program is given the program number. Additional program numbers are calculated by adding one to the last program.

The method of registration operation is the same as the method of foreground operation. However, this operation registers a program in the background editing area. As with edit operation, the operations described below are required at the end to register a program in foreground program memory.

\[(\text{OPRT})\] \[\text{BG–END}\]

You can input a program to be appended to the end of a registered program.

<table>
<thead>
<tr>
<th>Registered program</th>
<th>Input program</th>
<th>Program after input</th>
</tr>
</thead>
<tbody>
<tr>
<td>(\text{O1234})</td>
<td>(\text{O5678})</td>
<td>(\text{O1234})</td>
</tr>
<tr>
<td>(\text{\ldots})</td>
<td>(\text{\ldots})</td>
<td>(\text{\ldots})</td>
</tr>
<tr>
<td>(\text{\ldots})</td>
<td>(\text{\ldots})</td>
<td>(\text{\ldots})</td>
</tr>
<tr>
<td>(\text{\ldots})</td>
<td>(\text{\ldots})</td>
<td>(\text{\ldots})</td>
</tr>
<tr>
<td>(%)</td>
<td>(%)</td>
<td>(%)</td>
</tr>
</tbody>
</table>

In the above example, all lines of program O5678 are appended to the end of program O1234. In this case, program number O5678 is not registered. When inputting a program to be appended to a registered program, press the [READ] soft key without specifying a program number in step 8. Then, press the [CHAIN] and [EXEC] soft keys.

- In entire program input, all lines of a program are appended, except for its O number.
- When canceling additional input mode, press the reset key or the [CAN] or [STOP] soft key.
Pressing the [CHAIN] soft key positions the cursor to the end of the registered program. Once a program has been input, the cursor is positioned to the start of the new program.

Additional input is possible only when a program has already been registered.

If an attempt has been made to register a program having the same number as that of a previously registered program, P/S alarm 073 is issued and the program cannot be registered.

### Alarm

<table>
<thead>
<tr>
<th>No.</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>70</td>
<td>The size of memory is not sufficient to store the input programs</td>
</tr>
<tr>
<td>73</td>
<td>An attempt was made to store a program with an existing program number.</td>
</tr>
<tr>
<td>79</td>
<td>The verification operation found a mismatch between a program loaded into memory and the contents of the program on the floppy or NC tape.</td>
</tr>
</tbody>
</table>
8.4.2 Outputting a Program

A program stored in the memory of the CNC unit is output to a floppy or NC tape.

Procedure for Outputting a Program

1. Make sure the output device is ready for output.
2. To output to an NC tape, specify the punch code system (ISO or EIA) using a parameter.
3. Press the EDIT switch on the machine operator’s panel.
4. Press function key [PROG], then the program contents display screen or program directory screen appears.
5. Press soft key [(OPRT)].
6. Press the rightmost soft key (next-menu key).
7. Enter address O.
8. Enter a program number. If –9999 is entered, all programs stored in memory are output. To output multiple programs at one time, enter a range as follows:
   O∆∆∆∆, O/0086/0086/0086/0086
   Programs No.∆∆∆∆ to No.0086/0086/0086/0086 are output. The program directory screen displays program numbers in ascending order when bit 4 (SOR) of parameter No. 3107 is set to 1.
9. Press soft keys [PUNCH] and [EXEC]. The specified program or programs are output.

Explanations
(Output to a floppy)

• File output location
When output is conducted to the floppy, the program is output as the new file after the files existing in the floppy. New files are to be written from the beginning with making the old files invalid, use the above output operation after the N0 head searching.

• An alarm while a program is output
When P/S alarm (No.086) occurs during program output, the floppy is restored to the condition before the output.

• Outputting a program after file heading
When program output is conducted after N1 to N9999 head searching, the new file is output as the designated n–th position. In this case, 1 to n–1 files are effective, but the files after the old n–th one are deleted. If an alarm occurs during output, only the 1 to n–1 files are restored.

• Efficient use of memory
To efficiently use the memory in the cassette or card, output the program by setting parameter NFD (No. 0101#7, No. 0111#7 or 0121#7) to 1. This parameter makes the feed is not output, utilizing the memory efficiently.

• On the memo record
Head searching with a file No. is necessary when a file output from the CNC to the floppy is again input to the CNC memory or compared with the content of the CNC memory. Therefore, immediately after a file is output from the CNC to the floppy, record the file No. on the memo.
Punching programs in the background

Punch operation can be performed in the same way as in the foreground. This function alone can punch out a program selected for foreground operation.

\(<O> \) (Program No.) [PUNCH] [EXEC]: Punches out a specified program.

\(<O> \) H–99991 [PUNCH] [EXEC]: Punches out all programs.

Explanations
(Output to an NC tape)

- **Format**

A program is output to paper tape in the following format:

```
ER (%) Program ER (%)
```

Feed of 3 feet Feed of 3 feet

If three–feet feeding is too long, press the CAN key during feed punching to cancel the subsequent feed punching.

- **TV check**

A space code for TV check is automatically punched.

- **ISO code**

When a program is punched in ISO code, two CR codes are punched after an LF code.

```
- - - - - - - - - - - - LF CR CR
```

By setting NCR (bit 3 of parameter No. 0100), CRs can be omitted so that each LF appears without a CR.

- **Stopping the punch**

Press the RESET key to stop punch operation.

- **Punching all programs**

All programs are output to paper tape in the following format.

```
ER (%) Program Program Program ER (%)
```

Feed of 1–feet Feed of 3–feet

The sequence of the programs punched is undefined.
8.5 OFFSET DATA INPUT AND OUTPUT

8.5.1 Inputting Offset Data

Offset data is loaded into the memory of the CNC from a floppy or NC tape. The input format is the same as for offset value output. See section III–8.5.2. When an offset value is loaded which has the same offset number as an offset number already registered in the memory, the loaded offset data replaces existing data.

Procedure for Inputting Offset Data

1. Make sure the input device is ready for reading.
2. Press the EDIT switch on the machine operator’s panel.
3. When using a floppy, search for the required file according to the procedure in Section III–8.2.
4. Press function key Offset setting to display tool offset screen.
5. Press soft keys [(OPRT)], then the tool compensation screen appears.
6. Press rightmost soft key (continuous menu key).
7. Press soft keys [READ] and [EXEC].
8. The input offset data will be displayed on the screen after completion of input operation.
8. DATA INPUT/OUTPUT

8.5.2 Outputting Offset Data

All offset data is output in a output format from the memory of the CNC to a floppy or NC tape.

Procedure for Outputting Offset Data

1. Make sure the output device is ready for output.
2. Specify the punch code system (ISO or EIA) using a parameter.
3. Press the EDIT switch on the machine operator’s panel.
4. Press function key OFFSET to display tool offset screen.
5. Press soft key [(OPRT)].
6. Press the rightmost soft key (continuous menu key)
7. Press soft keys [PUNCH] and [EXEC]. Offset data is output in the output format described below.

Explanations

• Output format

Output format is as follows:

Format

G10P_X_Y_Z_R_Q;

P: Offset number
   . . . Work sheet : P=0
   . . . For wear offset amount : P=Wear offset number
   . . . For geometry offset amount : p=10000+geometry offset number
X: Offset value on X axis
Y: Offset value on Y axis
Z: Offset value on Z axis
Q: Imaginary tool nose number
R: Tool nose radius offset value

• Output file name

When the floppy disk directory display function is used, the name of the output file is OFFSET.
Parameters and pitch error compensation data are input and output from different screens, respectively. This chapter describes how to enter them.

### 8.6 INPUTTING AND OUTPUTTING PARAMETERS AND PITCH ERROR COMPENSATION DATA

#### 8.6.1 Inputting Parameters

Parameters are loaded into the memory of the CNC unit from a floppy or NC tape. The input format is the same as the output format. See Subsec. III–8.6.2. When a parameter is loaded which has the same data number as a parameter already registered in the memory, the loaded parameter replaces the existing parameter.

**Procedure for Inputting Parameters**

1. Make sure the input device is ready for reading.
2. When using a floppy, search for the required file according to the procedure in Section III–8.2.
3. Press the EMERGENCY STOP button on the machine operator’s panel.
4. Press function key \[OFFSET\] SETTING \[OFFSET\].
5. Press the soft key [SETTING] for chapter selection, then the setting screen appears.
6. Enter 1 in response to the prompt for “PARAMETER WRITE (PWE)” in setting data. P/S alarm (No.100(indicating that parameters can be written)) appears.
7. Press soft key \[SYSTEM\].
8. Press chapter selection soft key [PARAM], then the parameter screen appears.
9. Press soft key [(OPRT)].
10. Press the rightmost soft key [ ] (continuous menu key).
11. Press soft keys [READ] and [EXEC]. Parameters are read into memory. Upon completion of input, the “INPUT” indicator at the lower–right corner of the screen disappears.
12. Press function key \[OFFSET\].
14. Enter 0 in response to the prompt for “PARAMETER WRITE (PWE)” in setting data.
15 Turn the power to the NC back on.
16 Release the EMERGENCY STOP button on the machine operator’s panel.

8.6.2 Outputting Parameters

All parameters are output in the defined format from the memory of the CNC to a floppy or NC tape.

Procedure for Outputting Parameters

1 Make sure the output device is ready for output.
2 Specify the punch code system (ISO or EIA) using a parameter.
3 Press the EDIT switch on the machine operator’s panel.
4 Press function key [SYSTEM].
5 Press chapter selection soft key [PARAM] to display the parameter screen.
6 Press soft key ([OPRT]).
7 Press rightmost soft key (continuous menu key).
8 Press soft key [PUNCH].
9 To output all parameters, press the [ALL] soft key. To output only parameters which are set to other than 0, press the [NON–0] soft key.
10 Press soft key [EXEC].
   All parameters are output in the defined format.

Explanations

- Output format

Output format is as follows:
N . . P . . ;
N . . P . . ;

N: Parameter No.
A: Axis No. (n is the number of control axis)
P: Parameter setting value.

- Suppressing output of parameters set to 0

To suppress the output of the following parameters, press the [PUNCH] soft key then [NON–0] soft key.

<table>
<thead>
<tr>
<th></th>
<th>Other than axis type</th>
<th>Axis type</th>
</tr>
</thead>
<tbody>
<tr>
<td>Bit type</td>
<td>Parameter for which all bits are set to 0</td>
<td>Parameter for an axis for which all bits are set to 0.</td>
</tr>
<tr>
<td>Value type</td>
<td>Parameter whose value is 0.</td>
<td>Parameter for an axis for which the value is 0.</td>
</tr>
</tbody>
</table>
When the floppy disk directory display function is used, the name of the output file is PARAMETER. Once all parameters have been output, the output file is named ALL PARAMETER. Once only parameters which are set to other than 0 have been output, the output file is named NON-0. PARAMETER.

Pitch error compensation data are loaded into the memory of the CNC from a floppy or NC tape. The input format is the same as the output format. See Section 8.6.4. When a pitch error compensation data is loaded which has the corresponding data number as a pitch error compensation data already registered in the memory, the loaded data replaces the existing data.

### Procedure for Pitch Error Compensation Data

1. Make sure the input device is ready for reading.
2. When using a floppy, search for the required file according to the procedure in Section III–8.2.
3. Press the EMERGENCY STOP button on the machine operator’s panel.
4. Press function key OFFSET SETTING.
5. Press the soft key [SETTING] for chapter selection.
6. Enter 1 in response to the prompt for “PARAMETER WRITE (PWE)” in setting data. P/S alarm (No. 100 (indicating that parameters can be written)) appears.
7. Press soft key SYSTEM.
8. Press the rightmost soft key (continuous menu key) and press chapter selection soft key [PITCH].
9. Press soft key [(OPRT)].
10. Press the rightmost soft key (continuous menu key).
11. Press soft keys [READ] and [EXEC]. Pitch error compensation data are read into memory. Upon completion of input, the “INPUT” indicator at the lower-right corner of the screen disappears.
12. Press function key OFFSET SETTING.
14. Enter 0 in response to the prompt for “PARAMETER WRITE (PWE)” of setting data.
15. Turn the power to the NC back on.
16 Release the EMERGENCY STOP button on the machine operator’s panel.

Explanations

- **Pitch error compensation**
  Parameters 3620 to 3624 and pitch error compensation data must be set correctly to apply pitch error compensation correctly (See subsec. III–11.5.2)

8.6.4 Outputting Pitch Error Compensation Data

All pitch error compensation data are output in the defined format from the memory of the CNC to a floppy or NC tape.

**Procedure for Outputting Pitch Error Compensation Data**

1 Make sure the output device is ready for output.
2 Specify the punch code system (ISO or EIA) using a parameter.
3 Press the EDIT switch on the machine operator’s panel.
4 Press function key [SYSTEM].
5 Press the rightmost soft key (continuous menu key) and press chapter selection soft key [PITCH].
6 Press soft key [(OPRT)].
7 Press rightmost soft key (continuous menu key).
8 Press soft keys [PUNCH] and [EXEC].

All pitch error compensation data are output in the defined format.

Explanations

- **Output format**

  Output format is as follows:
  N10000 P.... ;
  N11023 P.... ;
  N: Pitch error compensation point + 10000
  P: Pitch error compensation data

  When bi–directional pitch error compensation is used, output format is as follows:
  N20000 P.... ;
  N21023 P.... ;
  N23000 P.... ;
  N24023 P.... ;
  N: Pitch error compensation point + 20000
  P: Pitch error compensation data

- **Output file name**

  When the floppy disk directory display function is used, the name of the output file is “PITCH ERROR”.
8.7
INPUTTING/
OUTPUTTING
CUSTOM MACRO
COMMON
VARIABLES

8.7.1
Inputting Custom
Macro Common
Variables

The value of a custom macro common variable (#500 to #999) is loaded into the memory of the CNC from a floppy or NC tape. The same format used to output custom macro common variables is used for input. See Subsec. 8.7.2. For a custom macro common variable to be valid, the input data must be executed by pressing the cycle start button after data is input. When the value of a common variable is loaded into memory, this value replaces the value of the same common variable already existing (if any) in memory.

Procedure for Inputting Custom Macro Common Variables

1. Register the program which has been output, as described in Section III–8.7.2, in memory according to the program input procedure described in Section III–8.4.1.

2. Press the MEMORY switch on the machine operator’s panel upon completing input.

3. Press the cycle start button to execute the loaded program.

4. Display the macro variable screen to check whether the values of the common variables have been set correctly.

Display of the macro variable screen

- Press function key [OFFSET SETTING].
- Press the rightmost soft key (continuous menu key).
- Press soft key [MACRO].
- Select a variable with the page keys or numeric keys and soft key [NO.SRH].

Explanations

- Common variables

The common variables (#500 to #999) can be input and output. #100 to #199 can be input and output when bit 3 (PU5) of parameter No. 6001 is set to 1.
8.7.2 Outputting Custom Macro Common Variable

Custom macro common variables (#500 to #999) stored in the memory of the CNC can be output in the defined output format to a floppy or NC tape.

Procedure for Outputting Custom Macro Common Variable

1. Make sure the output device is ready for output.
2. Specify the punch code system (ISO or EIA) using a parameter.
3. Press the EDIT switch on the machine operator’s panel.
4. Press function key OFFSET SETTING.
5. Press the rightmost soft key (continuous menu key), then press soft key [MACRO].
6. Press soft key [(OPRT)].
7. Press the rightmost soft key (continuous menu key).
8. Press soft keys [PUNCH] and [EXEC].

Common variables are output in the defined format.

Explanations

• Output format

The output format is as follows:

% ; #500=[25283/65536+65536]/134217728 ....... (1) #501=#0; ........................................ (2) #502=0; ........................................ (3) #503= ........................................ ; ........................................ #531= ........................................; M02; %

(1) The precision of a variable is maintained by outputting the value of the variable as <expression>.
(2) Undefined variable
(3) When the value of a variable is 0

• Output file name

When the floppy disk directory display function is used, the name of the output file is “MACRO VAR”.

• Common variable

The common variables (#500 to #999) can be input and output.
#100 to #199 can be input and output when bit 3 (PU5) of parameter No. 6001 is set to 1.
8.8 DISPLAYING DIRECTORY OF FLOPPY DISK

On the floppy directory display screen, in a directory of the files stored in an external input/output device (such as FANUC Handy File) in floppy format, files can be input, output, and deleted.

<table>
<thead>
<tr>
<th>NO.</th>
<th>FILE NAME</th>
<th>O0001 N00000</th>
<th>(METER) VOL</th>
</tr>
</thead>
<tbody>
<tr>
<td>0001</td>
<td>PARAMETER</td>
<td>58.5</td>
<td></td>
</tr>
<tr>
<td>0002</td>
<td>O0001</td>
<td>1.9</td>
<td></td>
</tr>
<tr>
<td>0003</td>
<td>O0002</td>
<td>1.9</td>
<td></td>
</tr>
<tr>
<td>0004</td>
<td>O0010</td>
<td>1.3</td>
<td></td>
</tr>
<tr>
<td>0005</td>
<td>O0040</td>
<td>1.3</td>
<td></td>
</tr>
<tr>
<td>0006</td>
<td>O0050</td>
<td>1.9</td>
<td></td>
</tr>
<tr>
<td>0007</td>
<td>O0100</td>
<td>1.9</td>
<td></td>
</tr>
<tr>
<td>0008</td>
<td>O1000</td>
<td>1.9</td>
<td></td>
</tr>
<tr>
<td>0009</td>
<td>O9500</td>
<td>2.6</td>
<td></td>
</tr>
</tbody>
</table>

EDIT **** *** *** 11:27:14

PRGRM DIR (OPRT)
8. DATA INPUT/OUTPUT

8.8.1 Displaying the Directory

Displaying the Directory of Floppy Disk Files

Procedure 1

Use the following procedure to display a directory of all the files stored in a floppy:

1. Press the EDIT switch on the machine operator’s panel.
2. Press function key [PROG].
3. Press the rightmost soft key (continuous menu key).
4. Press soft key [FROPPY].
5. Press page key or .
6. The screen below appears.

```
DIRECTORY (FLOPPY) 00001 N00000
NO. FILE NAME (METER) VOL
0001 PARAMETER 58.5
0002 O0001 1.9
0003 O0002 1.9
0004 O0010 1.3
0005 O0040 1.3
0006 O0050 1.9
0007 O0100 1.9
0008 O1000 1.9
0009 O9500 2.6
```

```
EDIT 11:30:24
(F SRH) (READ) (PUNCH) (DELETE)
```

Fig.8.8.1 (a)

7. Press a page key again to display another page of the directory.
Procedure 2

Use the following procedure to display a directory of files starting with a specified file number:

1. Press the EDIT switch on the machine operator’s panel.
2. Press function key [PROG].
3. Press the rightmost soft key (continuous menu key).
4. Press soft key [FLOPPY].
5. Press soft key [(OPRT)].
6. Press soft key [F SRH].
7. Enter a file number.
8. Press soft keys [F SET] and [EXEC].
9. Press a page key to display another page of the directory.
10. Press soft key [CAN] to return to the soft key display shown in the screen of Fig. 8.8.1(a).

DIRECTORY (FLOPPY)

<table>
<thead>
<tr>
<th>NO.</th>
<th>FILE NAME</th>
<th>(METER) VOL</th>
</tr>
</thead>
<tbody>
<tr>
<td>0004</td>
<td>O0010</td>
<td>1.3</td>
</tr>
<tr>
<td>0005</td>
<td>O0040</td>
<td>1.3</td>
</tr>
<tr>
<td>0006</td>
<td>O0050</td>
<td>1.9</td>
</tr>
<tr>
<td>0007</td>
<td>O0100</td>
<td>1.9</td>
</tr>
<tr>
<td>0008</td>
<td>O1000</td>
<td>1.9</td>
</tr>
<tr>
<td>0009</td>
<td>O9500</td>
<td>2.6</td>
</tr>
</tbody>
</table>

Fig. 8.8.1 (b)
Explanations

- **Screen fields and their meanings**

<table>
<thead>
<tr>
<th>Field</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>NO</td>
<td>Displays the file number</td>
</tr>
<tr>
<td>FILE NAME</td>
<td>Displays the file name.</td>
</tr>
<tr>
<td>(METER)</td>
<td>Converts and prints out the file capacity to paper tape length. You can also produce H (FEET)I by setting the INPUT UNIT to INCH of the setting data.</td>
</tr>
<tr>
<td>VOL.</td>
<td>When the file is multi-volume, that state is displayed.</td>
</tr>
</tbody>
</table>

(Ex.) Floppy or card A	
Floppy or card B	Floppy or card C
C01	C02
C02	L03

C(number) means CONTINUE	
L(number) means LAST	
number number of floppies or cards	
8.8.2 Reading Files

The contents of the specified file number are read to the memory of NC.

Procedure for Reading Files

1. Press the EDIT switch on the machine operator’s panel.
2. Press function key \texttt{PROG}.
3. Press the rightmost soft key (continuous menu key).
4. Press soft key \texttt{[FLOPPY]}
5. Press soft key \texttt{[OPRT]}
6. Press soft key \texttt{[READ]}

<table>
<thead>
<tr>
<th>DIRECTORY (FLOPPY)</th>
<th>O0001</th>
<th>(N00000)</th>
</tr>
</thead>
<tbody>
<tr>
<td>(\text{NO. FILE NAME})</td>
<td>(\text{(METER) VOL})</td>
<td></td>
</tr>
<tr>
<td>0001 (\text{PARAMETER})</td>
<td>58.5</td>
<td></td>
</tr>
<tr>
<td>0002 (\text{O0001})</td>
<td>1.9</td>
<td></td>
</tr>
<tr>
<td>0003 (\text{O0002})</td>
<td>1.9</td>
<td></td>
</tr>
<tr>
<td>0004 (\text{O0010})</td>
<td>1.3</td>
<td></td>
</tr>
<tr>
<td>0005 (\text{O0040})</td>
<td>1.3</td>
<td></td>
</tr>
<tr>
<td>0006 (\text{O0050})</td>
<td>1.9</td>
<td></td>
</tr>
<tr>
<td>0007 (\text{O0100})</td>
<td>1.9</td>
<td></td>
</tr>
<tr>
<td>0008 (\text{O1000})</td>
<td>1.9</td>
<td></td>
</tr>
<tr>
<td>0009 (\text{O9500})</td>
<td>2.6</td>
<td></td>
</tr>
</tbody>
</table>

7. Enter a file number.
8. Press soft key \texttt{[F SET]}.
9. To modify the program number, enter the program number, then press soft key \texttt{[O SET]}.
10. Press soft key \texttt{[EXEC]}. The file number indicated in the lower–left corner of the screen is automatically incremented by one.
11. Press soft key \texttt{[CAN]} to return to the soft key display shown in the screen of \textit{Fig. 8.8.1(a)}. 

---

509
8.8.3
Outputting Programs

Any program in the memory of the CNC unit can be output to a floppy as a file.

Procedure for Outputting Programs

1. Press the EDIT switch on the machine operator’s panel.
2. Press function key \([\text{PROG}]\).
3. Press the rightmost soft key \([\text{arrow}]\) (continuous menu key).
4. Press soft key \([\text{FLOPPY}]\).
5. Press soft key \([\text{OPRT}]\).
6. Press soft key \([\text{PUNCH}]\).

<table>
<thead>
<tr>
<th>DIRECTORY (FLOPPY)</th>
<th>O0002 N01000 (METER) VOL</th>
</tr>
</thead>
<tbody>
<tr>
<td>NO.</td>
<td>FILE NAME</td>
</tr>
<tr>
<td>0001</td>
<td>PARAMETER</td>
</tr>
<tr>
<td>0002</td>
<td>O0001</td>
</tr>
<tr>
<td>0003</td>
<td>O0002</td>
</tr>
<tr>
<td>0004</td>
<td>O0010</td>
</tr>
<tr>
<td>0005</td>
<td>O0040</td>
</tr>
<tr>
<td>0006</td>
<td>O0050</td>
</tr>
<tr>
<td>0007</td>
<td>O0100</td>
</tr>
<tr>
<td>0008</td>
<td>O1000</td>
</tr>
<tr>
<td>0009</td>
<td>O9500</td>
</tr>
</tbody>
</table>

7. Enter a program number. To write all programs into a single file, enter \(-9999\) in the program number field. In this case, the file name “ALL.PROGRAM” is registered.
8. Press soft key \([\text{O SET}]\).
9. Press soft key \([\text{EXEC}]\). The program or programs specified in step 7 are written after the last file on the floppy. To output the program after deleting files starting with an existing file number, key in the file number, then press soft key \([\text{F SET}]\) followed by soft key \([\text{EXEC}]\).
10. Press soft key \([\text{CAN}]\) to return to the soft key display shown in the screen of Fig. 8.8.1(a).
The file with the specified file number is deleted.

### 8.8.4 Deleting Files

#### Procedure for Deleting Files

1. Press the EDIT switch on the machine operator’s panel.
2. Press function key $\text{PROG}$. 
3. Press the rightmost soft key (continuous menu key).
4. Press soft key $\text{[FLOPPY]}$.
5. Press soft key $\text{[OPRT]}$.
6. Press soft key $\text{[DELETE]}$.

![Directory Table]

7. Specify the file to be deleted.
   When specifying the file with a file number, type the number and press soft key $\text{[F SET]}$. When specifying the file with a file name, type the name and press soft key $\text{[F NAME]}$.

8. Press soft key $\text{[EXEC]}$.
   The file specified in the file number field is deleted. When a file is deleted, the file numbers after the deleted file are each decremented by one.

9. Press soft key $\text{[CAN]}$ to return to the soft key display shown in the screen of Fig. 8.8.1(a).
Limitations

- **Inputting file numbers and program numbers with keys**
  If [F SET] or [O SET] is pressed without key inputting file number and program number, file number or program number shows blank. When 0 is entered for file numbers or program numbers, 1 is displayed.

- **I/O devices**
  To use channel 0, set a device number in parameter 102. Set the I/O device number to parameter No. 0112 when channel 1 is used. Set it to No. 0122 when channel 2 is used.

- **Significant digits**
  For the numeral input in the data input area with FILE NO. and PROGRAM NO., only lower 4 digits become valid.

- **Collation**
  When the data protection key on the machine operator’s panel is ON, no programs are read from the floppy. They are verified against the contents of the memory of the CNC instead.

### ALARM

<table>
<thead>
<tr>
<th>No.</th>
<th>Contents</th>
</tr>
</thead>
<tbody>
<tr>
<td>71</td>
<td>An invalid file number or program number was entered. (Specified program number is not found.)</td>
</tr>
<tr>
<td>79</td>
<td>Verification operation found a mismatch between a program loaded into memory and the contents of the floppy</td>
</tr>
<tr>
<td>86</td>
<td>The data set–ready signal (DR) for the input/output device is turned off. (The no file error or duplicate file error occurred on the input/output device because an invalid file number, program number, or file name was entered.</td>
</tr>
</tbody>
</table>
8.9 OUTPUTTING A PROGRAM LIST FOR A SPECIFIED GROUP

CNC programs stored in memory can be grouped according to their names, thus enabling the output of CNC programs in group units. Section III–11.3.3 explains the display of a program listing for a specified group.

Procedure for Outputting a Program List for a Specified Group

Procedure

1. Display the program list screen for a group of programs, as described in Section III–11.3.2.

   ![Program Directory Screen]

   - PROGRAM DIRECTORY (GROUP) O0001 N00010
   - PROGRAM (NUM.) MEMORY (CHAR.)
   - USED: 60 3321
   - FREE: 140 127839
   - O No. COMMENT
     O0020 (GEAR–1000 MAIN )
     O0040 (GEAR–1000 SUB–1 )
     O0200 (GEAR–1000 SUB–2 )
     O2000 (GEAR–1000 SUB–3 )

2. Press the [(OPRT)] operation soft key.

3. Press the right-most soft key (continuous menu key).

4. Press the [PUNCH] operation soft key.

5. Press the [AL–GRP] operation soft key.

   The CNC programs in the group for which a search is made are output. When these programs are output to a floppy disk, they are output to a file named GROUP.PROGRAM.
To input/output a particular type of data, the corresponding screen is usually selected. For example, the parameter screen is used for parameter input from or output to an external input/output unit, while the program screen is used for program input or output. However, programs, parameters, offset data, and macro variables can all be input and output using a single common screen, that is, the ALL IO screen.

Fig. 8.10  ALL IO screen
(when channel 1 is being used for input/output)
8.10.1 Setting Input/Output–Related Parameters

Input/output–related parameters can be set on the ALL IO screen. Parameters can be set, regardless of the mode.

**Setting input/output–related parameters**

**Procedure**

1. Press function key `SYSTEM`.
2. Press the rightmost soft key (continuous menu key) several times.
3. Press soft key `[ALL IO]` to display the ALL IO screen.

**NOTE**

1. If program or floppy is selected in EDIT mode, the program directory or floppy screen is displayed.
2. When the power is first turned on, program is selected by default.

```
READ/PUNCH (PROGRAM) O1234 N12345
I/O CHANNEL 1 TV CHECK OFF
DEVICE NUM. 0 PUNCH CODE ISO
BAUDRATE 4800 INPUT CODE ASCII
STOP BIT 2 FEED OUTPUT FEED
NULL INPUT (EIA) NO EOB OUTPUT (ISO) CR
TV CHECK (NOTES) ON

(0:EIA 1:ISO)>1_
MDI 12:34:56
(PRGRM) (PARAM) (OFFSET) (MACRO) (OPRT)
```

4. Select the soft key corresponding to the desired type of data (program, parameter, and so forth).
5. Set the parameters corresponding to the type of input/output unit to be used. (Parameter setting is possible regardless of the mode.)
8. DATA INPUT/OUTPUT

8.10.2 Inputting and Outputting Programs

A program can be input and output using the ALL IO screen. When entering a program using a cassette or card, the user must specify the input file containing the program (file search).

File search

**Procedure**

1. Press soft key [PRGRM] on the ALL IO screen, described in Section 8.10.1.

2. Select EDIT mode. A program directory is displayed.

3. Press soft key [(OPRT)]. The screen and soft keys change as shown below.
   - A program directory is displayed only in EDIT mode. In all other modes, the ALL IO screen is displayed.

   ![Program Directory](image)

   **Program Directory**
   - Program (NUM.)
   - Memory (CHAR.)
   - Used: 60
   - Free: 140
   
   O0010 O0001 O0003 O0002 O0555 O0999
   O0062 O0004 O0005 O1111 O0969 O6666
   O0021 O1234 O0588 O0020 O0040

4. Enter address N.

5. Enter the number of the file to be found.
   - N0
     The first floppy file is found.
   - One of N1 to N9999
     Among the files numbered from 1 to 9999, a specified file is found.
   - N–9999
     The file immediately after that used most recently is found.
   - N–9998
     When –9998 is specified, the next file is found. Then, each time a file input/output operation is performed, N–9999 is automatically inserted. This means that subsequent files can be sequentially found automatically.
     This state is canceled by specifying N0, N1 to N9999, or N–9999, or upon a reset.

6. Press soft keys [F SRH] and [EXEC].
   The specified file is found.
Explanations

- **Difference between N0 and N1**
  When a file already exists in a cassette or card, specifying N0 or N1 has the same effect. If N1 is specified when there is no file on the cassette or card, an alarm is issued because the first file cannot be found. Specifying N0 places the head at the start of the cassette or card, regardless of whether the cassette/card already contains files. So, no alarm is issued in this case. N0 can be used, for example, when a program is written into a new cassette or card, or when a previously used cassette or card is used once all the files it contains have been erased.

- **Alarm issue during file search**
  If an alarm (file search failure, for example) is generated during file search, the CNC does not issue an alarm immediately. However, a P/S alarm (No. 086) is issued if input/output is subsequently performed on that file.

- **File search using N–9999**
  Instead of sequentially searching for files by specifying actual file numbers every time, the user can specify the first file number, then find the subsequent files by specifying N–9999. When N–9999 is specified, the time required for file search can be reduced.

---

### Inputting a program

**Procedure**

1. Press soft key [PRGRM] on the ALL IO screen, described in Section III–8.10.1.

2. Select EDIT mode. A program directory is displayed.

3. Press soft key [(OPRT)]. The screen and soft keys change as shown below.
   - A program directory is displayed only in EDIT mode. In all other modes, the ALL IO screen is displayed.

![Program Directory](image)

4. To specify a program number to be assigned to an input program, enter address O, followed by the desired program number. If no program number is specified, the program number in the file or on the NC tape is assigned as is.
5 Press soft key [READ], then [EXEC].
The program is input with the program number specified in step 4 assigned.
To cancel input, press soft key [CAN].
To stop input prior to its completion, press soft key [STOP].

Outputting a program

Procedure

1 Press soft key [PRGRM] on the ALL IO screen, described in Section III–8.10.1.

2 Select EDIT mode. A program directory is displayed.

3 Press soft key [(OPRT)]. The screen and soft keys change as shown below.

- A program directory is displayed only in EDIT mode. In all other modes, the ALL IO screen is displayed.

4 Enter address O.

5 Enter a desired program number.
If –9999 is entered, all programs in memory are output.
To output a range of programs, enter OAAAAA, OBBBBB. The programs numbered from AAAAAA to BBBBBB are output.
When bit 4 (SOR) of parameter No. 3107 for sorted display is set to 1 on the program directory screen, programs are output in order, starting from those having the smallest program numbers.

6 Press soft key [PUNCH], then [EXEC].
The specified program or programs are output. If steps 4 and 5 are omitted, the currently selected program is output.
To cancel output, press soft key [CAN].
To stop output prior to its completion, press soft key [STOP].
Deleting files

**Procedure**

1. Press soft key [PRGRM] on the ALL IO screen, described in Section III–8.10.1.

2. Select EDIT mode. A program directory is displayed.

3. Press soft key [(OPRT)]. The screen and soft keys change as shown below.
   - A program directory is displayed only in EDIT mode. In all other modes, the ALL IO screen is displayed.

4. Press soft key [DELETE].

5. Enter a file number, from 1 to 9999, to indicate the file to be deleted.

6. Press soft key [EXEC].
The k-th file, specified in step 5, is deleted.

**Explanations**

- **File numbers after deletion**
  
  After deletion of the k-th file, the previous file numbers (k+1) to n are decremented by 1 to k to (n–1).

  Before deletion  | After deletion
  | 1 to (k–1)     | 1 to (k–1)
  | k              | Deleted
  | (k+1) to n     | k to (n–1)

- **Write protect**

  Before a file can be deleted, the write protect switch of the cassette must be set to make the cassette writable.
8.10.3 Inputting and Outputting Parameters

Parameters can be input and output using the ALL IO screen.

Inputting parameters

Procedure

1. Press soft key [PARAM] on the ALL IO screen, described in Section III–8.10.1.

2. Select EDIT mode.

3. Press soft key [(OPRT)]. The screen and soft keys change as shown below.

<table>
<thead>
<tr>
<th>READ/PUNCH (PARAMETER)</th>
<th>O1234 N12345</th>
</tr>
</thead>
<tbody>
<tr>
<td>I/O CHANNEL</td>
<td>1</td>
</tr>
<tr>
<td>DEVICE NUM.</td>
<td>0</td>
</tr>
<tr>
<td>BAUDRATE</td>
<td>4800</td>
</tr>
<tr>
<td>STOP BIT</td>
<td>2</td>
</tr>
<tr>
<td>NULL INPUT (EIA)</td>
<td>NO</td>
</tr>
<tr>
<td>TV CHECK (NOTES)</td>
<td>ON</td>
</tr>
<tr>
<td>TV CHECK (ISO)</td>
<td>OFF</td>
</tr>
<tr>
<td>PUNCH CODE</td>
<td>ISO</td>
</tr>
<tr>
<td>INPUT CODE</td>
<td>ASCII</td>
</tr>
<tr>
<td>FEED OUTPUT (EIA)</td>
<td>NO</td>
</tr>
<tr>
<td>EOB OUTPUT (ISO)</td>
<td>CR</td>
</tr>
</tbody>
</table>

4. Press soft key [READ], then [EXEC].

The parameters are read, and the “INPUT” indicator blinks at the lower–right corner of the screen. Upon the completion of input, the “INPUT” indicator is cleared from the screen.

To cancel input, press soft key [CAN].
Outputting parameters

**Procedure**

1. Press soft key [PARAM] on the ALL IO screen, described in Section III–8.10.1.

2. Select EDIT mode.

3. Press soft key [(OPRT)]. The screen and soft keys change as shown below.

```
READ/PUNCH (PARAMETER) O1234 N12345
I/O CHANNEL 1 TV CHECK OFF
DEVICE NUM. 0 PUNCH CODE ISO
BAUDRATE 4800 INPUT CODE ASCII
STOP BIT 2 FEED OUTPUT FEED
NULL INPUT (EIA) NO EOB OUTPUT (ISO) CR
TV CHECK (NOTES) ON
(0:EIA 1:ISO)>1_
MDI **** *** *** *** 12:34:56
```

4. Press soft key [PUNCH], then [EXEC].

The parameters are output, and the “OUTPUT” indicator blinks at the lower–right corner of the screen. Upon the completion of output, the “OUTPUT” indicator is cleared from the screen.

To cancel output, press soft key [CAN].
Offset data can be input and output using the ALL IO screen.

### Inputting offset data

#### Procedure

1. Press soft key [OFFSET] on the ALL IO screen, described in Section III–8.10.1.
2. Select EDIT mode.
3. Press soft key [(OPRT)]. The screen and soft keys change as shown below.

```
READ/PUNCH (OFFSET) O1234 N12345
I/O CHANNEL 1 TV CHECK OFF
DEVICE NUM. 0 PUNCH CODE ISO
BAUDRATE 4800 INPUT CODE ASCII
STOP BIT 2 FEED OUTPUT FEED
NULL INPUT (EIA) NO EOB OUTPUT (ISO) CR
TV CHECK (NOTES) ON
```

(0:EIA 1:ISO)>1_

MDI  ****  ***  ***  ***  12:34:56

4. Press soft key [READ], then [EXEC].

The offset data is read, and the “INPUT” indicator blinks at the lower–right corner of the screen. Upon the completion of input, the “INPUT” indicator is cleared from the screen.

To cancel input, press soft key [CAN].
Outputting offset data

**Procedure**

1. Press soft key [OFFSET] on the ALL IO screen, described in Section III–8.10.1.

2. Select EDIT mode.

3. Press soft key [(OPRT)]. The screen and soft keys change as shown below.

```
READ/PUNCH (OFFSET) O1234 N12345
I/O CHANNEL 1 TV CHECK OFF
DEVICE NUM. 0 PUNCH CODE ISO
BAUDRATE 4800 INPUT CODE ASCII
STOP BIT 2 FEED OUTPUT FEED
NULL INPUT (EIA) NO EOB OUTPUT (ISO) CR
TV CHECK (NOTES) ON

(0:EIA 1:ISO)>1_
MDI 12:34:56
```

4. Press soft key [PUNCH], then [EXEC].

The offset data is output, and the “OUTPUT” indicator blinks at the lower–right corner of the screen. Upon the completion of output, the “OUTPUT” indicator is cleared from the screen. To cancel output, press soft key [CAN].
8.10.5 Outputting Custom Macro Common Variables

Custom macro common variables can be output using the ALL IO screen.

### Outputting custom macro common variables

**Procedure**

1. Press soft key [MACRO] on the ALL IO screen, described in Section III–8.10.1.

2. Select EDIT mode.

3. Press soft key [(OPRT)]. The screen and soft keys change as shown below.

```
READ/PUNCH (MACRO) O1234 N12345
I/O CHANNEL 1 TV CHECK OFF
DEVICE NUM. 0 PUNCH CODE ISO
BAUDRATE 4800 INPUT CODE ASCII
STOP BIT 2 FEED OUTPUT FEED
NULL INPUT (EIA) NO EOB OUTPUT (ISO) CR
TV CHECK (NOTES) ON

(0:EIA 1:ISO)>1_
MDI **** *** *** *** 12:34:56

() () () () () () () () ()
```

4. Press soft key [PUNCH], then [EXEC]. The custom macro common variables are output, and the “OUTPUT” indicator blinks at the lower-right corner of the screen. Upon the completion of output, the “OUTPUT” indicator is cleared from the screen.

To cancel output, press soft key [CAN].

**NOTE**

To input a macro variable, read the desired custom macro statement as a program, then execute the program.
The ALL IO screen supports the display of a directory of floppy files, as well as the input and output of floppy files.

### Displaying a file directory

**Procedure**

1. Press the rightmost soft key (continuous menu key) on the ALL IO screen, described in Section III–8.10.1.

2. Press soft key [FLOPPY].

3. Select EDIT mode. The floppy screen is displayed.

4. Press soft key [OPRT]. The screen and soft keys change as shown below. The floppy screen is displayed only in EDIT mode. In all other modes, the ALL IO screen is displayed.

5. Press soft key [F SRH].

6. Enter the number of the desired file, then press soft key [F SET].
7 Press soft key **[EXEC]**. A directory is displayed, with the specified file uppermost. Subsequent files in the directory can be displayed by pressing the page key.

<table>
<thead>
<tr>
<th>READ/PUNCH (FLOPPY)</th>
<th>O1234 N12345</th>
</tr>
</thead>
<tbody>
<tr>
<td>No.</td>
<td>FILE NAME</td>
</tr>
<tr>
<td>0001</td>
<td>PARAMETER</td>
</tr>
<tr>
<td>0002</td>
<td>ALL PROGRAM</td>
</tr>
<tr>
<td>0003</td>
<td>O0001</td>
</tr>
<tr>
<td>0004</td>
<td>O0002</td>
</tr>
<tr>
<td>0005</td>
<td>O0003</td>
</tr>
<tr>
<td>0006</td>
<td>O0004</td>
</tr>
<tr>
<td>0007</td>
<td>O0005</td>
</tr>
<tr>
<td>0008</td>
<td>O0010</td>
</tr>
<tr>
<td>0009</td>
<td>O0020</td>
</tr>
</tbody>
</table>

**F SRH**
File No.=2

**EDIT**

12:34:56

A directory in which the first file is uppermost can be displayed simply by pressing the page key. (Soft key **[F SRH]** need not be pressed.)
**Inputting a file**

**Procedure**

1. Press the rightmost soft key (continuous menu key) on the ALL IO screen, described in Section III–8.10.1.

2. Press soft key [FLOPPY].

3. Select EDIT mode. The floppy screen is displayed.

4. Press soft key [(OPRT)]. The screen and soft keys change as shown below. The floppy screen is displayed only in EDIT mode. In all other modes, the ALL IO screen is displayed.

   ```plaintext
 READ/PUNCH (FLOPPY) O1234 N12345

 READ/PUNCH (FLOPPY)

 > MDI
 * * * * * * * 12:34:56
 (F SRH) (READ) (PUNCH) (DELETE)

 (F SET) (O SET) (STOP) (CAN) (EXEC)
   ```

5. Press soft key [READ].

6. Enter the number of a file or program to be input.
   - Setting a file number: Enter the number of the desired file, then press soft key [F SET].
   - Setting a program number: Enter the number of the desired program, then press soft key [O SET].

7. Press soft key [EXEC].
   The specified file or program is read, and the “INPUT” indicator blinks at the lower–right corner of the screen. Upon the completion of input, the “INPUT” indicator is cleared from the screen.
Outputting a file

**Procedure**

1. Press the rightmost soft key ➔ (continuous menu key) on the ALL IO screen, described in Section III–8.10.1.

2. Press soft key [FLOPPY].

3. Select EDIT mode. The floppy screen is displayed.

4. Press soft key [(OPRT)]. The screen and soft keys change as shown below.
   The floppy screen is displayed only in EDIT mode. In all other modes, the ALL IO screen is displayed.

5. Press soft key [PUNCH].

6. Enter the number of the program to be output, together with a desired output file number.
   - Setting a file number: Enter the number of the desired file, then press soft key [F SET].
   - Setting a program number: Enter the number of the desired program, then press soft key [O SET].

7. Press soft key [EXEC].
   The specified program is output, and the “OUTPUT” indicator blinks at the lower–right corner of the screen. Upon the completion of output, the “OUTPUT” indicator is cleared from the screen.
   If no file number is specified, the program is written at the end of the currently registered files.
Deleting a file

**Procedure**

1. Press the rightmost soft key (continuous menu key) on the ALL IO screen, described in Section III–8.10.1.

2. Press soft key [FLOPPY].

3. Select EDIT mode. The floppy screen is displayed.

4. Press soft key [(OPRT)]. The screen and soft keys change as shown below. The floppy screen is displayed only in EDIT mode. In all other modes, the ALL IO screen is displayed.

```
READ/PUNCH (FLOPPY) O1234 N12345

MDI **** *** *** *** 12:34:56
(F SRH) (READ) (PUNCH) (DELETE) ()
```

5. Press soft key [DELETE].

6. Enter the number of the desired file, then press soft key [F SET].

7. Press soft key [EXEC]. The specified file is deleted. After the file has been deleted, the subsequent files are shifted up.
By setting the I/O channel (parameter No. 0020) to 4, files on a memory card inserted into the memory card interface located to the left of the display can be referenced. Different types of data such as part programs, parameters, and offset data on a memory card can also be input and output in text file format.

The major functions are listed below.

- Displaying a directory of stored files
  The files stored on a memory card can be displayed on the directory screen.
- Searching for a file
  A search is made for a file on a memory card and, if found, it is displayed on the directory screen.
- Reading a file
  Text-format files can be read from a memory card.
- Writing a file
  Data such as part programs can be stored to a memory card in text file format.
- Deleting a file
  A file can be selected and deleted from a memory card.
Displaying a directory of stored files

**Procedure**

1. Press the EDIT switch on the machine operator’s panel.

2. Press function key \[ \text{PROG} \].

3. Press the rightmost soft key \[ \text{[} \text{[def]} \text{]} \] (next-menu key).

4. Press soft key \[ \text{[CARD]} \]. The screen shown below is displayed. Using page keys \[ \text{[} \text{[up]} \text{]} \] and \[ \text{[} \text{[down]} \text{]} \], the screen can be scrolled.

```
<table>
<thead>
<tr>
<th>No.</th>
<th>FILE NAME</th>
<th>SIZE</th>
<th>DATE</th>
</tr>
</thead>
<tbody>
<tr>
<td>0001</td>
<td>O1000</td>
<td>123456</td>
<td>96/07/10</td>
</tr>
<tr>
<td>0002</td>
<td>O1001</td>
<td>8458</td>
<td>96/07/30</td>
</tr>
<tr>
<td>0003</td>
<td>O0002</td>
<td>3250</td>
<td>96/07/30</td>
</tr>
<tr>
<td>0004</td>
<td>O2000</td>
<td>73456</td>
<td>96/07/31</td>
</tr>
<tr>
<td>0005</td>
<td>O2001</td>
<td>3444</td>
<td>96/07/31</td>
</tr>
<tr>
<td>0006</td>
<td>O3001</td>
<td>8483</td>
<td>96/08/02</td>
</tr>
<tr>
<td>0007</td>
<td>O3000</td>
<td>406</td>
<td>96/08/05</td>
</tr>
<tr>
<td>0008</td>
<td>O3400</td>
<td>2420</td>
<td>96/07/31</td>
</tr>
<tr>
<td>0009</td>
<td>O3500</td>
<td>7460</td>
<td>96/07/31</td>
</tr>
</tbody>
</table>
```

5. Comments relating to each file can be displayed by pressing soft key \[ \text{[CARD]} \].

```
<table>
<thead>
<tr>
<th>No.</th>
<th>FILE NAME</th>
<th>COMMENT</th>
</tr>
</thead>
<tbody>
<tr>
<td>0001</td>
<td>O1000</td>
<td>(COMMENT)</td>
</tr>
<tr>
<td>0002</td>
<td>O1001</td>
<td>(SUB PROGRAM)</td>
</tr>
<tr>
<td>0003</td>
<td>O0002</td>
<td>(12345678)</td>
</tr>
<tr>
<td>0004</td>
<td>O2000</td>
<td></td>
</tr>
<tr>
<td>0005</td>
<td>O2001</td>
<td></td>
</tr>
<tr>
<td>0006</td>
<td>O3001</td>
<td>(SKIP–K)</td>
</tr>
<tr>
<td>0007</td>
<td>O3300</td>
<td>(HI–SPEED)</td>
</tr>
<tr>
<td>0008</td>
<td>O3400</td>
<td></td>
</tr>
<tr>
<td>0009</td>
<td>O3500</td>
<td>(TEST PROGRAM)</td>
</tr>
</tbody>
</table>
```

6. Repeatedly pressing soft key \[ \text{[CARD]} \] toggles the screen between the display of comments and the display of sizes and dates.

Any comment described after the O number in the file is displayed.
Up to 18 characters can be displayed on the screen.
Searching for a file

Procedure

1. Press the EDIT switch on the machine operator’s panel.

2. Press function key [PROG].

3. Press the rightmost soft key [>] (next-menu key).

4. Press soft key [CARD]. The screen shown below is displayed.

```
PROG (OPRT) DIR
DIRECTORY (M–CARD) O0034 N00045
+-------------------------+----------+------------------+
<table>
<thead>
<tr>
<th>No.</th>
<th>FILE NAME</th>
<th>SIZE</th>
<th>DATE</th>
</tr>
</thead>
<tbody>
<tr>
<td>0001</td>
<td>O1000</td>
<td>123456</td>
<td>96/07/10</td>
</tr>
<tr>
<td>0002</td>
<td>O1001</td>
<td>8458</td>
<td>96/07/30</td>
</tr>
<tr>
<td>0003</td>
<td>O0002</td>
<td>3250</td>
<td>96/07/30</td>
</tr>
<tr>
<td>0004</td>
<td>O2000</td>
<td>73456</td>
<td>96/07/31</td>
</tr>
<tr>
<td>0005</td>
<td>O2001</td>
<td>3444</td>
<td>96/07/31</td>
</tr>
<tr>
<td>0006</td>
<td>O3001</td>
<td>8483</td>
<td>96/08/02</td>
</tr>
<tr>
<td>0007</td>
<td>O3300</td>
<td>406</td>
<td>96/08/05</td>
</tr>
<tr>
<td>0008</td>
<td>O3400</td>
<td>2420</td>
<td>96/07/31</td>
</tr>
<tr>
<td>0009</td>
<td>O3500</td>
<td>7460</td>
<td>96/07/31</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>
```

5. Press soft key [(OPRT)].

6. Set the number of the desired file number with soft key [F SRH]. Then, start the search by pressing soft key [EXEC]. If found, the file is displayed at the top of the directory screen.

When a search is made for file number 19
Reading a file

Procedure

1. Press the EDIT switch on the machine operator’s panel.
2. Press function key PROG.
3. Press the rightmost soft key (next-menu key).
4. Press soft key [CARD]. Then, the screen shown below is displayed.

```
DIRECTORY (M–CARD) O0034 N00045
 No. FILE NAME SIZE DATE
 0001 O1000 123456 96/07/10
 0002 O1001 8458 96/07/30
 0003 O0002 3250 96/07/30
 0004 O2000 73456 96/07/31
 0005 O2001 3444 96/07/31
 0006 O3001 8483 96/08/02
 0007 O3300 406 96/08/05
 0008 O3400 2420 96/07/31
 0009 O3500 7460 96/07/31
```

5. Press soft key [(OPRT)].
6. To specify a file number, press soft key [F READ]. The screen shown below is displayed.

```
DIRECTORY (M–CARD) O0001 N00010
 No. FILE NAME COMMENT
 0019 O1000 (MAIN PROGRAM)
 0020 O1010 (SUBPROGRAM–1)
 0021 O1030 (COMMENT)
```

7. Enter file number 20 from the MDI panel, then set the file number by pressing soft key [F SET]. Next, enter program number 120, then set the program number by pressing soft key [O SET]. Then, press soft key [EXEC].
   - File number 20 is registered as O0120 in the CNC.
   - Set a program number to register a read file with a separate O number. If no program number is set, the O number in the file name column is registered.
8 To specify a file with its file name, press soft key [N READ] in step 6 above. The screen shown below is displayed.

```
<table>
<thead>
<tr>
<th>No.</th>
<th>FILE NAME</th>
<th>COMMENT</th>
</tr>
</thead>
<tbody>
<tr>
<td>0012</td>
<td>O0050</td>
<td>(MAIN PROGRAM)</td>
</tr>
<tr>
<td>0013</td>
<td>TESTPRO</td>
<td>(SUB PROGRAM–1)</td>
</tr>
<tr>
<td>0014</td>
<td>O0060</td>
<td>(MACRO PROGRAM)</td>
</tr>
</tbody>
</table>
```

READ     FILE NAME = TESTPRO
PROGRAM No. = 1230
>
EDIT     15:40:21

9 To register file name TESTPRO as O1230, enter file name TESTPRO from the MDI panel, then set the file name with soft key [F NAME]. Next, enter program number 1230, then set the program number with soft key [O SET]. Then, press soft key [EXEC].
Writing a file

**Procedure**

1. Press the EDIT switch on the machine operator’s panel.
2. Press function key \[\text{PROG}\].
3. Press the rightmost soft key \[	ext{[next-menu key]}\].
4. Press soft key \[\text{[CARD]}\]. The screen shown below is displayed.

   ![Screen Display](image)

5. Press soft key \[\text{[(OPRT)]}\].
6. Press soft key \[\text{[PUNCH]}\].
7. Enter a desired O number from the MDI panel, then set the program number with soft key \[\text{[O SET]}\].
   When soft key \[\text{[EXEC]}\] is pressed after the setting shown below has been made, for example, the file is written under program number O1230.

   ![Setting Screen](image)

8. In the same way as for O number setting, enter a desired file name from the MDI panel, then set the file name with soft key \[\text{[F SET]}\].
   When soft key \[\text{[EXEC]}\] is pressed after the setting shown below has been made, for example, the file is written under program number O1230 and file name ABCD12.

   ![Setting Screen](image)
Explanations

- **Registering the same file name**
  
  When a file is output to the memory card, another file having the same name may already exist in the memory card. Bit 6 (OWM) of parameter No. 0138 can be used to select whether to overwrite the existing file unconditionally or display a message confirming the overwriting.
  
  A message appears when OWM is 0; overwriting occurs unconditionally when OWM is 1. Even when OWM is 0, however, file overwriting occurs unconditionally if the overwriting is specified by the screen hardcopy function or an operation on the maintenance information screen or PMC screen.

- **Writing all programs**

  To write all programs, set program number = –9999. If no file name is specified in this case, file name PROGRAM.ALL is used for registration.

- **File name restrictions**

  The following restrictions are imposed on file name setting:

  - Not longer than 8 characters
  - Extension not longer than 3 characters
Deleting a file

**Procedure**

1. Press the EDIT switch on the machine operator’s panel.
2. Press function key \(\text{PROG}\).
3. Press the rightmost soft key \(\text{\(\rightarrow\)}\) (next-menu key).
4. Press soft key \([\text{CARD}]\). The screen shown below is displayed.

   ![Directory Screen](image)

5. Press soft key \([\text{(OPRT)}]\).
6. Set the number of the desired file with soft key \([\text{DELETE}]\), then press soft key \([\text{EXEC}]\). The file is deleted, and the directory screen is displayed again.

   **When file number 21 is deleted**

   ![Directory Screen After Deletion](image)

   File O1020 is deleted.

   ![Directory Screen After Assignment](image)

   File number 21 is assigned to the next file name.
Batch input/output with a memory card

On the ALL IO screen, different types of data including part programs, parameters, offset data, pitch error data, custom macros, and workpiece coordinate system data can be input and output using a memory card; the screen for each type of data need not be displayed for input/output.

Procedure

1. Press the EDIT switch on the machine operator’s panel.
2. Press function key [SYSTEM].
3. Press the rightmost soft key (next–menu key) several times.
4. Press soft key [ALL IO]. The screen shown below is displayed.

<table>
<thead>
<tr>
<th>READ/PUNCH (PROGRAM)</th>
<th>O0001 N00001</th>
</tr>
</thead>
<tbody>
<tr>
<td>No.</td>
<td>FILE NAME</td>
</tr>
<tr>
<td>*0001</td>
<td>O0222</td>
</tr>
<tr>
<td>*0002</td>
<td>O1003</td>
</tr>
<tr>
<td>*0003</td>
<td>MACROVAR.DAT</td>
</tr>
<tr>
<td>*0004</td>
<td>O0002</td>
</tr>
</tbody>
</table>

[PROGRAM]
- O0001 O0002 O0003 O0005 O0100 O0020
- O0006 O0004 O0110 O0200 O2200 O0441
- O0330

> EDIT ... **** ... ***** 10:07:37

[ PROG ] [ PARAM ] [ OFFSET ] [ ] [ OPRT ]

Upper part: Directory of files on the memory card
Lower part: Directory of registered programs

5. With cursor keys [↑] and [↓], the user can choose between upper part scrolling and lower part scrolling. (An asterisk (*) displayed at the left edge indicates the part for which scrolling is possible.)

[↑]: Used for memory card file directory scrolling.
[↓]: Used for program directory scrolling.

6. With page keys [PAGE] and [PAGE], scroll through the file directory or program directory.
Explanations

- Each data item

When this screen is displayed, the program data item is selected. The soft keys for other screens are displayed by pressing the rightmost soft key (next-menu key).

When a data item other than program is selected, the screen displays only a file directory.
A data item is indicated, in parentheses, on the title line.

```
<table>
<thead>
<tr>
<th>READ/PUNCH (PARAMETER)</th>
<th>O0001 N00001</th>
</tr>
</thead>
<tbody>
<tr>
<td>No.</td>
<td>FILE NAME</td>
</tr>
<tr>
<td>0001</td>
<td>O0222</td>
</tr>
<tr>
<td>0002</td>
<td>O1003</td>
</tr>
<tr>
<td>0003</td>
<td>MACROVAR.DAT</td>
</tr>
<tr>
<td>0004</td>
<td>O0003</td>
</tr>
<tr>
<td>0005</td>
<td>O0001</td>
</tr>
<tr>
<td>0006</td>
<td>O0002</td>
</tr>
<tr>
<td>0007</td>
<td>CNCPARAM.DAT</td>
</tr>
</tbody>
</table>
```

- Program directory display

Program directory display does not match bit 0 (NAM) of parameter No. 3107, or bit 4 (SOR) of parameter No. 3107.

- Using each function

Display the following soft keys with soft key [(OPRT)].

```
[F SRH] [F READ] [N READ] [PUNCH] [DELETE]
```

The operation of each function is the same as on the directory (memory card) screen. Soft key [O SET], used for program number setting, and the "PROGRAM NUMBER =" indication are not displayed for data items other than program.

- [F SRH] : Finds a specified file number.
- [F READ] : Reads a specified file number.
- [N READ] : Reads a file under a specified file name.
- [DELETE] : Deletes a specified file number.

**NOTE**

With a memory card, RMT mode operation and the subprogram call function (based on the M198 command) cannot be used.
### File format and error messages

#### Format

All files that are read from and written to a memory card are of text format. The format is described below.

A file starts with `%` or LF, followed by the actual data. A file always ends with `%`. In a read operation, data between the first `%` and the next LF is skipped. Each block ends with an LF, not a semicolon (`;`).

- **LF**: 0A (hexadecimal) of ASCII code
- When a file containing lowercase letters, kana characters, and several special characters (such as $, \, and !) is read, those letters and characters are ignored.

**Example:**

```
% O0001(MEMORY CARD SAMPLE FILE)
G17 G49 G97
G92 X–11.3 Y2.33
.
.
M30 %
```

- ASCII code is used for input/output, regardless of the setting parameter (ISO/EIA).
- Bit 3 of parameter No. 0100 can be used to specify whether the end of block code (EOB) is output as "LF" only, or as "LF, CR, CR."

#### Error messages

If an error occurs during memory card input/output, a corresponding error message is displayed.

```
× × × × 0028 0003 7382 01–06–14
M–CARD ERROR × × × × FILE No. = 1 PROGRAM No. =13
>_< EDIT ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ 15:40:21
{ F SET }{ O SET }{ STOP }{ CAN }{ EXEC }
```

`× × × ×` represents a memory card error code.
# Memory Card Error Codes

<table>
<thead>
<tr>
<th>Code</th>
<th>Meaning</th>
</tr>
</thead>
<tbody>
<tr>
<td>99</td>
<td>A part preceding the FAT area on the memory card is destroyed.</td>
</tr>
<tr>
<td>102</td>
<td>The memory card does not have sufficient free space.</td>
</tr>
<tr>
<td>105</td>
<td>No memory card is mounted.</td>
</tr>
<tr>
<td>106</td>
<td>A memory card is already mounted.</td>
</tr>
<tr>
<td>110</td>
<td>The specified directory cannot be found.</td>
</tr>
<tr>
<td>111</td>
<td>There are too many files under the root directory to allow a directory to be added.</td>
</tr>
<tr>
<td>114</td>
<td>The specified file cannot be found.</td>
</tr>
<tr>
<td>115</td>
<td>The specified file is protected.</td>
</tr>
<tr>
<td>117</td>
<td>The file has not yet been opened.</td>
</tr>
<tr>
<td>118</td>
<td>The file is already open.</td>
</tr>
<tr>
<td>119</td>
<td>The file is locked.</td>
</tr>
<tr>
<td>121</td>
<td>The memory card does not have sufficient free space.</td>
</tr>
<tr>
<td>122</td>
<td>The specified file name is invalid.</td>
</tr>
<tr>
<td>124</td>
<td>The extension of the specified file is invalid.</td>
</tr>
<tr>
<td>129</td>
<td>A non–corresponding function was specified.</td>
</tr>
<tr>
<td>130</td>
<td>The specification of a device is invalid.</td>
</tr>
<tr>
<td>131</td>
<td>The specification of a pathname is invalid.</td>
</tr>
<tr>
<td>133</td>
<td>Multiple files are open at the same time.</td>
</tr>
<tr>
<td>135</td>
<td>The device is not formatted.</td>
</tr>
<tr>
<td>140</td>
<td>The file has the read/write disabled attribute.</td>
</tr>
</tbody>
</table>
This chapter describes how to edit programs registered in the CNC. Editing includes the insertion, modification, deletion, and replacement of words. Editing also includes deletion of the entire program and automatic insertion of sequence numbers. The extended part program editing function can copy, move, and merge programs. This chapter also describes program number search, sequence number search, word search, and address search, which are performed before editing the program.

1) Program number search: See Section III–9.3.
2) Sequence number search: See Section III–9.4.
4) Address search: See Section III–9.1.1.
5) Inserting, altering, and deleting words: See Subsections III–9.1.3 to 9.1.5.
8) Copying, moving, and merging programs: See Subsections III–9.6.1 to 9.6.5
9) Deleting programs: See section III–9.5.
9.1 INSERTING, ALTERING AND DELETING A WORD

This section outlines the procedure for inserting, modifying, and deleting a word in a program registered in memory.

### Procedure for inserting, altering and deleting a word

1. Select **EDIT** mode.
2. Press **PROG**.
3. Select a program to be edited.
   - If a program to be edited is selected, perform the operation 4.
   - If a program to be edited is not selected, search for the program number.
4. Search for a word to be modified.
   - Scan method
   - Word search method
5. Perform an operation such as altering, inserting, or deleting a word.

### Explanation

- **Concept of word and editing unit**

  A word is an address followed by a number. With a custom macro, the concept of word is ambiguous. So the editing unit is considered here.

  The editing unit is a unit subject to alteration or deletion in one operation.

  In one scan operation, the cursor indicates the start of an editing unit.

  An insertion is made after an editing unit.

  **Definition of editing unit**

  (i) Program portion from an address to immediately before the next address

  (ii) An address is an alphabet, **IF, WHILE, GOTO, END, DO=, or ; (EOB)**.

  According to this definition, a word is an editing unit.

  The word “word,” when used in the description of editing, means an editing unit according to the precise definition.

### WARNING

The user cannot continue program execution after altering, inserting, or deleting data of the program by suspending machining in progress by means of an operation such as a single block stop or feed hold operation during program execution. If such a modification is made, the program may not be executed exactly according to the contents of the program displayed on the screen after machining is resumed. So, when the contents of memory are to be modified by part program editing, be sure to enter the reset state or reset the system upon completion of editing before executing the program.
9.1.1 Word Search

A word can be searched for by merely moving the cursor through the text (scanning), by word search, or by address search.

Procedure for scanning a program

1. Press the cursor key →
   The cursor moves forward word by word on the screen; the cursor is displayed at a selected word.

2. Press the cursor key ←
   The cursor moves backward word by word on the screen; the cursor is displayed at a selected word.

Example) When Z1250.0 is scanned

<table>
<thead>
<tr>
<th>Program</th>
<th>O0050</th>
<th>N01234</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>O0050 ;</td>
<td>N01234 X100.0</td>
</tr>
<tr>
<td></td>
<td>S12 ;</td>
<td>N56789 M03 ;</td>
</tr>
<tr>
<td></td>
<td>M02 ;</td>
<td>%</td>
</tr>
</tbody>
</table>

3. Holding down the cursor key → or ← scans words continuously.

4. The first word of the next block is searched for when the cursor key ↓ is pressed.

5. The first word of the previous block is searched for when the cursor key ↑ is pressed.

6. Holding down the cursor key ↓ or ↑ moves the cursor to the head of a block continuously.

7. Pressing the page key ↓ displays the next page and searches for the first word of the page.

8. Pressing the page key ↑ displays the previous page and searches for the first word of the page.

9. Holding down the page key ↓ or ↑ displays one page after another.
Procedure for searching a word

Example) of Searching for S12

<table>
<thead>
<tr>
<th>PROGRAM</th>
<th>O0050 N01234</th>
</tr>
</thead>
<tbody>
<tr>
<td>O0050 ;</td>
<td></td>
</tr>
<tr>
<td>N01234</td>
<td></td>
</tr>
<tr>
<td>S12 ;</td>
<td></td>
</tr>
<tr>
<td>N56789</td>
<td>M03 ;</td>
</tr>
<tr>
<td>M02 ;</td>
<td>%</td>
</tr>
</tbody>
</table>

1. Key in address S.

2. Key in 1 2.
   - S12 cannot be searched for if only S1 is keyed in.
   - S09 cannot be searched for by keying in only S9.
     To search for S09, be sure to key in S09.

3. Pressing the [SRH↓] key starts search operation.
   Upon completion of search operation, the cursor is displayed at S12.
   Pressing the [SRH↑] key rather than the [SRH↓] key performs search operation in the reverse direction.

Procedure for searching an address

Example) of Searching for M03

<table>
<thead>
<tr>
<th>PROGRAM</th>
<th>O0050 N01234</th>
</tr>
</thead>
<tbody>
<tr>
<td>O0050 ;</td>
<td></td>
</tr>
<tr>
<td>N01234</td>
<td>X100.0 Z1250.0</td>
</tr>
<tr>
<td>S12 ;</td>
<td></td>
</tr>
<tr>
<td>N56789</td>
<td>M03 ;</td>
</tr>
<tr>
<td>M02 ;</td>
<td>%</td>
</tr>
</tbody>
</table>

1. Key in address M.

2. Press the [SRH↓] key.
   Upon completion of search operation, the cursor is displayed at M03.
   Pressing the [SRH↑] key rather than the [SRH↓] key performs search operation in the reverse direction.

Alarm

<table>
<thead>
<tr>
<th>Alarm number</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>71</td>
<td>The word or address being searched for was not found.</td>
</tr>
</tbody>
</table>
9.1.2 Heading a Program

The cursor can be jumped to the top of a program. This function is called heading the program pointer. This section describes the three methods for heading the program pointer.

Procedure for Heading a Program

**Method 1**

1. Press \[RESET\] when the program screen is selected in EDIT mode. When the cursor has returned to the start of the program, the contents of the program are displayed from its start on the screen.

**Method 2**

Search for the program number.

1. Press address \[O\], when a program screen is selected in the MEMORY or EDIT mode.
2. Input a program number.
3. Press the soft key \[O SRH\].

**Method 3**

1. Select MEMORY or EDIT mode.
2. Press \[PROG\].
3. Press the \[(OPRT)\] key.
4. Press the \[REWIND\] key.
9.1.3 Inserting a Word

Procedure for inserting a word

1. Search for or scan the word immediately before a word to be inserted.
2. Key in an address to be inserted.
3. Key in data.
4. Press the Insert key.

Example of Inserting T15

Procedure

1. Search for or scan Z1250.

   Program
   O0050 ;
   N01234 X100.0 \textcolor{red}{Z1250.0} ;
   S12 ;
   N56789 M03 ;
   M02 ;
   %

   Z1250.0 is searched for/scanned.

2. Key in T15.

3. Press the Insert key.

   Program
   O0050 ;
   N01234 X100.0 Z1250.0 T15 ;
   S12 ;
   N56789 M03 ;
   M02 ;
   %

   T15 is inserted.
9.1.4 Altering a Word

Procedure for altering a word

1. Search for or scan a word to be altered.
2. Key in an address to be inserted.
3. Key in data.
4. Press the ALTER key.

Example of changing T15 to M15

Procedure

1. Search for or scan T15.

```
Program O0050 N01234
O0050 ;
N01234 X100.0 Z1250.0 T15 ;
S12 ;
N56789 M03 ;
M02 ;
%
```

T15 is searched for/scanned.

2. Key in M 1 5.

3. Press the ALTER key.

```
Program O0050 N01234
O0050 ;
N1234 X100.0 Z1250.0 M15 ;
S12 ;
N5678 M03 ;
M02 ;
%
```

T15 is changed to M15.
9.1.5 Deleting a Word

Procedure for deleting a word

1. Search for or scan a word to be deleted.
2. Press the \[ DELETE \] key.

Example of deleting X100.0

Procedure

1. Search for or scan X100.0.

\[
\text{Program} \\
\text{O0050 :} \\
\text{N01234 X100.0} \quad \text{Z1250.0 M15 ;} \\
\text{S12 ;} \\
\text{N56789 M03 ;} \\
\text{M02 ;} \\
\% \\
\]

X100.0 is searched for/ scanned.

2. Press the \[ DELETE \] key.

\[
\text{Program} \\
\text{O0050 :} \\
\text{N01234 Z1250.0 M15 ;} \\
\text{S12 ;} \\
\text{N56789 M03 ;} \\
\text{M02 ;} \\
\% \\
\]

X100.0 is deleted.
9.2 DELETING BLOCKS

9.2.1 Deleting a Block

A block or blocks can be deleted in a program.

The procedure below deletes a block up to its EOB code; the cursor advances to the next word.

Procedure for deleting a block

1. Search for or scan address N for a block to be deleted.
2. Key in EOB.
3. Press the DELETE key.

Example of deleting a block of No.1234

Procedure

1. Search for or scan N01234.

```
Program
O0050 ;
N01234 Z1250.0 M15 ;
S12 ;
N56789 M03 ;
M02 ;
%
```

N01234 is searched for/scanned.

2. Key in EOB.

3. Press the DELETE key.

```
Program
O0050 ;
S12 ;
N56789 M03 ;
M02 ;
%
```

Block containing N01234 has been deleted.
9.2.2 Deleting Multiple Blocks

The blocks from the currently displayed word to the block with a specified sequence number can be deleted.

Procedure for deleting multiple blocks

1. Search for or scan a word in the first block of a portion to be deleted.
2. Key in address N.
3. Key in the sequence number for the last block of the portion to be deleted.
4. Press the DELETE key.

Example of deleting blocks from a block containing N01234 to a block containing N56789

Procedure

1. Search for or scan N01234.

```
Program
O0050 ;
N01234 Z1250.0 M15 ;
S12 ;
N56789 M03 ;
M02 ;
%
```

N01234 is searched for/scanned.

2. Key in N 5 6 7 8 9 .

```
Program
O0050 ;
N01234 Z1250.0 M15 ;
S12 ;
N56789 M03 ;
M02 ;
%
```

Underlined part is deleted.

3. Press the DELETE key.

```
Program
O0050 ;
M02 ;
%
```

Blocks from block containing N01234 to block containing N56789 have been deleted.

NOTE

When there are too many blocks to be deleted, the P/S alarm (No.070) may occur. In this case, reduce the number of blocks to be deleted.
9.3 PROGRAM NUMBER SEARCH

When memory holds multiple programs, a program can be searched for. There are three methods as follows.

Procedure for program number search

**Method 1**

1. Select **EDIT** or **MEMORY** mode.
2. Press [PROG] to display the program screen.
3. Key in address [O].
4. Key in a program number to be searched for.
5. Press the [O SRH] key.
6. Upon completion of search operation, the program number searched for is displayed in the upper-right corner of the CRT screen. If the program is not found, P/S alarm No. 71 occurs.

**Method 2**

1. Select **EDIT** or **MEMORY** mode.
2. Press [PROG] to display the program screen.
   - In this case, the next program in the memory is searched for.

**Method 3**

This method searches for the program number (0001 to 0015) corresponding to a signal on the machine tool side to start automatic operation. Refer to the relevant manual prepared by the machine tool builder for detailed information on operation.

1. Select **MEMORY** mode.
2. Set the reset state(*1)
   - The reset state is the state where the LED for indicating that automatic operation is in progress is off. (Refer to the relevant manual of the machine tool builder.)
3. Set the program number selection signal on the machine tool side to a number from 01 to 15.
   - If the program corresponding to a signal on the machine tool side is not registered, P/S alarm (No. 059) is raised.
4. Press the cycle start button.
   - When the signal on the machine tool side represents 00, program number search operation is not performed.

**Alarm**

<table>
<thead>
<tr>
<th>Alarm No.</th>
<th>Contents</th>
</tr>
</thead>
<tbody>
<tr>
<td>59</td>
<td>The program with the selected number cannot be searched during external program number search.</td>
</tr>
<tr>
<td>71</td>
<td>The specified program number was not found during program number search.</td>
</tr>
</tbody>
</table>
9.4 SEQUENCE NUMBER SEARCH

Sequence number search operation is usually used to search for a sequence number in the middle of a program so that execution can be started or restarted at the block of the sequence number.

Example) Sequence number 02346 in a program (O0002) is searched for.

<table>
<thead>
<tr>
<th>Program</th>
<th>Selected program</th>
<th>Target sequence number is found.</th>
</tr>
</thead>
<tbody>
<tr>
<td>O0001 ; N01234 X100.0 Z100.0 ; S12 ;</td>
<td>O0002 ; N02345 X20.0 Z20.0 ; N02346 X10.0 Z10.0 ;</td>
<td>This section is searched starting at the beginning. (Search operation is performed only within a program.)</td>
</tr>
</tbody>
</table>

Procedure for sequence number search

1. Select MEMORY mode.

2. Press [PROG].

3. · If the program contains a sequence number to be searched for, perform the operations 4 to 7 below.
   · If the program does not contain a sequence number to be searched for, select the program number of the program that contains the sequence number to be searched for.

4. Key in address [N].

5. Key in a sequence number to be searched for.


7. Upon completion of search operation, the sequence number searched for is displayed in the upper-right corner of the CRT screen. If the specified sequence number is not found in the program currently selected, P/S alarm (No. 060) occurs.
Explanations

• Operation during Search

Those blocks that are skipped do not affect the CNC. This means that the data in the skipped blocks such as coordinates and M, S, and T codes does not alter the CNC coordinates and modal values. So, in the first block where execution is to be started or restarted by using a sequence number search command, be sure to enter required M, S, and T codes and coordinates. A block searched for by sequence number search usually represents a point of shifting from one process to another. When a block in the middle of a process must be searched for to restart execution at the block, specify M, S, and T codes, G codes, coordinates, and so forth as required from the MDI after closely checking the machine tool and CNC states at that point.

• Checking during search

During search operation, the following checks are made:
- Optional block skip
- P/S alarm (No. 003 to 010)

Restrictions

• Searching in sub-program

During sequence number search operation, M98Pxxxx (subprogram call) is not executed. So an P/S alarm (No.060) is raised if an attempt is made to search for a sequence number in a subprogram called by the program currently selected.

Alarm

<table>
<thead>
<tr>
<th>Alarm No.</th>
<th>Contents</th>
</tr>
</thead>
<tbody>
<tr>
<td>60</td>
<td>Command sequence number was not found in the sequence number search.</td>
</tr>
</tbody>
</table>
9.5 DELETING PROGRAMS

Programs registered in memory can be deleted, either one program by one program or all at once. Also, more than one program can be deleted by specifying a range.

9.5.1 Deleting One Program

A program registered in memory can be deleted.

**Procedure for deleting one program**

1. Select the **EDIT** mode.
2. Press **PROG** to display the program screen.
3. Key in address **O**.
4. Key in a desired program number.
5. Press the **DELETE** key.
   The program with the entered program number is deleted.

9.5.2 Deleting All Programs

All programs registered in memory can be deleted.

**Procedure for deleting all programs**

1. Select the **EDIT** mode.
2. Press **PROG** to display the program screen.
3. Key in address **O**.
5. Press edit key **DELETE** to delete all programs.
9.5.3
Deleting More Than One Program by Specifying a Range

Programs within a specified range in memory are deleted.

Procedure for deleting more than one program by specifying a range

1. Select the EDIT mode.

2. Press PROG to display the program screen.

3. Enter the range of program numbers to be deleted with address and numeric keys in the following format:
   OXXXX,OYYYY
   where XXXX is the starting number of the programs to be deleted and YYYYY is the ending number of the programs to be deleted.

4. Press edit key DELETE to delete programs No. XXXX to No. YYYYY.
9.6 EXTENDED PART PROGRAM EDITING FUNCTION

With the extended part program editing function, the operations described below can be performed using soft keys for programs that have been registered in memory.

Following editing operations are available:

- All or part of a program can be copied or moved to another program.
- One program can be merged at free position into other programs.
- A specified word or address in a program can be replaced with another word or address.
9.6.1 Copying an Entire Program

A new program can be created by copying a program.

In Fig. 9.6.1, the program with program number xxxx is copied to a newly created program with program number yyyy. The program created by copy operation is the same as the original program except the program number.

Procedure of copying an entire program

1. Enter the EDIT mode.

2. Press function key \( \text{PROG} \).

3. Press soft key \([\text{OPRT}]\).

4. Press the continuous menu key.

5. Press soft key \([\text{EX–EDT}]\).

6. Check that the screen for the program to be copied is selected and press soft key \([\text{COPY}]\).

7. Press soft key \([\text{ALL}]\).

8. Enter the number of the new program (with only numeric keys) and press the \([\text{INPUT}]\) key.

9. Press soft key \([\text{EXEC}]\).
9.6.2 Copying Part of a Program

A new program can be created by copying part of a program.

Fig. 9.6.2 Copying part of a program

In Fig. 9.6.2, part B of the program with program number xxxx is copied to a newly created program with program number yyyy. The program for which an editing range is specified remains unchanged after copy operation.

Procedure for copying part of a program

1. Perform steps 1 to 6 in subsection III–9.6.1.

   ![Figure showing steps 1 to 6]

2. Move the cursor to the start of the range to be copied and press soft key [CRSR-].

3. Move the cursor to the end of the range to be copied and press soft key [-CRSR] or [-BTTM] (in the latter case, the range to the end of the program is copied regardless of the position of the cursor).

4. Enter the number of the new program (with only numeric keys) and press the [INPUT] key.

5. Press soft key [EXEC].
9.6.3 Moving Part of a Program

A new program can be created by moving part of a program.

In Fig. 9.6.3, part B of the program with program number xxxx is moved to a newly created program with program number yyyy; part B is deleted from the program with program number xxxx.

**Procedure for moving part of a program**

1. Perform steps 1 to 5 in subsection III–9.6.1.

2. Check that the screen for the program to be moved is selected and press soft key [MOVE].

3. Move the cursor to the start of the range to be moved and press soft key [CRSR].

4. Move the cursor to the end of the range to be moved and press soft key [CRSR] or [BTTM](in the latter case, the range to the end of the program is copied regardless of the position of the cursor).

5. Enter the number of the new program (with only numeric keys) and press the INPUT key.

6. Press soft key [EXEC].
Another program can be inserted at an arbitrary position in the current program.

In Fig. 9.6.4, the program with program number XXXX is merged with the program with program number YYYY. The OYYYY program remains unchanged after merge operation.

**Procedure for merging a program**

1. Perform steps 1 to 5 in subsection III–9.6.1.
2. Check that the screen for the program to be edited is selected and press soft key [MERGE].
3. Move the cursor to the position at which another program is to be inserted and press soft key [\~]CRSR or [\~]BTTM (in the latter case, the end of the current program is displayed).
4. Enter the number of the program to be inserted (with only numeric keys) and press the INPUT key.
5. Press soft key [EXEC].

The program with the number specified in step 4 is inserted before the cursor positioned in step 3.
9.6.5 Supplementary Explanation for Copying, Moving and Merging

Explanations

• Setting an editing range

The setting of an editing range start point with [CRSR→] can be changed freely until an editing range end point is set with [←CRSR] or [←BTTM]. If an editing range start point is set after an editing range end point, the editing range must be reset starting with a start point.

The setting of an editing range start point and end point remains valid until an operation is performed to invalidate the setting.

One of the following operations invalidates a setting:

- An edit operation other than address search, word search/scan, and search for the start of a program is performed after a start point or end point is set.
- Processing is returned to operation selection after a start point or end point is set.

• Without specifying a program number

In copying program and moving program, if [EXEC] is pressed without specifying a program number after an editing range end point is set, a program with program number O0000 is registered as a work program. This O0000 program has the following features:

- The program can be edited in the same way as a general program. (Do not run the program.)
- If a copy or move operation is newly performed, the previous information is deleted at execution time, and newly set information (all or part of the program) is re–registered. (In merge operation, the previous information is not deleted.) However, the program, when selected for foreground operation, cannot be re–registered in the background. (A BP/S140 alarm is raised.) When the program is re–registered, a free area is produced. Delete such a free area with the [RESET] key.
- When the program becomes unnecessary, delete the program by a normal editing operation.

• Editing when the system waiting for a program number to be entered

When the system is waiting for a program number to be entered, no edit operation can be performed.

Restrictions

• Number of digits for program number

If a program number is specified by 5 or more digits, a format error is generated.
## Alarm

<table>
<thead>
<tr>
<th>Alarm No.</th>
<th>Contents</th>
</tr>
</thead>
<tbody>
<tr>
<td>70</td>
<td>Memory became insufficient while copying or inserting a program. Copy or insertion is terminated.</td>
</tr>
<tr>
<td>101</td>
<td>The power was interrupted during copying, moving, or inserting a program and memory used for editing must be cleared. When this alarm occurs, press the key while pressing function key . Only the program being edited is deleted.</td>
</tr>
</tbody>
</table>
9.6.6 Replacement of Words and Addresses

Replace one or more specified words. Replacement can be applied to all occurrences or just one occurrence of specified words or addresses in the program.

Procedure for change of words or addresses

1. Perform steps 1 to 5 in subsection 9.6.1.

2. Press soft key [CHANGE].

3. Enter the word or address to be replaced.

4. Press soft key [BEFORE].

5. Enter the new word or address.

6. Press soft key [AFTER].

7. Press soft key [EXEC] to replace all the specified words or addresses after the cursor.
   - Press soft key [1–EXEC] to search for and replace the first occurrence of the specified word or address after the cursor.
   - Press soft key [SKIP] to only search for the first occurrence of the specified word or address after the cursor.

EXAMPLES

- Replace X100 with Z200

  [CHANGE] X 1 0 0 [BEFORE] Z 2 0 0 [AFTER] [EXEC]

- Replace X100Z200 with X30

  [CHANGE] X 1 0 0 Z 2 0 0 [BEFORE] X 3 0 [AFTER] [EXEC]

- Replace IF with WHILE

  [CHANGE] I F [BEFORE] W H I L E [AFTER] [EXEC]

- Replace X with ,C10

  [CHANGE] X [BEFORE], C 1 0 [AFTER] [EXEC]

Explanation

The following custom macro words are replaceable:
IF, WHILE, GOTO, END, DO, BPRNT, DPRNT, POPEN, PCLOS
The abbreviations of custom macro words can be specified.
When abbreviations are used, however, the screen displays the abbreviations as they are key input, even after soft key [BEFORE] and [AFTER] are pressed.
Restrictions

- **The number of characters for replacement**
  
  Up to 15 characters can be specified for words before or after replacement. (Sixteen or more characters cannot be specified.)

- **The characters for replacement**
  
  Words before or after replacement must start with a character representing an address. (A format error occurs.)
Unlike ordinary programs, custom macro programs are modified, inserted, or deleted based on editing units. Custom macro words can be entered in abbreviated form. Comments can be entered in a program. Refer to the section III–10.1 for the comments of a program.

Explanations

• Editing unit

When editing a custom macro already entered, the user can move the cursor to each editing unit that starts with any of the following characters and symbols:

(a) Address
(b) # located at the start of the left side of a substitution statement
(c) /, (=, and ;
(d) First character of IF, WHILE, GOTO, END, DO, POPEN, BPRNT, DPRNT and PCLOS

On the CRT screen, a blank is placed before each of the above characters and symbols.

(Example) Head positions where the cursor is placed
N001 X–#100 ;
N002 /2 X[12/#3] ;
N003 X=SQRT[#33]/[#4+1] ;
N004 X=#2 Z1 ;
N005 #5 =1+2–#10 ;
IF[#1NE0] GOTO10 ;
WHILE[#2LE5] DO1 ;
#2 =#2+1 ;
END1 ;

• Abbreviations of custom macro word

When a custom macro word is altered or inserted, the first two characters or more can replace the entire word.

Namely,

WHILE → WH  GOTO → GO  XOR → XO  AND → AN
SIN → SI  ASIN → AS  COS → CO  ACOS → AC
TAN → TA  ATAN → AT  SQRT → SQ  ABS → AB
BCD → BC  BIN → BI  FIX → FI  FUP → FU
ROUND → RO  END → EN  POPEN → PO  BPRNT → BP
DPRNT → DP  PCLOS→PC  EXP → EX  THEN → TH

(Example) Keying in
WH [AB [#2 ] LE RO [#3 ]]  
has the same effect as
WHILE [ABS [#2 ] LE ROUND [#3 ]]  
The program is also displayed in this way.
9.8 BACKGROUND EDITING

Editing a program while executing another program is called background editing. The method of editing is the same as for ordinary editing (foreground editing).

A program edited in the background should be registered in foreground program memory by performing the following operation:

During background editing, all programs cannot be deleted at once.

**Procedure for background editing**

1. Enter `EDIT` or `MEMORY` mode. Memory mode is allowed even while the program is being executed.

2. Press function key `PROG`.

3. Press soft key `[(OPRT)]`, then press soft key `[BG–EDT]`. The background editing screen is displayed (PROGRAM (BG–EDIT) is displayed at the top left of the screen).

4. Edit a program on the background editing screen in the same way as for ordinary program editing.

5. After editing is completed, press soft key `[(OPRT)]`, then press soft key `[BG–EDT]`. The edited program is registered in foreground program memory.

**Explanation**

- **Alarms during background editing**

Alarms that may occur during background editing do not affect foreground operation. Conversely, alarms that may occur during foreground operation do not affect background editing. In background editing, if an attempt is made to edit a program selected for foreground operation, a BP/S alarm (No. 140) is raised. On the other hand, if an attempt is made to select a program subjected to background editing during foreground operation (by means of subprogram calling or program number search operation using an external signal), a P/S alarm (Nos. 059, 078) is raised in foreground operation. As with foreground program editing, P/S alarms occur in background editing. However, to distinguish these alarms from foreground alarms, BP/S is displayed in the data input line on the background editing screen.
The password function (bit 4 (NE9) of parameter No. 3202) can be locked using parameter No. 3210 (PASSWD) and parameter No. 3211 (KEYWD) to protect program Nos. O9000 to O9999. In the locked state, parameter NE9 cannot be set to 0. In this state, program Nos. O9000 to O9999 cannot be modified unless the correct keyword is set. A locked state means that the value set in the parameter PASSWD differs from the value set in the parameter KEYWD. The values set in these parameters are not displayed. The locked state is released when the value already set in the parameter PASSWD is also set in parameter KEYWD. When 0 is displayed in parameter PASSWD, parameter PASSWD is not set.

### Procedure for locking and unlocking

#### Locking

1. Set the MDI mode.
2. Enable parameter writing through the setting of appropriate settings (III–11.4.7). At this time, P/S alarm No. 100 is issued on the CNC.
3. Set parameter No. 3210 (PASSWD). At this time, the locked state is set.
4. Disable parameter writing.
5. Press the \[ \text{RESET} \] key to release the alarm state.

#### Unlocking

1. Set the MDI mode.
2. Enable parameter writing. At this time, P/S alarm No. 100 is issued on the CNC.
3. In parameter No. 3211 (KEYWD), set the same value as set in parameter No. 3210 (PASSWD) for locking. At this time, the locked state is released.
4. Set bit 4 (NE9) of parameter No. 3202 to 0.
5. Disable parameter writing.
6. Press the \[ \text{RESET} \] key to release the alarm state.
7. Subprograms from program Nos. 9000 to 9999 can now be edited.
The locked state is set when a value is set in the parameter PASSWD. However, note that parameter PASSWD can be set only when the locked state is not set (when PASSWD = 0, or PASSWD = KEYWD). If an attempt is made to set parameter PASSWD in other cases, a warning is given to indicate that writing is disabled. When the locked state is set (when PASSWD = 0 and PASSWD = KEYWD), parameter NE9 is automatically set to 1. If an attempt is made to set NE9 to 0, a warning is given to indicate that writing is disabled.

Parameter PASSWD can be changed when the locked state is released (when PASSWD = 0, or PASSWD = KEYWD). After step 3 in the procedure for unlocking, a new value can be set in the parameter PASSWD. From that time on, this new value must be set in parameter KEYWD to release the locked state.

When 0 is set in the parameter PASSWD, the number 0 is displayed, and the password function is disabled. In other words, the password function can be disabled by either not setting parameter PASSWD at all, or by setting 0 in parameter PASSWD after step 3 of the procedure for unlocking. To ensure that the locked state is not entered, care must be taken not to set a value other than 0 in parameter PASSWD.

After the locked state has been released, it can be set again by setting a different value in parameter PASSWD, or by turning the power to the NC off then on again to reset parameter KEYWD.

**CAUTION**

Once the locked state is set, parameter NE9 cannot be set to 0 and parameter PASSWD cannot be changed until the locked state is released or the memory all–clear operation is performed. Special care must be taken in setting parameter PASSWD.
Programs can be created using any of the following methods:
- MDI keyboard
- PROGRAMMING IN TEACH IN MODE
- CONVERSATIONAL PROGRAMMING WITH GRAPHIC FUNCTION
- MANUAL GUID 0i
- AUTOMATIC PROGRAM PREPARATION DEVICE (FANUC SYSTEM P)

This chapter describes creating programs using the MDI panel, TEACH IN mode, and conversational programming with graphic function. This chapter also describes the automatic insertion of sequence numbers.
10.1 CREATING PROGRAMS USING THE MDI PANEL

Programs can be created in the EDIT mode using the program editing functions described in Chapter III–9.

<table>
<thead>
<tr>
<th>Procedure for Creating Programs Using the MDI Panel</th>
</tr>
</thead>
<tbody>
<tr>
<td><strong>Procedure</strong></td>
</tr>
<tr>
<td>1 Enter the EDIT mode.</td>
</tr>
<tr>
<td>2 Press the PROG key.</td>
</tr>
<tr>
<td>3 Press address key O and enter the program number.</td>
</tr>
<tr>
<td>4 Press the INSERT key.</td>
</tr>
<tr>
<td>5 Create a program using the program editing functions described in Chapter 9.</td>
</tr>
</tbody>
</table>

**Explanation**

- **Comments in a program**

  Comments can be written in a program using the control in/out codes.

  **Example:**
  
  O0001 (FANUC SERIES 16) ;
  M08 (COOLANT ON) ;

  - When the INSERT key is pressed after the control–out code “(”, comments, and control–in code “)” have been typed, the typed comments are registered.
  - When the INSERT key is pressed midway through comments, to enter the rest of comments later, the data typed before the INSERT key is pressed may not be correctly registered (not entered, modified, or lost) because the data is subject to an entry check which is performed in normal editing.

  Note the following to enter a comment:
  - Control–in code “)" cannot be registered by itself.
  - Comments entered after the INSERT key is pressed must not begin with a number, space, or address O.
  - If an abbreviation for a macro is entered, the abbreviation is converted into a macro word and registered (see Section 9.7).
  - Address O and subsequent numbers, or a space can be entered but are omitted when registered.
Sequence numbers can be automatically inserted in each block when a program is created using the MDI keys in the EDIT mode. Set the increment for sequence numbers in parameter 3216.

**10.2 AUTOMATIC INSERTION OF SEQUENCE NUMBERS**

Procedure for automatic insertion of sequence numbers

<table>
<thead>
<tr>
<th>Procedure</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>Set 1 for SEQUENCE NO. (see subsection III–11.4.7).</td>
</tr>
<tr>
<td>2</td>
<td>Enter the EDIT mode.</td>
</tr>
<tr>
<td>3</td>
<td>Press PROG to display the program screen.</td>
</tr>
<tr>
<td>4</td>
<td>Search for or register the number of a program to be edited and move the cursor to the EOB (;) of the block after which automatic insertion of sequence numbers is started. When a program number is registered and an EOB (;) is entered with the INSERT key, sequence numbers are automatically inserted starting with 0. Change the initial value, if required, according to step 10, then skip to step 7.</td>
</tr>
<tr>
<td>5</td>
<td>Press address key N and enter the initial value of N.</td>
</tr>
<tr>
<td>6</td>
<td>Press INSERT key.</td>
</tr>
<tr>
<td>7</td>
<td>Enter each word of a block.</td>
</tr>
<tr>
<td>8</td>
<td>Press EOB key.</td>
</tr>
</tbody>
</table>
9 Press \textit{INSERT}. The EOB is registered in memory and sequence numbers are automatically inserted. For example, if the initial value of \textit{N} is 10 and the parameter for the increment is set to 2, \texttt{N12} inserted and displayed below the line where a new block is specified.

\begin{verbatim}
PROGRAM O0040 N00012
O0040 :
N10 G92 X0 Y0 Z0 ;
\textbf{N12} %
\end{verbatim}

10
- In the example above, if \texttt{N12} is not necessary in the next block, pressing the \textit{DELETE} key after \texttt{N12} is displayed deletes \texttt{N12}.
- To insert \texttt{N100} in the next block instead of \texttt{N12}, enter \texttt{N100} and press \textit{ALTER} after \texttt{N12} is displayed. \texttt{N100} is registered and initial value is changed to 100.
In the TEACH IN JOG mode and TEACH IN HANDLE mode, a machine position along the X, Z, and Y axes obtained by manual operation is stored in memory as a program position to create a program. The words other than X, Z, and Y, which include O, N, G, R, F, C, M, S, T, P, Q, and EOB, can be stored in memory in the same way as in EDIT mode.

### Procedure for Creating Programs in TEACH IN Mode

The procedure described below can be used to store a machine position along the X, Z, and Y axes.

1. Select the TEACH IN JOG mode or TEACH IN HANDLE mode.
2. Move the tool to the desired position with jog or handle.
3. Press the PROG key to display the program screen. Search for or register the number of a program to be edited and move the cursor to the position where the machine position along each axis is to be registered (inserted).
4. Key in address X.
5. Press the INSERT key. Then a machine position along the X axis is stored in memory.
   
   (Example) X10.521 Absolute position (for mm input)
   X10521 Data stored in memory
6. Similarly, key in Z, then press the INSERT key. Then a machine position along the Z axis is stored in memory. Further, key in Y, then press the INSERT key. Then a machine position along the Y axis is stored in memory.

All coordinates stored using this method are absolute coordinates.
Examples

1. Set the setting data SEQUENCE NO. to 1 (on). (The incremental value parameter (No. 3212) is assumed to be “1”.)

2. Select the TEACH IN HANDLE mode.

3. Make positioning at position P0 by the manual pulse generator.

4. Select the program screen.

5. Enter program number O1234 as follows:

   ![Image of program entry]

   This operation registers program number O1234 in memory. Next, press the following keys:

   ![Image of key press]

   An EOB (;) is entered after program number O1234. Because no number is specified after N, sequence numbers are automatically inserted for N0 and the first block (N1) is registered in memory.

6. Enter the P0 machine position for data of the first block as follows:

   ![Image of machine position entry]

   This operation registers G50 X100000 Z200000 ; in memory. The automatic sequence number insertion function registers N2 of the second block in memory.

7. Position the tool at P1 with the manual pulse generator.

8. Enter the P1 machine position for data of the second block as follows:

   ![Image of machine position entry]

   This operation registers G00 X14784 Z8736; in memory. The automatic sequence number insertion function registers N3 of the third block in memory.

9. Position the tool at P2 with the manual pulse generator.
10 Enter the P2 machine position for data of the third block as follows:

\[
\text{G01 INSERT Z INSERT F300 INSERT EOB INSERT}
\]

This operation registers G01 Z103480 F300; in memory. The automatic sequence number insertion function registers N4 of the fourth block in memory.

11 Register M02; in memory as follows:

\[
\text{M02 INSERT EOB INSERT}
\]

N5 indicating the fifth block is stored in memory using the automatic sequence number insertion function. Press the [DELETE] key to delete it.

This completes the registration of the sample program.

Explanations

• Checking contents of the memory

The contents of memory can be checked in the TEACH IN mode by using the same procedure as in EDIT mode.

When a value is keyed in after keying in address \( \text{X} \), \( \text{Z} \), or \( \text{Y} \), then the [INSERT] key is pressed, the value keyed in for a machine position is added for registration. This operation is useful to correct a machine position by key–in operation.

Commands to be entered before and after a machine position must be entered before and after the machine position is registered, by using the same operation as program editing in EDIT mode.
10.4
CONVERSATIONAL
PROGRAMMING
WITH GRAPHIC
FUNCTION

Programs can be created block after block on the conversational screen while displaying the G code menu. Blocks in a program can be modified, inserted, or deleted using the G code menu and conversational screen.

Procedure for Conversational Programming with Graphic Function

Procedure 1
Creating a program

1. Enter the EDIT mode.

2. Press PROG. If no program is registered, the following screen is displayed. If a program is registered, the program currently selected is displayed.

3. Key in the program number of a program to be registered after keying in address O, then press INSERT. For example, when a program with program number 10 is to be registered, key in O10, then press INSERT. This registers a new program O0010.
4 Press the [C.A.P] soft key. The following G code menu is displayed on the screen.

If soft keys different from those shown in step 2 are displayed, press the menu return key \( \leftarrow \) to display the correct soft keys.

<table>
<thead>
<tr>
<th>PROGRAM</th>
<th>O1234 N00004</th>
</tr>
</thead>
<tbody>
<tr>
<td>G00 : POSITIONING</td>
<td></td>
</tr>
<tr>
<td>G01 : LINEAR IPL</td>
<td></td>
</tr>
<tr>
<td>G02 : CIRCULAR IPL. CW</td>
<td></td>
</tr>
<tr>
<td>G03 : CIRCULAR IPL. CCW</td>
<td></td>
</tr>
<tr>
<td>G04 : Dwell</td>
<td></td>
</tr>
<tr>
<td>G10 : OFFSET VALUE SETTING (0)</td>
<td></td>
</tr>
<tr>
<td>G20 : INCH</td>
<td></td>
</tr>
<tr>
<td>G21 : METRIC</td>
<td></td>
</tr>
<tr>
<td>G22 : STORED STROKE CHECK ON (0)</td>
<td></td>
</tr>
<tr>
<td>G23 : STORED STROKE CHECK OFF (0)</td>
<td></td>
</tr>
<tr>
<td>G25 : SPINDLE SPEED DETECT OFF</td>
<td></td>
</tr>
<tr>
<td>G26 : SPINDLE SPEED DETECT ON</td>
<td></td>
</tr>
</tbody>
</table>

5 Key in the G code corresponding to a function to be programmed. When the positioning function is desired, for example, the G code menu lists the function with the G code G00. So key in G00. If the screen does not indicate a function to be programmed, press the page key to display the next G code menu screen. Repeat this operation until a desired function appears. If a desired function is not a G code, key in no data.

6 Press the soft key [BLOCK] to display a detailed screen for a keyed in G code. The figure below shows an example of detailed screen for G00.
When no keys are pressed, the standard details screen is displayed.

7 Move the cursor to the block to be modified on the program screen. At this time, a data address with the cursor blinks.

8 Enter numeric data by pressing the numeric keys and press the [INPUT] soft key or \texttt{INPUT} key. This completes the input of one data item.

9 Repeat this operation until all data required for the entered G code is entered.

10 Press the \texttt{INSERT} key. This completes the registration of data of one block in program memory. On the screen, the G code menu screen is displayed, allowing the user to enter data for another block. Repeat the procedure starting with 5 as required.

11 After registering all programs, press the [PRGRM] soft key. The registered programs are converted to the conversational format and displayed.

12 Press the \texttt{RESET} key to return to the program head.
Procedure 2
Modifying a block

1. Move the cursor to the block to be modified on the program screen and press the \([C.A.P]\) soft key. Or, press the \([C.A.P]\) soft key first to display the conversational screen, then press the down or up page key until the block to be modified is displayed.

2. When data other than a G code is to be altered, just move the cursor to the data and key in a desired value, then press the \([INPUT]\) soft key or \([INPUT]\) key.

3. When a G code is to be altered, press the menu return key and the soft key \([G.MENU]\). Then the G code menu appears. Select a desired G code, then key in the value. For example, to specify a cutting feed, since the G code menu indicates G01, key in G01. Then press the soft key \([BLOCK]\). The detailed screen of the G code is displayed, so enter the data.

4. After data is changed completely, press the \([ALTER]\) key. This operation replaces an entire block of a program.

Procedure 3
Inserting a block

1. On the conversational screen, display the block immediately before a new block is to be inserted, by using the page keys. On the program screen, move the cursor with the page keys and cursor keys to immediately before the point where a new block is to be inserted.

2. Press the soft key \([G.MENU]\) to display the G code menu. Then enter new block data.

3. When input of one block of data is completed in step 2, press the \([INSERT]\) key. This operation inserts a block of data.

Procedure 4
Deleting a block

1. On the conversational screen, display the contents of a block to be deleted, then press the \([DELETE]\) key.

2. The contents of the block displayed are deleted from program memory. Then the contents of the next block are displayed on the conversational screen.

Limitations

1. A G–code command block not listed on the G–code menu can be created only on a detail screen in the standard format.

2. Neither G codes with a decimal point nor three–digit G–code block can be created.
11 SETTING AND DISPLAYING DATA

General

To operate a CNC machine tool, various data must be set on the MDI for the CNC. The operator can monitor the state of operation with data displayed during operation. This chapter describes how to display and set data for each function.

Explanations

• Screen transition chart

The screen transition for when each function key on the MDI panel is pressed is shown below. The subsections referenced for each screen are also shown. See the appropriate subsection for details of each screen and the setting procedure on the screen. See other chapters for screens not described in this chapter.

See Chapter III–7 for the screen that appears when function key MESSAGE is pressed. See Chapter III–12 for the screen that appears when function key GRAPH is pressed. See Chapter III–13 for the screen that appears when function key HELP is pressed. Refer to the manual issued by the machine tool builder for the screen that appears when function key GRAPH is pressed twice.

• Data protection key

The machine may have a data protection key to protect part programs, tool compensation values, setting data, and custom macro variables. Refer to the manual issued by the machine tool builder for where the data protection key is located and how to use it.
POSITION DISPLAY SCREEN

Screen transition triggered by the function key POS

POS

Current position screen

ABS REL ALL HNDL (OPRT)

Position display of work coordinate system
⇒ See III–11.1.1.

Position displays relative coordinate system
⇒ See III–11.1.2.

Total position display of each coordinate system
⇒ See III–11.1.3.

Manual handle interruption
⇒ See III–4.6.

Display of part count and run time
⇒ See III–11.1.6.

Display of part count and run time
⇒ See III–11.1.6.

Display of part count and run time
⇒ See III–11.1.6.

Display of actual speed
⇒ See III–11.1.5.

Display of actual speed
⇒ See III–11.1.5.

Display of actual speed
⇒ See III–11.1.5.

Setting of relative coordinate values
⇒ See III–11.1.2.

Setting of relative coordinate values
⇒ See III–11.1.2.

Current position screen

MONI (OPRT)

Display of operating monitor
⇒ See III–11.1.7.
Screen transition triggered by the function key in the MEMORY or MDI mode

Program screen

MDI MEM

[PRGRM] [CHECK] [MDI] [CURRNT] [NEXT] (OPRT)

Display of program contents
⇒ See III–11.2.1.

Display of program number and sequence number
⇒ See III–11.6.1.

[ABS]

Program being executed
Absolute coordinate value
Distance to go
⇒ See III–11.2.4.

[REL]

Program being executed
Relative coordinate value
Distance to go
⇒ See III–11.2.4.

Display of current block and modal data
⇒ See III–11.2.2.

Display of current block and next block
⇒ See III–11.2.3.

[MDI] *

Command for MDI operation
⇒ See III–11.2.5.

(Displayed in the MDI mode)

*: Displayed in MDI mode

To next page

To next page
Program screen

MDI
MEM

[RSTR] [DIR] (OPRT)

Program restart screen
⇒See III–4.3.

Display of program memory and program directory
⇒See III–11.3.1.

Program screen

MEM

[FL.SDL] (OPRT)

[PRGRM] [DIR] [SCHEDUL]

Display of file directory
⇒See III–4.4.

Setting of schedule
⇒See III–4.4.
Screen transition triggered by the function key in the EDIT mode

Program screen

EDIT

Program editing screen
⇒ See III–10

Program memory and program directory
⇒ See III–11.3.1.

Conversational programming screen
⇒ See III–10

Program screen

EDIT

File directory screen for floppy disks
⇒ See III–8.8
OFFSET/SETTING SCREEN

Screen transition triggered by the function key

OFFSET
SETTING
WORK
(OPRT)

OFFSET

Tool offset value

OFFSET
SETTING
WORK
(OPRT)

Display of tool offset value
⇒ See III–11.4.1.

Setting of tool offset data
⇒ See III–11.4.1.

Setting of direct input of tool offset value
⇒ See III–11.4.2.

Setting of direct input of tool offset measured B
⇒ See III–11.4.3.

Setting of counter input of offset value
⇒ See III–11.4.4.

Display of setting data
⇒ See III–11.4.7

Parameter setting
⇒ See III–11.4.7.

Setting sequence number comparision and stop
⇒ See III–11.4.8.

Displaying run time and parts count
⇒ See III–11.4.9.

Setting the number of parts required
⇒ See III–11.4.9.

Displaying setting time
⇒ See III–11.4.9.

Display of work-piece coordinate system
⇒ See III–11.4.10

Setting of work origin offset value
⇒ See III–11.4.10.

TOOLLF

Display of macro variables
⇒ See III–11.4.12.

Setting macro variables
⇒ See III–11.4.12.

Displaying pattern data
⇒ See III–11.4.13.

Displaying pattern menu
⇒ See III–11.4.13.

Software operator's panel switch
⇒ See III–11.4.14.

Displaying software operator's panel
⇒ See III–11.4.14.

Displaying tool life management data
⇒ See III–11.4.15.

Displaying tool life counter clearing executing data
⇒ See III–11.4.15.

MACRO

MENU

OPR

TOOLLF

(OPRT)

To next page
Tool offset value

OFST.2  W.SHFT  BARRIER  (OPRT)

Display of Y axis offset value
⇒ See III–11.4.6.

Display of work coordinate system value
⇒ See III–11.4.5

Setting of Y axis offset data
⇒ See III–11.4.6.

Setting of work coordinate system shift value
⇒ See III–11.4.5

Chuck tail stack barrier
⇒ See III–6.4

Setting of work-piece coordinate shift value by direct input function
B for tool offset measured 2.
⇒ See III–11.4.3.
11. SETTING AND DISPLAYING DATA

**SYSTEM SCREEN**

Screen transition triggered by the function key `SYSTEM`

Parameter screen

- **PARAM**, **DGNOS**, **PMC**, **SYSTEM**, **(OPRT)**

Display of parameter screen
⇒ See III–11.5.1

Display of diagnosis screen
⇒ See III–7.3

Setting of parameter
⇒ See III–11.5.1

Parameter screen

- **PITCH**, **SV.PRM**, **SP.PRM**, **(OPRT)**

Display of pitch error data
⇒ See III–11.5.2.

Setting of pitch error data
⇒ See III–11.5.2.
### Setting screens

The table below lists the data set on each screen.

**Table 11 Setting screens and data on them**

<table>
<thead>
<tr>
<th>No.</th>
<th>Setting screen</th>
<th>Contents of setting</th>
<th>Reference item</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>Tool offset value</td>
<td>Tool offset value</td>
<td>Subsec. 11.4.1</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Tool nose radius compensation value</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>Direct input of tool offset value</td>
<td>Subsec. 11.4.2</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Direct input of tool offset value measured B</td>
<td>Subsec. 11.4.3</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Counter input of offset value</td>
<td>Subsec. 11.4.4</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Y axis offset</td>
<td>Subsec. 11.4.6</td>
</tr>
<tr>
<td>2</td>
<td>Workpiece coordinate system setting</td>
<td>Workpiece coordinate system shift value</td>
<td>Subsec. 11.4.5</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Workpiece origin offset value</td>
<td></td>
</tr>
<tr>
<td>3</td>
<td>Setting data (handy)</td>
<td>Parameter write</td>
<td>Subsec. 11.4.7</td>
</tr>
<tr>
<td></td>
<td></td>
<td>TV check</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>Punch code (EIA/ISO)</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>Input unit (mm/inch)</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>I/O channel</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>Automatic insert of Sequence No.</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>Conversion of tape format (F10/11)</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>Sequence number comparison and stop</td>
<td>Subsec. 11.4.8</td>
</tr>
<tr>
<td>4</td>
<td>Setting data (mirror image)</td>
<td>Mirror image</td>
<td>Subsec. 11.4.7</td>
</tr>
<tr>
<td>5</td>
<td>Setting data (timer)</td>
<td>Parts required</td>
<td>Subsec. 11.4.9</td>
</tr>
<tr>
<td>6</td>
<td>Macro variables</td>
<td>Custom macro common variables</td>
<td>Subsec. 11.4.12</td>
</tr>
<tr>
<td></td>
<td></td>
<td>(#100 to #199)</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>(#500 to #999)</td>
<td></td>
</tr>
<tr>
<td>7</td>
<td>Parameter</td>
<td>Parameter</td>
<td>Subsec. 11.5.1</td>
</tr>
<tr>
<td>8</td>
<td>Pitch error</td>
<td>Pitch error compensation data</td>
<td>Subsec. 11.5.2</td>
</tr>
<tr>
<td>9</td>
<td>software operator's panel</td>
<td>Mode selection</td>
<td>Subsec. 11.4.14</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Jog feed axis selection</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>Jog rapid traverse</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>Axis selection for Manual pulse generator</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>Multiplication for manual pulse generator</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>Jog feedrate</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>Feedrate override</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>Rapid traverse override</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>Optional block skip</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>Single block</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>Machine lock</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>Dry run</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>Protect key</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>Feed hold</td>
<td></td>
</tr>
<tr>
<td>10</td>
<td>Tool life data (Tool life management)</td>
<td>Life count</td>
<td>Subsec. 11.4.15</td>
</tr>
</tbody>
</table>
Press function key $\text{POS}$ to display the current position of the tool.

The following three screens are used to display the current position of the tool:

- Position display screen for the work coordinate system.
- Position display screen for the relative coordinate system.
- Overall position display screen.

The above screens can also display the feedrate, run time, and the number of parts. In addition, a floating reference position can be set on these screens.

Function key $\text{POS}$ can also be used to display the load on the servo motor and spindle motor and the rotation speed of the spindle motor (operating monitor display).

Function key $\text{POS}$ can also be used to display the screen for displaying the distance moved by handle interruption. See Section 4.6 for details on this screen.

### 11.1.1 Position Display in the Workpiece Coordinate System

Displays the current position of the tool in the workpiece coordinate system. The current position changes as the tool moves. The least input increment is used as the unit for numeric values. The title at the top of the screen indicates that absolute coordinates are used.

#### Display procedure for the current position screen in the workpiece coordinate system

1. Press function key $\text{POS}$.
2. Press soft key $\text{ABS}$.
3. On (7 soft keys display unit), press the $\text{ABS}$ soft key one more time to display the coordinates along axes other than the six standard axes.
Setting and Displaying Data

Bits 6 and 7 of parameter 3104 can be used to select whether the displayed values include tool offset value and tool nose radius compensation.

11.1.2 Position Display in the Relative Coordinate System

Displays the current position of the tool in a relative coordinate system based on the coordinates set by the operator. The current position changes as the tool moves. The increment system is used as the unit for numeric values. The title at the top of the screen indicates that relative coordinates are used.

Display procedure for the current position screen with the relative coordinate system

1. Press function key \( \text{POS} \).
2. Press soft key \([\text{REL}]\).

![Display of actual position (relative)](image)

Explanations

- Setting the relative coordinates

The current position of the tool in the relative coordinate system can be reset to 0 or preset to a specified value as follows:

Procedure to set the axis coordinate to a specified value

1. Enter an axis address (such as X or Z) on the screen for the relative coordinates. The indication for the specified axis blinks and the soft keys change as shown on the left.
2. To reset the coordinate to 0, press soft key \([\text{ORIGIN}]\). The relative coordinate for the blinking axis is reset to 0.
3. To preset the coordinate to a specified value, enter the value and press soft key \([\text{PRESET}]\). The relative coordinate for the blinking axis is set to the entered value.
Procedure to reset all axes

1. Press soft key [(OPRT)].

2. Press soft key [ORIGIN].

3. Press soft key [ALLEXE].
   The relative coordinates for all axes are reset to 0.

- **Display including compensation values**
  Bits 4 (DRL) and 5 (DRC) of parameter 3104 can be used to select whether the displayed values include tool offset and tool nose radius compensation.

- **Presetting by setting a coordinate system**
  Bit 3 of parameter 3104 is used to specify whether the displayed positions in the relative coordinate system are preset to the same values as in the workpiece coordinate system when a coordinate system is set by a G50 (G code system A) or a G92 (G code system B or C) command or when the manual reference position return is made.
11.1.3 Overall Position Display

Displays the following positions on a screen: Current positions of the tool in the workpiece coordinate system, relative coordinate system, and machine coordinate system, and the remaining distance. The relative coordinates can also be set on this screen. See subsection III–11.1.2 for the procedure.

Procedure for displaying overall position display screen

1. Press function key [POS].
2. Press soft key [ALL].

![Overall Position Display Screen]

**Explanations**

- **Coordinate display**
  
  The current positions of the tool in the following coordinate systems are displayed at the same time:
  
  - Current position in the relative coordinate system (relative coordinate)
  - Current position in the work coordinate system (absolute coordinate)
  - Current position in the machine coordinate system (machine coordinate)
  - Distance to go (distance to go)

- **Distance to go**
  
  The distance remaining is displayed in the MEMORY or MDI mode. The distance the tool is yet to be moved in the current block is displayed.

- **Machine coordinate system**
  
  The least command increment is used as the unit for values displayed in the machine coordinate system. However, the least input increment can be used by setting bit 0 (MCN) of parameter 3104.

- **Resetting relative coordinates**
  
  On the overall position display screen, relative coordinates can be reset to 0 or preset to specified values. The procedure is the same as that for resetting the relative coordinates described in III–11.1.2.
A workpiece coordinate system shifted by an operation such as manual intervention can be preset using MDI operations to a pre-shift workpiece coordinate system. The latter coordinate system is displaced from the machine zero point by a workpiece zero point offset value.

A command (G50.3) can be programmed to preset a workpiece coordinate system. (See Subsec. III–7.2.4.)

**Procedure for Presetting the Workpiece Coordinate System**

1. Press function key `POS`.

2. Press soft key `[(OPRT)]`.

3. When `WRK–CD` is not displayed, press the continuous menu key `<<`.


5. Press soft key `ALLAXS` to preset all axes.

6. To preset a particular axis in step 5, enter the axis name (`X`, `Z`, ...) and `0`, then press soft key `AXS–CD`.

**Explanations**

- **Operation mode**
  
  This function can be executed when the reset state or automatic operation stop state is entered, regardless of the operation mode.

- **Presetting relative coordinates**
  
  As with absolute coordinates, bit 3 (PPD) of parameter No. 3104 is used to specify whether to preset relative coordinates (RELATIVE).
11. SETTING AND DISPLAYING DATA

11.1.5 Actual Feedrate Display

The actual feedrate on the machine (per minute) can be displayed on a current position display screen or program check screen by setting bit 0 (DPF) of parameter 3015. On 12 soft keys display unit, the actual feedrate is always displayed.

Display procedure for the actual feedrate on the current position display screen

1. Press function key POS to display a current position display screen.

![Current Position Display Screen]

Actual feedrate is displayed after ACT.F.

The actual feedrate is displayed in units of millimeter/min or inch/min (depending on the specified least input increment) under the display of the current position.

Explanations

- **Actual feedrate value**

  The actual rate is calculated by the following expression:

  \[ \text{Fact} = \sqrt{\sum_{i=1}^{n} (f_i)^2} \]

  where
  
  - \( n \): Number of axes
  - \( f_i \): Cutting feed rate in the tangential direction of each axis or rapid traverse rate

  Fact : Actual feedrate displayed

  The display unit: mm/min (metric input).

  inch/min (Inch input, Two digits below the decimal point are displayed.)

  The feedrate along the PMC axis can be omitted by setting bit 1 (PCF) of parameter 3105.
• **Actual feedrate display of feed per revolution**

  In the case of feed per revolution and thread cutting, the actual feedrate displayed is the feed per minute rather than feed per revolution.

• **Actual feedrate display of rotary axis**

  In the case of movement of rotary axis, the speed is displayed in units of deg/min but is displayed on the screen in units of input system at that time. For example, when the rotary axis moves at 50 deg/min, the following is displayed: 0.50 INCH/M

• **Actual feedrate display on the other screen**

  The program check screen also displays the actual feedrate.
The run time, cycle time, and the number of machined parts are displayed on the current position display screens.

**Procedure for displaying run time and parts count on the current position display screen**

1. Press function key **POS** to display a current position display screen.

   ![Current Position Display Screen]

   **ACTUAL POSITION (RELATIVE)**

   | X | 123.456 |
   | Z | 363.233 |

   **PART COUNT** | 5
   **RUN TIME** | 0H15M
   **CYCLE TIME** | 0H 0M38S
   **ACT. F** | 3000 MM/M
   **S** | 0 T0000

   **MEM STRT MTN ***** | 09:06:35
   **[ABS]** | [REL] | [ALL] | [HNDL] | [OPRT]

The number of machined parts (PART COUNT), run time (RUN TIME), and cycle time (CYCLE TIME) are displayed under the current position.

**Explanations**

- **PART COUNT**
  Indicates the number of machined parts. The number is incremented each time M02, M30, or an M code specified by parameter 6710 is executed.

- **RUN TIME**
  Indicates the total run time during automatic operation, excluding the stop and feed hold time.

- **CYCLE TIME**
  Indicates the run time of one automatic operation, excluding the stop and feed hold time. This is automatically preset to 0 when a cycle start is performed at reset state. It is preset to 0 even when power is removed.

- **Display on the other screen**
  Details of the run time and the number of machined parts are displayed on the setting screen. See subsection III–11.4.9.

- **Parameter setting**
  The number of machined parts and run time cannot be set on current position display screens. They can be set by parameters 6711, 6751, and 6752 or on the setting screen.

- **Incrementing the number of machined parts**
  Bit 0 (PCM) of parameter 6700 is used to specify whether the number of machined parts is incremented each time M02, M30, or an M code specified by parameter 6710 is executed, or only each time an M code specified by parameter 6710 is executed.
11.1.7 Operating Monitor Display

The reading on the load meter can be displayed for each servo axis and the serial spindle by setting bit 5 (OPM) of parameter 3111 to 1. The reading on the speedometer can also be displayed for the serial spindle.

Procedure for displaying the operating monitor

1. Press function key $\text{POS}$ to display a current position display screen.
2. Press the continuous-menu key $\rightarrow$.
3. Press soft key $\text{[MONI]}$.

```
OPERATING MONITOR 00001 N00001
(LOAD METER)
X : * * * 80% S1 : * * * 201%
Z : * * * * 0% (SPEED METER RPM)
C : * * * * * 0% S1 : * * *
1500
PART COUNT 5
RUN TIME 0H15M CYCLE TIME 0H 0M38S
ACT.F 3000 MM/M
MEM STRT MTN *** 09:06:35
[MONI][REL][ALL][HNDL][OPRT]
```

Explanations

- **Display of the servo axes**
  The reading on the load meter can be displayed for up to three servo axes by setting parameters 3151 to 3158.
  When all these parameters are set to 0, data is displayed only for the basic axes.

- **Display of the spindle axes**
  When serial spindles are used, the reading on the load meter and speedometer can be displayed only for the main serial spindle.

- **Unit of graph**
  The bar graph for the load meter shows load up to 200% (only a value is displayed for load exceeding 200%). The bar graph for the speedometer shows the ratio of the current spindle speed to the maximum spindle speed (100%).
The reading on the load meter depends on servo parameter 2086 and spindle parameter 4127.

**Speedometer**

Although the speedometer normally indicates the speed of the spindle motor, it can also be used to indicate the speed of the spindle by setting bit 6 (OPS) of parameter 3111 to 1.

The spindle speed to be displayed during operation monitoring is calculated from the speed of the spindle motor (see the formula below). The spindle speed can therefore be displayed, during operation monitoring, even when no position coder is used. To display the correct spindle speed, however, the maximum spindle speed for each gear (spindle speed at each gear ratio when the spindle motor rotates at the maximum speed) must be set in parameters No. 3741 to 3744.

The input of the clutch and gear signals for the first serial spindle is used to determine the gear which is currently selected. Control the input of the CTH1A and CTH2A signals according to the gear selection, by referring to the table below.

(Formula for calculating the spindle speed to be displayed)

\[
\text{Spindle speed displayed during operation monitoring} = \frac{\text{Speed of spindle motor}}{\text{Maximum speed of spindle motor}} \times \text{Maximum spindle speed with the gear being used}
\]

The following table lists the correspondence between clutch and gear selection signals CTH1A and CTH2A <G070#3, #2>, used to determine the gear being used, and parameters:

<table>
<thead>
<tr>
<th>CTH1A</th>
<th>CTH2A</th>
<th>Parameter</th>
<th>Serial spindle specification</th>
</tr>
</thead>
<tbody>
<tr>
<td>0</td>
<td>0</td>
<td>=No.3741</td>
<td>HIGH</td>
</tr>
<tr>
<td></td>
<td></td>
<td>(Maximum spindle speed with gear 1)</td>
<td></td>
</tr>
<tr>
<td>0</td>
<td>1</td>
<td>=No.3742</td>
<td>MEDIUM HIGH</td>
</tr>
<tr>
<td></td>
<td></td>
<td>(Maximum spindle speed with gear 2)</td>
<td></td>
</tr>
<tr>
<td>1</td>
<td>0</td>
<td>=No.3743</td>
<td>MEDIUM LOW</td>
</tr>
<tr>
<td></td>
<td></td>
<td>(Maximum spindle speed with gear 3)</td>
<td></td>
</tr>
<tr>
<td>1</td>
<td>1</td>
<td>=No.3744</td>
<td>LOW</td>
</tr>
<tr>
<td></td>
<td></td>
<td>(Maximum spindle speed with gear 4)</td>
<td></td>
</tr>
</tbody>
</table>

The speed of the spindle motor and spindle can be displayed, during operation monitoring, only for the first serial spindle and the spindle switching axis for the first serial spindle. It cannot be displayed for the second spindle.

**Color of graph**

If the value of a load meter exceeds 100%, the bar graph turns purple.
11. SETTING AND DISPLAYING DATA

11.2 SCREENS DISPLAYED BY FUNCTION KEY \text{PROG}\ (IN MEMORY MODE OR MDI MODE)

This section describes the screens displayed by pressing function key \text{PROG} in MEMORY or MDI mode. The first four of the following screens display the execution state for the program currently being executed in MEMORY or MDI mode and the last screen displays the command values for MDI operation in the MDI mode:

11.2.1 Program contents display
11.2.2 Current block display screen
11.2.3 Next block display screen
11.2.4 Program check screen
11.2.5 Program screen for MDI operation

Function key \text{PROG} can also be pressed in MEMORY mode to display the program restart screen and scheduling screen. See Section III–4.3 for the program restart screen. See Section III–4.4 for the scheduling screen.

11.2.1 Program Contents Display

Displays the program currently being executed in MEMORY or MDI mode.

Procedure for displaying the program contents

1. Press function key \text{PROG} to display a program screen.

2. Press chapter selection soft key [\text{PRGRM}].
   The cursor is positioned at the block currently being executed.

   \begin{verbatim}
   PROGRAM O2000 N00130
   O2000 ;
   N100 G50 X0 Z0. ;
   N110 G91 G00 X-70. ;
   N120 Z-70. ;
   N130 G01 X-60 ;
   N140 G41 G03 X-17.5 Z17.5 R17.5 ;
   N150 G01 X-25. ;
   N160 G02 X27.5 Z27.5 R27.5
   N170 G01 X20. ;
   N180 G02 X45. Z45. R45. ;
   > S 0 T0000
   MEM STRT *** 16:05:59
   [PRGRM] [CHECK] [CURRT] [NEXT] [OPRT]
   \end{verbatim}
11.2.2 Current Block Display Screen

Displays the block currently being executed and modal data in the MEMORY or MDI mode.

Procedure for displaying the current block display screen

1. Press function key \texttt{PROG}.

2. Press chapter selection soft key \texttt{[CURRNT]}.
   The block currently being executed and modal data are displayed.
   The screen displays up to 22 modal G codes and up to 11 G codes specified in the current block.

\begin{verbatim}
PROGRAM O2000 N00130

(G) (M)

G01 \cdot X 100.500 \ G18 \ G00 \ F
\cdot F 50.000 \ G50.2G97
\ G13.1\ G99
G21 \ T
G40 \ S
G25
G22
G80
G67 \ SACT \ 0
G54
> _ \ S 0 \ T0000

MEM STRT *** 16:05:59
[ PRGRM ] [ CHECK ] [ CURRNT ] [ NEXT ] [ (OPRT) ]
\end{verbatim}
Displays the block currently being executed and the block to be executed next in the MEMORY or MDI mode.

### Procedure for displaying the next block display screen

1. Press function key \texttt{PROG}.
2. Press chapter selection soft key \texttt{[NEXT]}.
   
   The block currently being executed and the block to be executed next are displayed.
   
   The screen displays up to 11 G codes specified in the current block and up to 11 G codes specified in the next block.

```
PROGRAM O2000 N00130

(CURRENT) (NEXT)
G01 X 17.500 G39 I -17.500
G17 F 2000 G42
G41 H 2
G80

> _ S 0 T0000
MEM STRT *** 16:05:59
[PRGRM][CHECK][CURRNT][NEXT][(OPRT)]
```
11.2.4 Program Check Screen

Displays the program currently being executed, current position of the tool, and modal data in the MEMORY mode.

Procedure for displaying the program check screen

1. Press function key [PROG].
2. Press chapter selection soft key [CHECK].

The program currently being executed, current position of the tool, and modal data are displayed.

Explanations

- **Program display**: The screen displays up to four blocks of the current program, starting from the block currently being executed. The block currently being executed is displayed in reverse video. During DNC operation, however, only three blocks can be displayed.

- **Current position display**: The position in the workpiece coordinate system or relative coordinate system and the remaining distance are displayed. The absolute positions and relative positions are switched by soft keys [ABS] and [REL].

- **Modal G codes**: Up to 12 modal G codes are displayed. (12 G codes for each path, on 12 soft keys display unit when two-path control is being used)

- **Displaying during automatic operation**: During automatic operation, the actual speed, SCAT, and repeat count are displayed. The key input prompt (> _) is displayed otherwise.
11.2.5 Program Screen for MDI Operation

Displays the program input from the MDI and modal data in the MDI mode.

Procedure for displaying the program screen for MDI operation

1. Press function key \textbf{PROG}.
2. Press chapter selection soft key \textbf{[MDI]}.
   The program input from the MDI and modal data are displayed.

![Program Screen](image)

**Explanations**

- **MDI operation**
  See Section II–4.2 for MDI operation.

- **Modal information**
  The modal data is displayed when bit 7 (MDL) of parameter 3107 is set to 1. Up to 16 modal G codes are displayed.

- **Displaying during automatic operation**
  During automatic operation, the actual speed, SCAT, and repeat count are displayed. The key input prompt (\( > _{\_} \)) is displayed otherwise.
This section describes the screens displayed by pressing function key PROG in the EDIT mode. Function key PROG in the EDIT mode can display the program editing screen and the program display screen (displays memory used and a list of programs). Pressing function key PROG in the EDIT mode can also display the conversational graphics programming screen and the floppy file directory screen. See Chapter III–9, III–10 for the program editing screen and conversational graphics programming screen. See Chapter III–8 for the floppy file directory screen.

Displays the number of registered programs, memory used, and a list of registered programs.

**Procedure for displaying memory used and a list of programs**

1. Select the EDIT mode.
2. Press function key \texttt{PROG}.
3. Press chapter selection soft key [\texttt{LIB}].

**Explanations**

- **Details of memory used**

  **PROGRAM NO. USED**
  - \textbf{PROGRAM NO. USED} : The number of the programs registered (including the subprograms)
  - \textbf{FREE} : The number of programs which can be registered additionally.

  **MEMORY AREA USED**
  - \textbf{MEMORY AREA USED} : The capacity of the program memory in which data is registered (indicated by the number of characters).
  - \textbf{FREE} : The capacity of the program memory which can be used additionally (indicated by the number of characters).
**Program library list**

Program Nos. of programs registered are indicated. Program name, program size, and program modification date are displayed. Soft key [DIR+] can be used to switch between the program name display (Fig. 11.3.1(a)) and the program size and program modification date display (Fig. 11.3.1(b)). The modification date is also updated when the program number is changed.

```
PROGRAM DIRECTORY O0001 N00010

PROGRAM (NUM.) MEMORY (CHAR.)
USED: 17 4,320
FREE: 183 126,840
O0001 (MACRO–GCODE.MAIN)
O0002 (MACRO–GCODE.SUB1)
O0010 (TEST–PROGRAM.ARITHMETIC NO.1)
O0020 (TEST–PROGRAM.F10–MACRO)
O0040 (TEST–PROGRAM.OFFSET)
O0050
O0100 (INCH/MM CONVERT CHECK NO.1)
```

```
> EDIT ***** *** *** 16:52:13
[PRGRM][DIR+][][][(OPRT)]
```

```
PROGRAM DIRECTORY O0001 N00010

PROGRAM (NUM.) MEMORY (CHAR.)
USED: 17 4,320
FREE: 183 126,840
O NO. SIZE (CHAR.) DATE
O0001 360 2001–06–12 14:40
O0002 240 2001–06–12 14:55
O0010 420 2001–07–01 11:02
O0020 180 2001–08–14 09:40
O0040 1,140 2001–03–25 18:40
O0050 60 2001–08–26 16:40
O0100 120 2001–04–30 13:11
```

```
> EDIT ***** *** *** *** 16:52:13
[PRGRM][DIR+][][][(OPRT)]
```

**Program name**

Always enter a program name between the control out and control in codes immediately after the program number. Up to 31 characters can be used for naming a program within the parentheses. If 31 characters are exceeded, the exceeded characters are not displayed. Only program number is displayed for the program without any program name.

```
O 0001 (000...0)
```

Program number Program name (up to 31 characters)
• **Order in which programs are displayed in the program library list**

Programs are displayed in the same order that they are registered in the program library list. However, if bit 4 (SOR) of parameter 3107 is set to 1, programs are displayed in the order of program number starting from the smallest one.

Immediately after all programs are cleared (by turning on the power while pressing the DELETE key), each program is registered after the last program in the list.

If some programs in the list were deleted, then a new program is registered, the new program is inserted in the empty location in the list created by the deleted programs.

**Example**) When bit 4 (SOR) of parameter 3107 is 0

1. After clearing all programs, register programs O0001, O0002, O0003, O0004, and O0005 in this order. The program library list displays the programs in the following order:
   O0001, O0002, O0003, O0004, O0005

2. Delete O0002 and O0004. The program library list displays the programs in the following order:
   O0001, O0003, O0005

3. Register O0009. The program library list displays the programs in the following order:
   O0001, O0009, O0003, O0005
11.3.2 Displaying a Program List for a Specified Group

In addition to the normal listing of the numbers and names of CNC programs stored in memory, programs can be listed in units of groups, according to the product to be machined, for example.

To assign CNC programs to the same group, assign names to those programs, beginning each name with the same character string.

By searching through the program names for a specified character string, the program numbers and names of all the programs having names including that string are listed.

To enable this function, bit 1 (GPL) of parameter No. 3106 must be set to 1.

Procedure for Displaying a Program List for a Specified Group

Procedure

1. Enter EDIT or background editing mode.
2. Press the PROG function key.
3. Press the PROG function key or [DIR] soft key to display the program list.
4. Press the [(OPRT)] operation soft key.
5. Press the [GROUP] operation soft key.
7. Enter the character string corresponding to the group for which a search is to be made, using the MDI keys. No restrictions are imposed on the length of a program name. Note, however, that search is made based on only the first 32 characters.

Example: To search for those CNC programs having names that begin with character string “GEAR–1000,” enter the following:

>GEAR–1000*
8 Pressing the [EXEC] operation soft key displays the group–unit program list screen, listing all those programs whose name includes the specified character string.

![Group–unit program list screen displayed when a search is made for “GEAR–1000”](image)

When the program list consists of two or more pages, the pages can be changed by using a page key.

**Explanations**

- *** and ?**

In the above example, the asterisk (*) must not be omitted. The asterisk indicates an arbitrary character string (wild card specification).

“GEAR–1000*” indicates that the first nine characters of the target program names must be “GEAR–1000,” followed by an arbitrary character string. If only “GEAR–1000" is entered, a search is made only for those CNC programs having the nine–character name “GEAR–1000.”

A question mark (?) can be used to specify a single arbitrary character. For example, entering “????–1000” enables a search to be made for programs having names which start with four arbitrary characters, followed by “–1000”.

---

**OPERATION**

11. SETTING AND DISPLAYING DATA

---

---
[Example of using wild cards]

(Entered character string)  (Group for which the search will be made)
(a)  "*"  CNC programs having any name
(b)  "*ABC"  CNC programs having names which end with “ABC”
(c)  “ABC*”  CNC programs having names which start with “ABC”
(d)  “*ABC*”  CNC programs having names which include “ABC”
(e)  “?A?C”  CNC programs having four-character names, the second and fourth characters of which are A and C, respectively
(f)  “??A?C”  CNC programs having five-character names, the third and fifth characters of which are A and C, respectively
(g)  “123*456”  CNC programs having names which start with “123” and which end with “456”

- **When the specified character string cannot be found**

  If no program is located as a result of a search for an entered character string, warning message “DATA NOT FOUND” is displayed on the program list screen.

- **Holding the group for which a search is made**

  A group-unit program list, generated by a search, is held until the power is turned off or until another search is performed.

- **Group for which previous search was made**

  After changing the screen from the group-unit program list to another screen, pressing the [PR–GRP] operation soft key (displayed in step 6) redisplay the group-unit program list screen, on which the program names for the previously searched group are listed. Using this soft key eliminates the need to enter the relevant character string again to redisplay the search results after changing the screen.

**Examples**

Assume that the main programs and subprograms for machining gear part number 1000 all have names which include character string “GEAR–1000.” The numbers and names of those programs can be listed by searching through the names of all CNC programs for character string “GEAR–1000.” This function facilitates the management of the CNC programs stored in large-capacity memory.
Press function key to display or set tool compensation values and other data.

This section describes how to display or set the following data:

1. Tool offset value
2. Settings
3. Run time and part count
4. Workpiece origin offset value or workpiece coordinate system shift value
5. Custom macro common variables
6. Pattern menu and pattern data
7. Software operator’s panel
8. Tool life management data

This section also describes following functions.
- Direct input of tool offset value
- Direct input of tool offset value measured B
- Counter input of offset value
- Direct input of workpiece coordinate system shift
- Y axis offset
- Sequence number comparison and stop function

The following functions are highly dependent on the specifications from the machine tool builder. See the manual issued by the machine tool builder for details.
- Pattern menu and pattern data
- Direct input of tool offset value
- Direct input of tool offset value measured B
- Software operator’s panel
- Tool life management data
Dedicated screens are provided for displaying and setting tool offset values and tool nose radius compensation values.

### Procedure for setting and displaying the tool offset value and the tool nose radius compensation value

1. Press function key \( OFFSET \).

2. Press chapter selection soft key \([OFFSET]\) or press \( OFFSET \) several times until the tool compensation screen is displayed.

   2–1 Pressing soft key \([GEOM]\) displays tool geometry compensation values.

```
<table>
<thead>
<tr>
<th>NO.</th>
<th>X</th>
<th>Z</th>
<th>R</th>
<th>T</th>
</tr>
</thead>
<tbody>
<tr>
<td>G 001</td>
<td>0.000</td>
<td>1.000</td>
<td>0.000</td>
<td>0</td>
</tr>
<tr>
<td>G 002</td>
<td>1.486</td>
<td>-49.561</td>
<td>0.000</td>
<td>0</td>
</tr>
<tr>
<td>G 003</td>
<td>1.486</td>
<td>-49.561</td>
<td>0.000</td>
<td>0</td>
</tr>
<tr>
<td>G 004</td>
<td>1.486</td>
<td>0.000</td>
<td>0.000</td>
<td>0</td>
</tr>
<tr>
<td>G 005</td>
<td>1.486</td>
<td>-49.561</td>
<td>0.000</td>
<td>0</td>
</tr>
<tr>
<td>G 006</td>
<td>1.486</td>
<td>-49.561</td>
<td>0.000</td>
<td>0</td>
</tr>
<tr>
<td>G 007</td>
<td>1.486</td>
<td>-49.561</td>
<td>0.000</td>
<td>0</td>
</tr>
<tr>
<td>G 008</td>
<td>1.486</td>
<td>-49.561</td>
<td>0.000</td>
<td>0</td>
</tr>
</tbody>
</table>

ACTUAL POSITION (RELATIVE)

- U: 101.000
- W: 202.094
```

With tool geometry offset
2–2 Pressing soft key [WEAR] displays tool wear compensation values.

<table>
<thead>
<tr>
<th>OFFSET/WEAR</th>
<th>00001</th>
<th>00000</th>
</tr>
</thead>
<tbody>
<tr>
<td>NO.</td>
<td>X</td>
<td>Z</td>
</tr>
<tr>
<td>W 001</td>
<td>0.000</td>
<td>1.000</td>
</tr>
<tr>
<td>W 002</td>
<td>1.486</td>
<td>-49.561</td>
</tr>
<tr>
<td>W 003</td>
<td>1.486</td>
<td>-49.561</td>
</tr>
<tr>
<td>W 004</td>
<td>1.486</td>
<td>0.000</td>
</tr>
<tr>
<td>W 005</td>
<td>1.486</td>
<td>-49.561</td>
</tr>
<tr>
<td>W 006</td>
<td>1.486</td>
<td>-49.561</td>
</tr>
<tr>
<td>W 007</td>
<td>1.486</td>
<td>-49.561</td>
</tr>
<tr>
<td>W 008</td>
<td>1.486</td>
<td>-49.561</td>
</tr>
</tbody>
</table>

ACTUAL POSITION (RELATIVE)
U 101.000  W 202.094

With tool wear offset

3 Move the cursor to the compensation value to be set or changed using page keys and cursor keys, or enter the compensation number for the compensation value to be set or changed and press soft key [NO.SRH].

4 To set a compensation value, enter a value and press soft key [INPUT]. To change the compensation value, enter a value to add to the current value (a negative value to reduce the current value) and press soft key [+INPUT]. Or, enter a new value and press soft key [INPUT].

TIP is the number of the virtual tool tip (see Programming). TIP may be specified on the geometry compensation screen or on the wear compensation screen.

Explanations

- **Decimal point input**
  A decimal point can be used when entering a compensation value.

- **Other method**
  An external input/output device can be used to input or output a cutter compensation value. See Chapter III–8.

Tool length compensation values can be set using the following functions described in subsequent subsections: direct input of tool offset value, direct–input function B for tool offset measured, and counter input of offset value.

- **Tool offset memory**
  64 groups are provided for tool compensation. Offset data items are classified by tool geometry offset or tool wear offset.
In some cases, tool wear compensation or tool geometry compensation values cannot be input because of the settings in bits 0 (WOF) and 1 (GOF) of parameter 3290. The input of tool compensation values from the MDI can be inhibited for a specified range of offset numbers. The first offset number for which the input of a value is inhibited is set in parameter No. 3294. The number of offset numbers, starting from the specified first number, for which the input of a value is inhibited is set in parameter No. 3295.

Consecutive input values are set as follows:

1) When values are input for offset numbers, starting from one for which input is not inhibited to one for which input is inhibited, a warning is issued and values are set only for those offset numbers for which input is not inhibited.

2) When values are input for offset numbers, starting from one for which input is inhibited to one for which input is not inhibited, a warning is issued and no values are set.

When offset values have been changed during automatic operation, bit 4 (LGT) and bit 6 (LWM) of parameter 5002 can be used for specifying whether new offset values become valid in the next move command or in the next T code command.

<table>
<thead>
<tr>
<th>LGT</th>
<th>LWM</th>
<th>Tool geometry compensation values</th>
<th>Tool wear compensation values</th>
</tr>
</thead>
<tbody>
<tr>
<td>0</td>
<td>0</td>
<td>Become valid in the next T code block</td>
<td>Become valid in the next T code block</td>
</tr>
<tr>
<td>1</td>
<td>0</td>
<td>Become valid in the next T code block</td>
<td>Become valid in the next T code block</td>
</tr>
<tr>
<td>0</td>
<td>1</td>
<td>Become valid in the next T code block</td>
<td>Become valid in the next move command</td>
</tr>
<tr>
<td>1</td>
<td>1</td>
<td>Become valid in the next move command</td>
<td>Become valid in the next move command</td>
</tr>
</tbody>
</table>
11.4.2 Direct Input of Tool Offset Value

To set the difference between the tool reference position used in programming (the nose of the standard tool, turret center, etc.) and the tool tip position of a tool actually used as an offset value.

**Procedure for direct input of tool offset value**

- **Setting of Z axis offset value**

   Suppose that a workpiece coordinate system has been set.

2. Release the tool in X axis direction only, without moving Z axis and stop the spindle.

3. Measure distance $\beta$ from the zero point in the workpiece coordinate system to surface A.
   Set this value as the measured value along the Z–axis for the desired offset number, using the following procedure:

<table>
<thead>
<tr>
<th>NO.</th>
<th>X</th>
<th>Z</th>
<th>R</th>
<th>T</th>
</tr>
</thead>
<tbody>
<tr>
<td>G 001</td>
<td>0.000</td>
<td>1.000</td>
<td>0.000</td>
<td>0</td>
</tr>
<tr>
<td>G 002</td>
<td>1.486</td>
<td>-49.561</td>
<td>0.000</td>
<td>0</td>
</tr>
<tr>
<td>G 003</td>
<td>1.486</td>
<td>-49.561</td>
<td>0.000</td>
<td>0</td>
</tr>
<tr>
<td>G 004</td>
<td>1.486</td>
<td>0.000</td>
<td>0.000</td>
<td>0</td>
</tr>
<tr>
<td>G 005</td>
<td>1.486</td>
<td>-49.561</td>
<td>0.000</td>
<td>0</td>
</tr>
<tr>
<td>G 006</td>
<td>1.486</td>
<td>-49.561</td>
<td>0.000</td>
<td>0</td>
</tr>
<tr>
<td>G 007</td>
<td>1.486</td>
<td>-49.561</td>
<td>0.000</td>
<td>0</td>
</tr>
<tr>
<td>G 008</td>
<td>1.486</td>
<td>-49.561</td>
<td>0.000</td>
<td>0</td>
</tr>
</tbody>
</table>

   **ACTUAL POSITION (RELATIVE)**
   | U    | 0.000 | W  | 0.000 |
   | V    | 0.000 | H  | 0.000 |

   `>MZ120._`

   **MDI **** *** *** 16:05:59**
   `[NO,SRH] [ MEASUR ] [ INP.C. ] [ +INPUT ] [ INPUT ]`

3–1. Press the function key $\left[\text{OFFSET}\right]$ or the soft key $\left[\text{OFFSET}\right]$ to display the tool compensation screen. If geometry compensation values and wear compensation values are separately specified, display the screen for either of them.

3–2. Move the cursor to the set offset number using cursor keys.
3–3 Press the address key \[ Z \] to be set.

3–4 Key in the measured value (\( \beta \)).

3–5 Press the soft key [MESURE]. The difference between measured value \( \beta \) and the coordinate is set as the offset value.

4 Cut surface B in manual mode.

5 Release the tool in the Z–axis direction without moving the X–axis and stop the spindle.

6 Measure the diameter \( \alpha \) of surface B. Set this value as the measured value along the X–axis for the desired offset number in the same way as when setting the value along the Z–axis.

7 Repeat above procedure the same time as the number of the necessary tools. The offset value is automatically calculated and set. For example, in case \( \alpha=69.0 \) when the coordinate value of surface B in the diagram above is 70.0, set 69.0 [MEASURE] at offset No. 2. In this case, 1.0 is set as the X–axis offset value to offset No. 2.

Explanations

- **Compensation values for a program created in diameter programming**
  Enter diameter values for the compensation values for axes for which diameter programming is used.

- **Tool geometry offset value and tool wear offset value**
  If measured values are set on the tool geometry compensation screen, all compensation values become geometry compensation values and all wear compensation values are set to 0. If measured values are set on the tool wear compensation screen, the differences between the measured compensation values and the current wear compensation values become the new compensation values.

- **Retracting along two axes**
  If a record button is provided on the machine, the tool can retract along two axes when bit 2 (PRC) of parameter 5005 is set and the record signal is used. Refer to the appropriate manual issued by the machine tool builder.
11.4.3 Direct Input of Tool Offset Measured B

The direct input function B for tool offset measured is used to set tool compensation values and workpiece coordinate system shift values.

Procedure for setting the tool offset value

Tool position offset values can be automatically set by manually moving the tool until it touches the sensor. Refer to the appropriate manual issued by the machine tool builder for actual operation.

   By executing manual reference position return, a machine coordinate system is established.
   The tool offset value is computed on the machine coordinate system.

2. Set the offset writing mode signal GOQSM to HIGH.
   (Refer to the appropriate manual issued by the machine tool builder for actual operation.)
   The screen is automatically changed to the tool offset screen (geometry), and the “OFST” indicator starts blinking in the status indication area in the bottom of the screen, which informs that the offset writing mode is ready.

3. Select a tool to be measured.

4. When the cursor is not coincided with the tool offset number desired to be set, move the cursor to the desired offset number by page key and cursor key.
   Besides the cursor can also be coincided with the tool offset number desired to set automatically by the tool offset number input signals (when parameter QNI(No.5005#5)=1).
   In this case, the position of the cursor cannot be changed on the tool compensation screen using page keys or cursor keys.

5. Near the tool to the sensor by manual operation.

6. Place the tool edge to a contacting surface of the sensor by manual handle feed.
   Bring the tool edge in contact with the sensor. This causes the offset writing signals (+MIT1, −MIT1, +MIT2 or −MIT2) to input to CNC.
   The offset writing signal is set to HIGH, and the:
   - The axis is interlocked in this direction and its feeding is stopped.
   - The tool offset value extracted by the tool offset memory (tool geometry offset value) which corresponds to the offset number shown by the cursor is set up.

7. For both X-axis and Z-axis, their offset value are set by the operations 5 and 6.

8. Repeat operations 3 to 7 for necessary tools.
9 Set the offset writing signal mode GOQSM to LOW.
The writing mode is canceled and the blinking “OFST” indicator light goes off.

**Procedure for setting the workpiece coordinate system shift amount**

Tool position offset values can be automatically set by manually moving the tool until it touches the sensor. Refer to the appropriate manual issued by the machine tool builder for actual operation.

1 The tool compensation values are then calculated based on the machine coordinates of the tool.

2 Execute manual reference position return.
   By executing manual reference position return, the machine coordinate system is established.
   The workpiece coordinate system shifting amount is computed based on the machine coordinate system of the tool.

3 Set the workpiece coordinate system shifting amount writing signal mode WOQSM to HIGH.
   (Refer to the appropriate manual issued by the machine tool builder for actual operation.)
   The screen is automatically switched to the workpiece shifting screen, the “WFST” indicator starts blinking at the status indicator area in the bottom of the screen, which inform that the workpiece coordinate system shifting amount writing mode is ready.

4 Select a tool to be measured.

5 Check tool offset numbers.
   The tool offset number corresponding to the tool required for measurement, shall be set in the parameter (No.5020) in advance.
   Besides the tool offset number can be set automatically by setting the tool offset number input signal (with parameter QNI(No.5005#5)=1).
   Refer to the appropriate manual issued by the machine tool builder for details.

6 Manually approach the tool to an end face of the workpiece.

7 Place the tool edge to the end face (sensor) of the workpiece by manual handle feed.
   The workpiece coordinate system shifting amount on the Z-axis is automatically set.

8 Feed the tool.

9 Set the workpiece coordinate system shifting amount writing signal mode WOQSM to LOW.
   The writing mode is canceled and the blinking “WSFT” indicator light goes off.
   (Refer to the appropriate manual issued by the machine tool builder for actual operation.)
11.4.4 Counter Input of Offset value

By moving the tool until it reaches the desired reference position, the corresponding tool offset value can be set.

Procedure for counter input of offset value

1. Manually move the reference tool to the reference position.
2. Reset the relative coordinates along the axes to 0 (see subsec. III–11.1.2).
3. Move the tool for which offset values are to be set to the reference position.
4. Select the tool compensation screen. Move the cursor to the offset value to be set using cursor keys.

```
OFFSET/GEOMETRY O0001 N00000
NO. X Z R T
G 001 0.000 1.000 0.000 0
G 002 1.486 -49.561 0.000 0
G 003 1.486 -49.561 0.000 0
G 004 1.486 0.000 0.000 0
G 005 1.486 -49.561 0.000 0
G 006 1.486 -49.561 0.000 0
G 007 1.486 -49.561 0.000 0
G 008 1.486 -49.561 0.000 0
ACTUAL POSITION (RELATIVE)
U 0.000 W 0.000
V 0.000 H 0.000
>Χ
HND **** *** *** 16:05:59
[NO,SRH] [MEASUR] [INP.C.] [+INPUT] [INPUT]
```

5. Press address key $X$ (or $Z$) and the soft key $[\text{INP.C.}]$.

Explanations

- **Geometry offset and wear offset**

When the above operations are performed on the tool geometry compensation screen, tool geometry compensation values are input and tool wear compensation values do not change.

When the above operations are performed on the tool wear compensation screen, tool wear compensation values are input and tool geometry compensation values do not change.
11.4.5 Setting the Workpiece Coordinate System Shifting Amount

The set coordinate system can be shifted when the coordinate system which has been set by a G50 command (or G92 command for G code system B or C) or automatic coordinate system setting is different from the workpiece coordinate system assumed at programming.

Procedure for setting the workpiece coordinate system shifting amount

1. Press function key [OFFSET SETTING].

2. Press the continuous menu key [WK.SHFT] several times until the screen with soft key [WK.SHFT] is displayed.

3. Press soft key [WK.SHFT].

4. Move the cursor using cursor keys to the axis along which the coordinate system is to be shifted.

5. Enter the shift value and press soft key [INPUT].
Explanations

- **When shift values become valid**
  Shift values become valid immediately after they are set.

- **Shift values and coordinate system setting command**
  Setting a command (G50 or G92) for setting a coordinate system disables the set shift values.

  **Example** When G50 X100.0 Z80.0; is specified, the coordinate system is set so that the current tool reference position is X = 100.0, Z = 80.0 regardless of the shift values.

- **Shift values and coordinate system setting**
  If the automatic coordinate system setting is performed by manual reference position return after shift amount setting, the coordinate system is shifted instantly.

- **Diameter or radius value**
  Whether the shift amount on the X axis is diameter or radius value depends on that specified in program.

**Examples**

When the actual position of the reference point is X = 121.0 (diameter), Z = 69.0 with respect to the workpiece origin but it should be X = 120.0, Z = 70.0, set the following shift values:

X=1.0, Z=-1.0
11.4.6 Y Axis Offset

Tool position offset values along the Y–axis can be set. Counter input of offset values is also possible. Direct input of tool offset value and direct input function B for tool offset measured are not available for the Y–axis.

Procedure for setting the tool offset value of the Y axis

1. Press function key OFFSET SETTING.

2. Press the continuous menu key several times until the screen with soft key [OFST.2] is displayed.

3. Press soft key [OFST.2]. The Y axis offset screen is displayed.

3–1. Press soft key [GEOM] to display the tool geometry compensation values along the Y–axis.
3–2 Press soft key [WEAR] to display the tool wear compensation values along the Y–axis.

4 Position the cursor at the offset number to be changed by using either of the following methods:
   - Move the cursor to the offset number to be changed using page keys and cursor keys.
   - Type the offset number and press soft key [NO.SRH].

5 Type the offset value.

6 Press soft key [WEAR]. The offset value is set and displayed.
Procedure for counter input of the offset value

To set relative coordinates along the Y-axis as offset values:

1. Move the reference tool to the reference point.
2. Reset relative coordinate Y to 0 (see subsec. III–11.1.2).
3. Move the tool for which offset values are to be set to the reference point.
4. Move the cursor to the value for the offset number to be set, press $Y$, then press soft key [INP.C.].

Relative coordinate Y (or V) is now set as the offset value.
11.4.7 Displaying and Entering Setting Data

Data such as the TV check flag and punch code is set on the setting data screen. On this screen, the operator can also enable/disable parameter writing, enable/disable the automatic insertion of sequence numbers in program editing, and perform settings for the sequence number comparison and stop function. See Chapter III–10.2 for automatic insertion of sequence numbers. See subsection III–11.4.8 for the sequence number comparison and stop function. This subsection describes how to set data.

Procedure for setting the setting data

1. Select the MDI mode.
2. Press function key [OFFSET SETING].
3. Press soft key [SETTING] to display the setting data screen. This screen consists of several pages. Press page key [PAGE] or [PAGE] until the desired screen is displayed.

An example of the setting data screen is shown below.

**SETTING (HANDY)** 00001 N00000

- PARAMETER WRITE = 1 (0:DISABLE 1:ENABLE)
- TV CHECK = 0 (0:OFF 1:ON)
- PUNCH CODE = 1 (0:EIA 1:ISO)
- INPUT UNIT = 0 (0:MM 1:INCH)
- I/O CHANNEL = 0 (0-3:CHANNEL NO.)
- SEQUENCE NO. = 0 (0:OFF 1:ON)
- TAPE FORMAT = 0 (0:NO CNV 1:F15)
- SEQUENCE STOP = 0 (PROGRAM NO.)
- SEQUENCE STOP = 11 (SEQUENCE NO.)

MDI **** *** *** 16:05:59
[ OFFSET ][ SETING ][ WORK ][ ] [ (OPRT) ]

**SETTING (HANDY)** 00001 N00000

- MIRROR IMAGE X = 0 (0:OFF 1:ON)
- MIRROR IMAGE Z = 0 (0:OFF 1:ON)

MDI **** *** *** 16:05:59
[ OFFSET ][ SETING ][ WORK ][ ] [ (OPRT) ]
4 Move the cursor to the item to be changed by pressing cursor keys \[\text{\uparrow}, \text{\downarrow}, \text{\leftarrow}, \text{\rightarrow}\].

5 Enter a new value and press soft key [INPUT].

Contents of settings

- **PARAMETER WRITE**
  Setting whether parameter writing is enabled or disabled.
  0: Disabled
  1: Enabled

- **TV CHECK**
  Setting to perform TV check.
  0: No TV check
  1: Perform TV check

- **PUNCH CODE**
  Setting code when data is output through reader puncher interface.
  0: EIA code output
  1: ISO code output

- **INPUT UNIT**
  Setting a program input unit, inch or metric system
  0: Metric
  1: Inch

- **I/O CHANNEL**
  Using channel of reader/puncher interface.
  0: Channel 0
  1: Channel 1
  2: Channel 2

- **SEQUENCE NO.**
  Setting of whether to perform automatic insertion of the sequence number or not at program edit in the EDIT mode.
  0: Does not perform automatic sequence number insertion.
  1: Perform automatic sequence number insertion.

- **TAPE FORMAT**
  Setting the F10/11 tape format conversion.
  0: Tape format is not converted.
  1: Tape format is converted.
  See PROGRAMMING for the F10/11 tape format.

- **SEQUENCE STOP**
  Setting the sequence number with which the operation stops for the sequence number comparison and stop function and the number of the program to which the sequence number belongs

- **MIRROR IMAGE**
  Setting of mirror image ON/OFF for each axes.
  0: Mirror image off
  1: Mirror image on

- **Others**
  Page key \[\text{\page}\] or \[\text{\page}\] can also be pressed to display the SETTING (TIMER) screen. See subsection III–11.4.9 for this screen.
11.4.8 Sequence Number Comparison and Stop

If a block containing a specified sequence number appears in the program being executed, operation enters single block mode after the block is executed.

Procedure for sequence number comparison and stop

1. Select the MDI mode.
2. Press function key \[\text{OFFSET}\].
3. Press chapter selection soft key [\text{SETTING}].
4. Press page key \[\text{TAB}\] or \[\text{PAGE}\] several times until the following screen is displayed.

```
SETTING (HANDY) O0001 N00000
PARAMETER WRITE = 1 (0:DISABLE 1:ENABLE)
TV CHECK = 0 (0:OFF 1:ON)
PUNCH CODE = 1 (0:EIA 1:ISO)
INPUT UNIT = 0 (0:MM 1:INCH)
I/O CHANNEL = 0 (0-3:CHANNEL NO.)
SEQUENCE NO. = 0 (0:OFF 1:ON)
TAPE FORMAT = 0 (0:NO CNV 1:F10/11)
SEQUENCE STOP = 0 (PROGRAM NO.)
SEQUENCE STOP = 11 (SEQUENCE NO.)
```

5. Enter in (PROGRAM NO.) for SEQUENCE STOP the number (1 to 9999) of the program containing the sequence number with which operation stops.
6. Enter in (SEQUENCE NO.) for SEQUENCE STOP (with five or less digits) the sequence number with which operation is stopped.
7. When automatic operation is executed, operation enters single block mode at the block containing the sequence number which has been set.
Explanations

- **Sequence number after the program is executed**
  After the specified sequence number is found during the execution of the program, the sequence number set for sequence number compensation and stop is decremented by one. When the power is turned on, the setting of the sequence number is 0.

- **Exceptional blocks**
  If the predetermined sequence number is found in a block in which all commands are those to be processed within the CNC control unit, the execution does not stop at that block.
  **Example**
  
  N1 #1=1 ;
  N2 IF [#1 EQ 1] GOTO 08 ;
  N3 GOTO 09 ;
  N4 M98 P1000 ;
  N5 M99 ;
  
  In the example shown above, if the predetermined sequence number is found, the execution of the program does not stop.

- **Stop in the canned cycle**
  If the predetermined sequence number is found in a block which has a canned–cycle command, the execution of the program stops after the return operation is completed.

- **When the same sequence number is found several times in the program**
  If the predetermined sequence number appears twice or more in a program, the execution of the program stops after the block in which the predetermined sequence number is found for the first time is executed.

- **Block to be repeated a specified number of times**
  If the predetermined sequence number is found in a block which is to be executed repeatedly, the execution of the program stops after the block is executed specified times.
### 11.4.9 Displaying and Setting Run Time, Parts Count, and Time

Various run times, the total number of machined parts, number of parts required, and number of machined parts can be displayed. This data can be set by parameters or on this screen (except for the total number of machined parts and the time during which the power is on, which can be set only by parameters). This screen can also display the clock time. The time can be set on the screen.

#### Procedure for Displaying and Setting Run Time, Parts Count and Time

1. Select the MDI mode.
2. Press function key [OFFSET].
3. Press chapter selection soft key [SETTING].
4. Press page key [PAGE] several times until the following screen is displayed.

<table>
<thead>
<tr>
<th>SETTING (TIMER)</th>
<th>O0001 N00000</th>
</tr>
</thead>
<tbody>
<tr>
<td>PARTS TOTAL</td>
<td>14</td>
</tr>
<tr>
<td>PARTS REQUIRED</td>
<td>0</td>
</tr>
<tr>
<td>PARTS COUNT</td>
<td>23</td>
</tr>
<tr>
<td>POWER ON</td>
<td>4H 31M</td>
</tr>
<tr>
<td>OPERATING TIME</td>
<td>0H 0M 0S</td>
</tr>
<tr>
<td>CUTTING TIME</td>
<td>0H 37M 5S</td>
</tr>
<tr>
<td>FREE PURPOSE</td>
<td>0H 0M 0S</td>
</tr>
<tr>
<td>CYCLE TIME</td>
<td>0H 0M 0S</td>
</tr>
<tr>
<td>DATE</td>
<td>2001/07/05</td>
</tr>
<tr>
<td>TIME</td>
<td>11:32:52</td>
</tr>
</tbody>
</table>

5. To set the number of parts required, move the cursor to PARTS REQUIRED and enter the number of parts to be machined.
6. To set the clock, move the cursor to DATE or TIME, enter a new date or time, then press soft key [INPUT].

#### Display items

- **PARTS TOTAL**
  
  This value is incremented by one when M02, M30, or an M code specified by parameter 6710 is executed. This value cannot be set on this screen. Set the value in parameter 6712.

- **PARTS REQUIRED**
  
  It is used for setting the number of machined parts required. When the “0” is set to it, there is no limitation to the number of parts. Also, its setting can be made by the parameter (NO. 6713).
This value is incremented by one when M02, M30, or an M code specified by parameter 6710 is executed. The value can also be set by parameter 6711. In general, this value is reset when it reaches the number of parts required. Refer to the manual issued by the machine tool builder for details.

**POWER ON**
Displays the total time which the power is on. This value cannot be set on this screen but can be preset in parameter 6750.

**OPERATING TIME**
Indicates the total run time during automatic operation, excluding the stop and feed hold time. This value can be preset in parameter 6751 or 6752.

**CUTTING TIME**
Displays the total time taken by cutting that involves cutting feed such as linear interpolation (G01) and circular interpolation (G02 or G03). This value can be preset in parameter 6753 or 6754.

**FREE PURPOSE**
This value can be used, for example, as the total time during which coolant flows. Refer to the manual issued by the machine tool builder for details.

**CYCLE TIME**
Indicates the run time of one automatic operation, excluding the stop and feed hold time. This is automatically preset to 0 when a cycle start is performed at reset state. It is preset to 0 even when power is removed.

**DATA and TIME**
Displays the current date and time. The date and time can be set on this screen.

### Explanations

**Usage**
When the command of M02 or M30 is executed, the total number of machined parts and the number of machined parts are incremented by one. Therefore, create the program so that M02 or M30 is executed every time the processing of one part is completed. Furthermore, if an M code set to the parameter (NO. 6710) is executed, counting is made in the similar manner. Also, it is possible to disable counting even if M02 or M30 is executed (parameter PCM (No. 6700#0) is set to 1). For details, see the manual issued by machine tool builders.

### Restrictions

**Run time and part count settings**
Negative value cannot be set. Also, the setting of “M” and “S” of run time is valid from 0 to 59.

**Time settings**
Neither negative value nor the value exceeding the value in the following table can be set.

<table>
<thead>
<tr>
<th>Item</th>
<th>Maximum value</th>
<th>Item</th>
<th>Maximum value</th>
</tr>
</thead>
<tbody>
<tr>
<td>Year</td>
<td>2085</td>
<td>Hour</td>
<td>23</td>
</tr>
<tr>
<td>Month</td>
<td>12</td>
<td>Minute</td>
<td>59</td>
</tr>
<tr>
<td>Day</td>
<td>31</td>
<td>Second</td>
<td>59</td>
</tr>
</tbody>
</table>
11.4.10 Displaying and Setting the Workpiece Origin Offset Value

Displays the workpiece origin offset for each workpiece coordinate system (G54 to G59) and external workpiece origin offset. The workpiece origin offset and external workpiece origin offset can be set on this screen.

Procedure for Displaying and Setting the Workpiece Origin Offset Value

1. Press function key [OFFSET SETING].

2. Press chapter selection soft key [WORK].
   The workpiece coordinate system setting screen is displayed.

   WORK COORDINATES

<table>
<thead>
<tr>
<th>NO.</th>
<th>DATA</th>
</tr>
</thead>
<tbody>
<tr>
<td>00</td>
<td>X 0.000</td>
</tr>
<tr>
<td></td>
<td>(EXT) Z 0.000</td>
</tr>
<tr>
<td>01</td>
<td>X 20.000</td>
</tr>
<tr>
<td></td>
<td>(G54) Z 50.000</td>
</tr>
<tr>
<td>02</td>
<td>X 152.580</td>
</tr>
<tr>
<td></td>
<td>(G55) Z 234.000</td>
</tr>
<tr>
<td>03</td>
<td>X 300.000</td>
</tr>
<tr>
<td></td>
<td>(G56) Z 200.000</td>
</tr>
</tbody>
</table>

   MDI **** *** *** 16:05:59
   [ OFFSET ] [ SETING ] [ WORK ] [ ] [ (OPRT) ]

3. The screen for displaying the workpiece origin offset values consists of two or more pages. Display a desired page in either of the following two ways:
   • Press the page up or page down key.
   • Enter the workpiece coordinate system number (0: external workpiece origin offset, 1 to 6: workpiece coordinate systems G54 to G59) and press operation selection soft key [NO.SRH].

4. Turn off the data protection key to enable writing.

5. Move the cursor to the workpiece origin offset to be changed.

6. Enter a desired value by pressing numeric keys, then press soft key [INPUT]. The entered value is specified in the the workpiece origin offset value. Or, by entering a desired value with numeric keys and pressing soft key [+INPUT], the entered value can be added to the previous offset value.

7. Repeat 5 and 6 to change other offset values.

8. Turn on the data protection key to disable writing.
This function is used to compensate for the difference between the programmed workpiece coordinate system and the actual workpiece coordinate system. The measured offset for the origin of the workpiece coordinate system can be input on the screen such that the command values match the actual dimensions. Selecting the new coordinate system matches the programmed coordinate system with the actual coordinate system.

### Procedure for Inputting of Measured Workpiece Origin Offsets

1. When the workpiece is shaped as shown above, cut surface A manually.
2. Move the tool along the X axis without changing the Z coordinate then stop the spindle.
3. Measure distance $\beta$ between surface A and the programmed origin of the workpiece coordinate system as shown above.
4. Press function key \( \text{OFFSETSETTING} \).
5 To display the workpiece origin offset setting screen, press the chapter selection soft key [WORK].

<table>
<thead>
<tr>
<th>WORK COORDINATES</th>
<th>O1234 N56789</th>
</tr>
</thead>
<tbody>
<tr>
<td>(G54)</td>
<td></td>
</tr>
<tr>
<td>NO.</td>
<td>DATA</td>
</tr>
<tr>
<td>-----</td>
<td>------</td>
</tr>
<tr>
<td>00</td>
<td>X 0.000</td>
</tr>
<tr>
<td>(EXT)</td>
<td>Z 0.000</td>
</tr>
<tr>
<td>01</td>
<td>X 0.000</td>
</tr>
<tr>
<td>(G54)</td>
<td>Z 0.000</td>
</tr>
</tbody>
</table>

> Z100. S 0 T0000

MDI **** *** *** 16:05:59
[ NO.SRH ][ MEASUR ][ ] [ +INPUT ][ INPUT ]

6 Position the cursor to the workpiece origin offset value to be set.

7 Press the address key for the axis along which the offset is to be set (Z-axis in this example).

8 Enter the measured value (β) then press the [MEASUR] soft key.

9 Cut surface B manually.

10 Move the tool along the Z axis without changing the X coordinate then stop the spindle.

11 Measure the diameter of surface A (α) then enter the diameter at X.

Restrictions

- **Consecutive input**
  Offsets for two or more axes cannot be input at the same time.

- **During program execution**
  This function cannot be used while a program is being executed.

- **Effect from other shift value**
  Any shift specified for the workpiece coordinate system or external offset remains effective when this function is used.
11.4.12 Displaying and Setting Custom Macro Common Variables

Displays common variables (#100 to #199 and #500 to #999). When the absolute value for a common variable exceeds 99999999, "********" is displayed. The values for variables can be set on this screen. Relative coordinates can also be set to variables.

Procedure for displaying and setting custom macro common variables

1. Press function key [OFFSET SETTING].

2. Press the continuous menu key [ ], then press chapter selection soft key [MACRO]. The following screen is displayed:

<table>
<thead>
<tr>
<th>NO.</th>
<th>DATA</th>
<th>NO.</th>
<th>DATA</th>
</tr>
</thead>
<tbody>
<tr>
<td>100</td>
<td>1000.000</td>
<td>108</td>
<td>0.000</td>
</tr>
<tr>
<td>101</td>
<td>0.000</td>
<td>109</td>
<td>40000.000</td>
</tr>
<tr>
<td>102</td>
<td>-50000.000</td>
<td>110</td>
<td>153020.00</td>
</tr>
<tr>
<td>103</td>
<td>0.000</td>
<td>111</td>
<td>0001.000</td>
</tr>
<tr>
<td>104</td>
<td>1238501.0</td>
<td>112</td>
<td>0.000</td>
</tr>
<tr>
<td>105</td>
<td>0.000</td>
<td>113</td>
<td>20000.000</td>
</tr>
<tr>
<td>106</td>
<td>0.000</td>
<td>114</td>
<td>0.000</td>
</tr>
<tr>
<td>107</td>
<td>0.000</td>
<td>115</td>
<td>0.000</td>
</tr>
</tbody>
</table>

ACTUAL POSITION (RELATIVE)
U0.000 W 0.000

MDI **** *** *** 16:05:59
[ NO.SRH ] [ ] [ INP.C. ] [ ] [ INPUT ]

3. Move the cursor to the variable number to set using either of the following methods:
   - Enter the variable number and press soft key [NO.SRH].
   - Move the cursor to the variable number to set by pressing page keys [PAGE] and/or [PAGE] and cursor keys [PAGE] and/or [PAGE].

4. Enter data with numeric keys and press soft key [INPUT].

5. To set a relative coordinate in a variable, press address key [X] or [Z], then press soft key [INP.C.].

6. To set a blank in a variable, just press soft key [INPUT]. The value field for the variable becomes blank.
11.4.13 Displaying Pattern Data and Pattern Menu

This subsection uses an example to describe how to display or set machining menus (pattern menus) created by the machine tool builder. Refer to the manual issued by the machine tool builder for the actual pattern menus and pattern data. See Chapter II–20 for the pattern data entry function.

Procedure for displaying the pattern data and the pattern menu

**Procedure**

1. Press function key [OFFSET SETTING].

2. Press the continuous menu key [MENU], then press chapter selection soft key [MENU].

   The following screen (pattern menu screen) is displayed:

   **MENU**:
   
   - **HOLE PATTERN**
   - O0000 N00000
   
   >
   
   MDI **** *** *** 16:05:59
   [ MACRO ] [ MENU ] [ OPR ] [ ] [ (OPRT) ]

3. Enter a pattern number and press soft key [SELECT].

   In this example, press 5, then press [SELECT].

   The following screen (pattern data screen) is displayed:

   **VAR.**:
   
   - **BOLT HOLE**
   - O0001 N00000
   
   NO. NAME DATA COMMENT
   500 TOOL 0.000
   501 STANDARD X 0.000 “BOLT HOLE
   502 STANDARD Y 0.000 CIRCLE”
   503 RADIUS 0.000 SET PATTERN
   504 S. ANGL 0.000 DATA TO VAR.
   505 HOLES NO 0.000 NO.500–505.
   506 0.000
   507 0.000

   ACTUAL POSITION (RELATIVE)
   
   X 0.000
   Y 0.000
   Z 0.000

   MDI **** *** 16:05:59
   [ OFFSET ] [ SETING ] [ ] [ ] [ (OPRT) ]
4 Enter necessary pattern data and press [INPUT].

5 After entering all necessary data, enter the MEMORY mode and press the cycle start button to start machining.

Explanations

- **Explanation of the pattern menu screen**
  
  **HOLE PATTERN**: Menu title
  An optional character string can be displayed within 12 characters.

  **BOLE HOLE**: Pattern name
  An optional character string can be displayed within 10 characters.

  The machine tool builder should program character strings of menu title and pattern name by custom macro, and load them into the program memory.

- **Explanation of the pattern data screen**
  
  **BOLT HOLE**: Pattern data title
  An optional character string can be displayed within 12 characters.

  **TOOL**: Variable name
  An optional character string can be displayed within 10 characters.

  **BOLT HOLE CIRCLE**: Comment statement
  An optional character string comment can be displayed up to 12 characters/line by 8 lines.

  The machine tool builder should program the character strings of variable name and comment statement by custom macro, and load them into the program memory.
11.4.14 Displaying and Setting the Software Operator’s Panel

With this function, functions of the switches on the machine operator’s panel can be controlled from the MDI panel. Jog feed can be performed using numeric keys.

Procedure for displaying and setting the software operator’s panel

1. Press function key OFFSET SETTING.

2. Press the continuous menu key, then press chapter selection soft key [OPR].

3. The screen consists of several pages. Press page key or until the desired screen is displayed.

4. Move the cursor to the desired switch by pressing cursor key or .
5 Push the cursor move key \( \text{←} \) or \( \text{→} \) to match the mark \( \square \) to an arbitrary position and set the desired condition.

6 On a screen where jog feed is enabled, pressing a desired arrow key, shown below, performs jog feed. Press the \( \text{↑} \) key together with an arrow key to perform manual continuous rapid traverse.

\[
\begin{array}{cccc}
7 & 8 & 9 & \\
4 & 5 & 6 & \\
1 & 2 & 6 & \\
\end{array}
\]

**Explanations**

- **Valid operations**
  The valid operations on the software operator’s panel are shown below. Whether to use the CRT or machine operator’s panel for each group of operations can be selected by parameter 7200.
  - Group1: Mode selection
  - Group2: Selection of jog feed axis, manual continuous rapid traverse
  - Group3: Selection of manual pulse generator feed axis, selection of manual pulse magnification x1, x10, x100
  - Group4: Jog federate, federate override, rapid traverse override
  - Group5: Optional block skip, single block, machine lock, dry run
  - Group6: Protect key
  - Group7: Feed hold

- **Display**
  The groups for which the machine operator’s panel is selected by parameter 7200 are not displayed on the software operator’s panel.

- **Screens on which jog feed is valid**
  When the screen indicates other than the software operator’s panel screen and diagnostic screen, jog feed is not conducted even if the arrow key is pushed.

- **Jog feed and arrow keys**
  The feed axis and direction corresponding to the arrow keys can be set with parameters (Nos. 7210 to 7217).

- **General purpose switches**
  Eight optionally definable switches are added as an extended function of the software operator’s panel. The name of these switches can be set by parameters (Nos. 7220 to 7283) as character strings of max. 8 characters. For the meanings of these switches, refer to the manual issued by machine tool builder.
Tool life data can be displayed to inform the operator of the current state of tool life management. Groups which require tool changes are also displayed. The tool life counter for each group can be preset to an arbitrary value. Tool data (execution data) can be reset or cleared. To register or modify tool life management data, a program must be created and executed. See Explanations in this section for details.

Procedure for display and setting the tool life management data

1. Press function key OFFSET SETTING.

2. Press the continuous menu key to display chapter selection soft key [TOOLLF].

3. Press soft key [TOOLLF].

4. One page displays data on two groups. Pressing page key PAGE or PAGE successively displays data on the following groups. Up to four group Nos., for which the Tool Change signal is being issued, are displayed at the bottom of each page. An arrow shown in the figure is displayed for five or more groups, if exists.

TOOL LIFE DATA : 03000 N00060
SELECTED GROUP 000
GROUP 001 : LIFE 0150 COUNT 0000
0034 0078 0012 0056
0090 0035 0026 0061
0000 0000 0000 0000
0000 0000 0000 0000
GROUP 002 : LIFE 1400 COUNT 0000
0062 0024 0044 0074
0000 0000 0000 0000
0000 0000 0000 0000
0000 0000 0000 0000
TO BE CHANGED : 003 004 005 006 --->

5. To display the page containing the data for a group, enter the group number and press soft key [NO.SRH]. The cursor can be moved to an arbitrary group by pressing cursor key up or down.

6. To change the value in the life counter for a group, move the cursor to the group, enter a new value (four digits), and press [INPUT]. The life counter for the group indicated by the cursor is preset to the entered value. Other data for the group is not changed.
7 To reset the tool data, move the cursor on the group to reset, then press the [OPRT], [CLEAR], and [EXEC] soft keys in this order. All execution data for the group indicated by the cursor is cleared together with the marks (@, #, or *).

Explanations

- Registering tool life management data

The tool life management data must be executed to register it in the CNC memory.

(1) Load the program for tool life management in the EDIT mode, as with an ordinary CNC tape. The program will be registered in the part program memory and will be made ready for display and editing.

(2) Perform a cycle start operation in the MEM mode to run the program. The data will be stored in the tool life data area of the memory; at the same time, the already existing tool life data of all groups will be cancelled and the life counters will be cleared. Data once stored is not erased by turning the power off.

(3) Executing a cycle start operation in the TAPE mode instead of the operation of (1), stores the program contents directly onto the tool life data area. In this case, however, display and editing cannot be done as in (1). TAPE mode is not always prepared according to the machine tool builders.
• Display contents

<table>
<thead>
<tr>
<th>TOOL LIFE DATA :</th>
<th>03000 N00060</th>
</tr>
</thead>
<tbody>
<tr>
<td>SELECTED GROUP</td>
<td>000</td>
</tr>
</tbody>
</table>

**GROUP 001**

- LIFE 0150
- COUNT 0007

*0034 #0078 @0012 0056
0090 0035 0026 0061
0000 0000 0000 0000
0000 0000 0000 0000

**GROUP 002**

- LIFE 1400
- COUNT 0000

0062 0024 0044 0074
0000 0000 0000 0000
0000 0000 0000 0000
0000 0000 0000 0000

**TO BE CHANGED**

- 003 004 005 006

--->

**MEM **** *** *****

- 16:05:59

- [ MACRO ] [ ] [ OPR ] [ TOOLF ] [ (OPRT) ]

• The first line is the title line.

• In the second line the group number of the current command is displayed. When there is no group number of the current command, 0 is displayed.

• In lines 3 to 7 the tool life data of the group is displayed. The third line displays group number, life and the count used. The life count is chosen by parameter LTM (No. 6800#2) as either minutes (or hours) or number of times used. In lines 4 to 7, tool numbers are displayed. In this case, the tool is selected in the order, 0034 → 0078 → 0012 → 056 → 0090 ...

The meaning of each mark before the tool numbers is:

- *: Shows the life has finished.
- #: Shows that the skip command has been accepted.
- @: Shows that the tool is currently being used.

The life counter counts for tool with @.

• “*” is displayed when the next command is issued by the group to which it belongs.

• Lines 8 to 12 are next group life data to the group displayed in lines 3 to 7.

• In the thirteenth line the group number when the tool change signal is being emitted is displayed. The group number display appears in ascending order. When it cannot be completely displayed, “——>” is displayed.
When the CNC and machine are connected, parameters must be set to determine the specifications and functions of the machine in order to fully utilize the characteristics of the servo motor or other parts. This chapter describes how to set parameters on the MDI panel. Parameters can also be set with external input/output devices such as the Handy File (see Chapter III–8). In addition, pitch error compensation data used for improving the precision in positioning with the ball screw on the machine can be set or displayed by the operations under function key `SYSTEM`. See Chapter III–7 for the diagnostic screens displayed by pressing function key `SYSTEM`.
11.5.1
Displaying and Setting Parameters

When the CNC and machine are connected, parameters are set to
determine the specifications and functions of the machine in order to fully
utilize the characteristics of the servo motor. The setting of parameters
depends on the machine. Refer to the parameter list prepared by the
machine tool builder.

Normally, the user need not change parameter setting.

Procedure for displaying and setting parameters

1. Set 1 for **PARAMETER WRITE** to enable writing. See the procedure
   for enabling/disabling parameter writing described below.

2. Press function key **SYSTEM**.

3. Press chapter selection soft key **[PARAM]** to display the parameter
   screen.

4. Move the cursor to the parameter number to be set or displayed in
   either of the following ways:
   - Enter the parameter number and press soft key **[NO.SRH]**.
   - Move the cursor to the parameter number using the page keys,
     **PAGE** and **PAGE**, and cursor keys, **↑**, **↓**, **←**, and **→**.

5. To set the parameter, enter a new value with numeric keys and press
   soft key **[INPUT]** in the MDI mode. The parameter is set to the entered
   value and the value is displayed.

6. Set 0 for **PARAMETER WRITE** to disable writing.
Procedure for enabling/displaying parameter writing

1. Select the MDI mode or enter state emergency stop.

2. Press function key [OFFSET].

3. Press soft key [SETTING] to display the setting screen.

4. Move the cursor to PARAMETER WRITE using cursor keys.

5. Press soft key [OPRT], then press [1: ON] to enable parameter writing. At this time, the CNC enters the P/S alarm state (No. 100).

6. After setting parameters, return to the setting screen. Move the cursor to PARAMETER WRITE and press soft key [OPRT], then press [0: OFF].

7. Depress the SET key to release the alarm condition. If P/S alarm No. 000 has occurred, however, turn off the power supply and then turn it on, otherwise the P/S alarm is not released.

Explanations

- Setting parameters with external input/output devices
  See Chapter 8 for setting parameters with external input/output devices such as the Handy File.

- Parameters that require turning off the power
  Some parameters are not effective until the power is turned off and on again after they are set. Setting such parameters causes alarm 000. In this case, turn off the power, then turn it on again.

- Parameter list
  Refer to the FANUC Series 0i–B/0i Mate–A Parameter Manual (B–63840EN) for the parameter list.

- Setting data
  Some parameters can be set on the setting screen if the parameter list indicates “Setting entry is acceptable”. Setting 1 for PARAMETER WRITE is not necessary when three parameters are set on the setting screen.
11.5.2 Displaying and Setting Pitch Error Compensation Data

If pitch error compensation data is specified, pitch errors of each axis can be compensated in detection unit per axis. Pitch error compensation data is set for each compensation point at the intervals specified for each axis. The origin of compensation is the reference position to which the tool is returned. The pitch error compensation data is set according to the characteristics of the machine connected to the NC. The content of this data varies according to the machine model. If it is changed, the machine accuracy is reduced.

In principle, the end user must not alter this data. Pitch error compensation data can be set with external devices such as the Handy File (see Chapter III–9). Compensation data can also be written directly with the MDI panel.

The following parameters must be set for pitch error compensation. Set the pitch error compensation value for each pitch error compensation point number set by these parameters.

In the following example, 33 is set for the pitch error compensation point at the reference position.

- Number of the pitch error compensation point at the reference position (for each axis): Parameter 3620
- Number of the pitch error compensation point having the smallest value (for each axis): Parameter 3621
- Number of the pitch error compensation point having the largest value (for each axis): Parameter 3622
- Pitch error compensation magnification (for each axis): Parameter 3623
- Interval of the pitch error compensation points (for each axis): Parameter 3624
- Travel distance per revolution of pitch error compensation of the rotary axis type (for each axis): Parameter 3625
The bidirectional pitch error compensation function allows independent pitch error compensation in different travel directions. (When the movement is reversed, compensation is automatically carried out as in a backlash.)

To use this function, specify pitch error compensation for each travel direction, that is, separately for the positive and negative directions of a movement.

When using bidirectional pitch error compensation (setting the BDP bit (bit 0 of parameter 3605) to 1), specify the following parameters in addition to the pitch error compensation parameter.

- Number of the pitch error compensation point at the negative end (for travel in the positive direction, for each axis): Parameter 3621
- Number of the pitch error compensation point at the positive end (for travel in the positive direction, for each axis): Parameter 3622
- Number of the pitch error compensation point at the negative end (for travel in the negative direction, for each axis): Parameter 3626
- Pitch error compensation at the reference position when travel is made to the reference position from the direction opposite to the reference position return direction (absolute value, for each axis): Parameter 3627

**Procedure for displaying and setting the pitch error compensation data**

1. Set the following parameters:
   - Number of the pitch error compensation point at the reference position (for each axis): Parameter 3620
   - Number of the pitch error compensation point having the smallest value (for each axis): Parameter 3621
   - Number of the pitch error compensation point having the largest value (for each axis): Parameter 3622
   - Pitch error compensation magnification (for each axis): Parameter 3623
   - Interval of the pitch error compensation points (for each axis): Parameter 3624
   - Travel distance per revolution of pitch error compensation of the rotary axis type (for each axis): Parameter 3625

   When using bidirectional pitch error compensation (setting the BDP bit (bit 0 of parameter 3605) to 1), specify the following parameters in addition to the pitch error compensation parameter.

   - Number of the pitch error compensation point at the negative end (for travel in the positive direction, for each axis): Parameter 3621
   - Number of the pitch error compensation point at the positive end (for travel in the positive direction, for each axis): Parameter 3622
   - Number of the pitch error compensation point at the negative end (for travel in the negative direction, for each axis): Parameter 3626
Pitch error compensation at the reference position when travel is made to the reference position from the direction opposite to the reference position return direction (absolute value, for each axis): Parameter 3627

2. Press function key [SYSTEM].

3. Press the continuous menu key [ ], then press chapter selection soft key [PITCH].

The following screen is displayed:

<table>
<thead>
<tr>
<th>NO. DATA</th>
<th>NO. DATA</th>
<th>NO. DATA</th>
</tr>
</thead>
<tbody>
<tr>
<td>0000 0</td>
<td>0010 0</td>
<td>0020 0</td>
</tr>
<tr>
<td>0001 0</td>
<td>0011 0</td>
<td>0021 0</td>
</tr>
<tr>
<td>0002 0</td>
<td>0012 0</td>
<td>0022 0</td>
</tr>
<tr>
<td>0003 0</td>
<td>0013 0</td>
<td>0023 0</td>
</tr>
<tr>
<td>0004 0</td>
<td>0014 0</td>
<td>0024 0</td>
</tr>
<tr>
<td>0005 0</td>
<td>0015 0</td>
<td>0025 0</td>
</tr>
<tr>
<td>0006 0</td>
<td>0016 0</td>
<td>0026 0</td>
</tr>
<tr>
<td>0007 0</td>
<td>0017 0</td>
<td>0027 0</td>
</tr>
<tr>
<td>0008 0</td>
<td>0018 0</td>
<td>0028 0</td>
</tr>
<tr>
<td>0009 0</td>
<td>0019 0</td>
<td>0029 0</td>
</tr>
</tbody>
</table>

4. Move the cursor to the compensation point number to be set in either of the following ways:
   - Enter the compensation point number and press the [NO.SRH] soft key.
   - Move the cursor to the compensation point number using the page keys, [PAGE] and [PAGE], and cursor keys, [ ], [ ], [ ], and [ ].

5. Enter a value with numeric keys and press the [INPUT] soft key.
11.6 DISPLAYING THE PROGRAM NUMBER, SEQUENCE NUMBER, AND STATUS, AND WARNING MESSAGES FOR DATA SETTING OR INPUT/OUTPUT OPERATION

11.6.1 Displaying the Program Number and Sequence Number

The program number, sequence number, and current CNC status are always displayed on the screen except when the power is turned on, a system alarm occurs, or the PMC screen is displayed. If data setting or the input/output operation is incorrect, the CNC does not accept the operation and displays a warning message. This section describes the display of the program number, sequence number, and status, and warning messages displayed for incorrect data setting or input/output operation.

The program number and sequence number are displayed at the top right on the screen as shown below.

```
 PROGRAM
 O1000
 N100 050 X0 Z0. ;
 N101 000 X100. Z50. ;;
 N102 011 X230. Z56. ;
 N103 W-10. ;
 N104 U-120. ;
 N105 M02 ;
```

The program number and sequence number displayed depend on the screen and are given below:

On the program screen in the EDIT mode on Background edit screen: The program No. being edited and the sequence number just prior to the cursor are indicated.

**Other than above screens:**

The program No. and the sequence No. executed last are indicated.

**Immediately after program number search or sequence number search:**

Immediately after the program No. search and sequence No. search, the program No. and the sequence No. searched are indicated.
11.6.2 Displaying the Status and Warning for Data Setting or Input/Output Operation

The current mode, automatic operation state, alarm state, and program editing state are displayed on the next to last line on the CRT screen allowing the operator to readily understand the operation condition of the system.

If data setting or the input/output operation is incorrect, the CNC does not accept the operation and a warning message is displayed on the next to last line of the CRT screen. This prevents invalid data setting and input/output errors.

Explanations

- Description of each display

(9) Data is out of range.  
(Note) Actually, this is displayed in the area starting from (2).  
(5)  
(Note) Actually, 5 is displayed in the area for (3) and (4).  
(1) EDIT  
(2) STOP  
(3) MTN  
(4) FIN  
(6) ALM hh:mm:ss  
(8) INPUT  
(Display soft keys)

Note) Actually, (10) is displayed at the position where (8) is now displayed.

- (1) Current mode

MDI : Manual data input, MDI operation
MEM : Automatic operation (Memory operation)
RMT : Automatic operation (DNC operation)
EDIT : Memory editing
HND : Manual handle feed
JOG : Jog feed
TJOG : TEACH IN JOG
THND : TEACH IN HANDLE
INC : Manual incremental feed
REF : Manual reference position return

- (2) Automatic operation status

**** : Reset (When the power is turned on or the state in which program execution has terminated and automatic operation has terminated.
STOP : Automatic operation stop (The state in which one block has been executed and automatic operation is stopped.)
HOLD : Feed hold (The state in which execution of one block has been interrupted and automatic operation is stopped.)
STRT : Automatic operation start-up (The state in which the system operates automatically)

- (3) Axis moving status/dwell status

MTN : Indicates that the axis is moving.
DWL : Indicates the dwell state.
*** : Indicates a state other than the above.

- (4) State in which an auxiliary function is being executed

FIN : Indicates the state in which an auxiliary function is being executed. (Waiting for the complete signal from the PMC)
*** : Indicates a state other than the above.

- (5) Emergency stop or reset status

---EMG--- : Indicates emergency stop. (Blinks in reversed display.)
---RESET--- : Indicates that the reset signal is being received.
• (6) Alarm status
  - ALM: Indicates that an alarm is issued. (Blinks in reversed display.)
  - BAT: Indicates that the battery is low. (Blinks in reversed display.)
  - Space: Indicates a state other than the above.

• (7) Current time
  - hh:mm:ss – Hours, minutes, and seconds

• (8) Program editing status
  - INPUT: Indicates that data is being input.
  - OUTPUT: Indicates that data is being output.
  - SRCH: Indicates that a search is being performed.
  - EDIT: Indicates that another editing operation is being performed (insertion, modification, etc.)
  - LSK: Indicates that labels are skipped when data is input.
  - RSTR: Indicates that the program is being restarted
  - Space: Indicates that no editing operation is being performed.

• (9) Warning for data setting or input/output operation
  When invalid data is entered (wrong format, value out of range, etc.), when input is disabled (wrong mode, write disabled, etc.), or when input/output operation is incorrect (wrong mode, etc.), a warning message is displayed. In this case, the CNC does not accept the setting or input/output operation.
  The following are examples of warning messages:

Example 1)
When a parameter is entered

> 1
EDIT WRONG MODE
(Display soft keys)

Example 2)
When a parameter is entered

> 999999999
MDI TOO MANY DIGITS
(Display soft keys)

Example 3)
When a parameter is output to an external input/output device

> MEM WRONG MODE
(Display soft keys)
11.7 SCREENS DISPLAYED BY FUNCTION KEY

By pressing the MESSAGE function key, data such as alarms, alarm history data, and external messages can be displayed.

For information relating to alarm display, see Section III.7.1. For information relating to alarm history display, see Section III.7.2.

For information relating to external message display, see the relevant manual supplied by the machine tool builder.

11.7.1 External Operator Message History Display

External operator messages can be preserved as history data. Preserved history data can be displayed on the external operator message history screen.

Procedure for external operator message history display

1. Press the MESSAGE function key.

2. Press the continuous menu key \[\text{[MSGHIS]}\], then press the chapter selection soft key [MSGHIS]. The screen shown below appears.

   ![Screen Display](image)

   NOTE

   Up to 255 characters can be specified for an external operator message. By setting MS1 and MS0 (bits 7 and 6 of parameter No. 3113), however, the number of characters that can be preserved as external operator message history data can be restricted, and the number of history data items selected.
When an external operator message number is specified, updating of the external operator message history data is started; this updating is continued until a new external operator message number is specified or deletion of the external operator message history data is specified.

To clear external operator message history data, press the [CLEAR] soft key. This clears all external operator message history data. (Set MSGCR (bit 0 of parameter No. 3113) to 1.)

Note that when MS1 and MS0 (bits 7 and 6 of parameter No. 3113), used to specify the number of external operator message history data items to be displayed, are changed, all existing external operator message history data is cleared.

Explanations

- **Updating external operator message history data**

- **Clearing external operator message history data**
11.8 CLEARING THE SCREEN

When screen indication isn’t necessary, the life of the back light for LCD can be put off by turning off the back light. The screen can be cleared by pressing specific keys. It is also possible to specify the automatic clearing of the screen if no keys are pressed during a period specified with a parameter. But, the life of the back light may be contracted all the more when the clearing of screen and re-indication of screen are repeated beyond the necessity. This effect can be expected when a screen is cleared for more than one hour.

11.8.1 Erase CRT Screen Display

Holding down the CAN key and pressing an arbitrary function key clears the screen.

Procedure for Erase CRT Screen Display

Procedure

- Clearing the screen
  Hold down the CAN key and press an arbitrary function key (such as POS and PROG).

- Restoring the screen
  Press an arbitrary function key.
11.8.2
Automatic Erase Screen Display

The CNC screen is automatically cleared if no keys are pressed during the period (in minutes) specified with a parameter. The screen is restored by pressing any key.

Procedure for Automatic Erase Screen Display

- Clearing the screen
  The CNC screen is cleared once the period (minutes) specified with parameter No. 3123 has elapsed, provided the following conditions are satisfied:

  **Conditions for clearing the CNC screen**
  - Parameter No. 3123 is set to other than 0.
  - None of the following keys have been pressed:
    - MDI keys
    - Soft keys
    - External input keys
  - No alarm has been issued.

- Restoring the screen
  The cleared CNC screen is restored once at least one of the following conditions is satisfied:

  **Conditions for restoring the CNC screen**
  - Any of the following keys has been pressed:
    - MDI keys
    - Soft keys
    - Externally input keys
  - An alarm has been issued.

Some machines feature a special key for restoring the screen. For an explanation of the location and use of this key, refer to the corresponding manual, supplied by the machine tool builder.

Explanations

- Clearing the screen using **CAN** + function key
  If parameter No. 3123 is set to 0, clearing of the screen using the CAN key and a function key (III–11.8.1) is disabled.

- Specified period
  The period specified with parameter No. 3123 is valid only for tool post 1.

**CAUTION**

Pressing any key while the screen is being cleared restores the screen. In such a case, however, the function assigned to the pressed key is initiated. Do not press the **DELETE**, **INSERT**, or **ALTER** key to restore the screen, therefore.

---

654
The graphic function indicates how the tool moves during automatic operation or manual operation.
12. GRAPHICS FUNCTION

12.1 GRAPHICS DISPLAY

It is possible to draw the programmed tool path on the screen, which makes it possible to check the progress of machining, while observing the path on the screen. In addition, it is also possible to enlarge/reduce the screen. The drawing coordinates (parameter) and graphic parameters must be set before a tool path can be displayed.

Graphics display procedure

Procedure

Set the drawing coordinates with parameter No.6510 before starting drawing. See “Drawing Coordinate System” for the settings and corresponding coordinates.

1. Press function key [CUSTOM GRAPH].

   The graphic parameter screen shown below appears. (If this screen does not appear, press soft key [G.PRM].)

   ![Graphic Parameter Screen]

<table>
<thead>
<tr>
<th>GRAPHIC PARAMETER</th>
<th>O0001 N00020</th>
</tr>
</thead>
<tbody>
<tr>
<td>WORK LENGTH W=</td>
<td>130000</td>
</tr>
<tr>
<td>WORK DIAMETER D=</td>
<td>130000</td>
</tr>
<tr>
<td>PROGRAM STOP N=</td>
<td>0</td>
</tr>
<tr>
<td>AUTO ERASE A=</td>
<td>1</td>
</tr>
<tr>
<td>LIMIT L=</td>
<td>0</td>
</tr>
<tr>
<td>GRAPHIC CENTER X=</td>
<td>61655</td>
</tr>
<tr>
<td>Z=</td>
<td>90711</td>
</tr>
<tr>
<td>SCALE S=</td>
<td>32</td>
</tr>
<tr>
<td>GRAPHIC MODE M=</td>
<td>0</td>
</tr>
</tbody>
</table>

   >

   MEM STRT **** FIN 12:12:24
   [G.PRM] [ ] [GRAPH] [ZOOM] [OPRT]

2. Move the cursor with the cursor keys to a parameter to set.

3. Enter data, then press the INPUT key.

4. Repeat steps 3 and 4 until all required parameters are specified.

5. Press soft key [GRAPH].
6 Automatic or manual operation is started and machine movement is drawn on the screen.

![Diagram of machine movement on screen]

**Magnifying drawings**

Part of a drawing on the screen can be magnified.

7 Press the [CUSTOM] function key, then the [ZOOM] soft key to display a magnified drawing. The magnified-drawing screen contains two zoom cursors (■).

![Magnified drawing with zoom cursors]

A rectangle that has one of its diagonals defined by the two zoom cursors is magnified to the full size of the screen.

8 Using the cursor keys ‍, move the zoom cursors to specify a diagonal for the new screen. Pressing the [HI / LO] soft key toggles the zoom cursor to be moved.

9 To make the original drawing disappear, press [EXEC].
10 Resume the previous operation. The part of the drawing specified with the zoom cursors will be magnified.

11 To display the original drawing, press the [NORMAL] soft key, then start automatic operation.

**Explanation**

- **Setting drawing coordinate systems**

Parameter No. 6510 is used to set a drawing coordinate system for using the graphic function. The relationships between setting values and drawing coordinate systems are indicated below. With two-path control, a different drawing coordinate system can be selected for each tool post.
• Graphics parameter

**WORK LENGTH (W), WORK DIAMETER (D)**
Specify work length and work diameter. The table below lists the input unit and valid data range.

![Diagram showing work length and work diameter](image)

**Table 12.1 Unit and Range of Drawing Data**

<table>
<thead>
<tr>
<th>Increment system</th>
<th>Unit</th>
<th>Valid range</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>mm input</td>
<td>Inch input</td>
</tr>
<tr>
<td>IS–B</td>
<td>0.001 mm</td>
<td>0.0001 inch</td>
</tr>
<tr>
<td>IS–C</td>
<td>0.0001 mm</td>
<td>0.00001 inch</td>
</tr>
</tbody>
</table>

**GRAPHIC CENTER (X, Z), SCALE (S)**
A screen center coordinate and drawing scale are displayed. A scale screen center coordinate are automatically calculated so that a figure set in WORK LENGTH (a) and WORK DIAMETER (b) can be fully displayed on the screen. So, the user need not set these parameters usually.

A screen center coordinate is defined in the workpiece coordinate system. Table 12.3.2 indicates the unit and range. The unit of SCALE is 0.001%.

**PROGRAM STOP (N)**
Set the sequence number of an end block when part of the program is to be drawn. A value set in this parameter is automatically cancelled (cleared to 0) once a drawing is provided.

**AUTO ERASE (A)**
If 1 is set, the previous drawing is automatically erased when automatic operation is stated from the reset state. Then, drawing is started.

**LIMIT (L)**
If 1 is set, the area of stored stroke limit l is drawn with double–dot–and–dash lines.

**GRAPHIC MODE (M)**
This mode can not be used.

**NOTE**
The parameter values for drawing are preserved even if power is turned off.
• Executing drawing only
  Since the graphic drawing is done when coordinate value is renewed during automatic operation, etc., it is necessary to start the program by automatic operation. To execute drawing without moving the machine, therefore, enter the machine lock state.

• Deleting the previous drawing
  Pressing the [REVIEW] soft key on the graphic screen deletes tool paths on it. Setting the graphic parameter as AUTO ERASE (A) = 1 specifies that when automatic operation is started at reset, program execution begins after the previous drawing is erased automatically (AUTO ERASE = 1).

• Drawing a part of a program
  When necessary to display a part of a program, search the starting block to be drawn by the sequence number search, and set the sequence number of the end block to the PROGRAM STOP N= of the graphic parameter before starting the program under cycle operation mode.

• Drawing using dashed lines and solid lines
  The tool path is shown with a dashed line (---) for rapid traverse and with a solid line (——) for cutting feed.

• Displaying coordinates
  The displayed drawing is indicated with coordinates in a work coordinate system.

• Displaying the machine zero point
  The machine zero point is indicated with mark.

• Switching from a drawing screen to another screen
  Even if the screen is switched to a non–drawing screen, drawing continues. When the drawing screen is displayed again, the entire drawing appears (no parts are missing).

Restrictions

• Feedrate
  In case the feed rate is considerably high, drawing may not be executed correctly, decrease the speed by dry–run, etc. to execute drawing.

• Changing the graphic parameters during automatic operation
  After a graphic parameter is changed, the [REVIEW] soft key must be pressed to initialize the graphic screen. Otherwise, the change to the graphic parameter is not reflected correctly.

• Coordinate axis names
  The coordinate axis names are fixed to X or Z. For the two–path control, the first and second axes for tool post 1 are named X1 and Z1, respectively, and the first and second axes for tool post 2 are named X2 and Z2, respectively.

• Zooming drawings
  If the WORK and DIAMETER graphic parameters are not set correctly, the drawing cannot be magnified. To reduce a drawing, specify a negative value for the SCALE graphic parameter. The machine zero point is indicated with mark.
12.2 DYNAMIC GRAPHIC

The dynamic graphic drawing function allows you to display a machining movement path without having to performing actual machine operation. When performing dynamic graphic drawing, you need not actually operate the machine. Before starting to draw a path, however, you must select MEM mode using the mode switch on the machine operator’s panel and release start lock, interlock, and the like, thereby setting conditions that could start actual NC operation of the machine.

Graphic parameters

The graphic parameter setting procedure for dynamic graphic drawing is the same as that for graphic display described in Section 12.1.

Drawing

When you press the function key and then the [GRAPH] soft key, the graphic screen appears. When you press the [OPRT] soft key on this screen, the soft keys for dynamic graphic drawing appear.

To draw a machining program path by dynamic graphic drawing, you must select MEM mode using the mode switch on the machine operator’s panel and release start lock, interlock, and the like, thereby setting conditions that could start actual NC operation of the machine.

1 [EXEC]
Pressing the [EXEC] soft key starts drawing. Drawing continues up to the M02 or M30 block of a machining program. When drawing is started while the single–block switch on the machine operator’s panel is on, a single–block stop is made after one–block drawing.

2 [STOP]
During drawing started by pressing the [EXEC] or [PROCES] soft key, you can press the [STOP] soft key to make a single–block stop. To resume drawing, press the [EXEC] or [PROCES] soft key again.

3 [PROCES]
When you start drawing by pressing the [PROCES] soft key, a single–block stoop is made at the M00 or M01 block of a machining program upon the execution of that block. To resume drawing, press the [EXEC] or [PROCES] soft key again.

4 [HEAD]
Pressing the [HEAD] soft key locates the start of a machining program. This soft key is operative when drawing stops.

5 [ERASE]
Pressing the [ERASE] soft key clears the screen.
13 HELP FUNCTION

The help function displays on the screen detailed information about alarms issued in the CNC and about CNC operations. The following information is displayed.

- **Detailed information of alarms**
  When the CNC is operated incorrectly or an erroneous machining program is executed, the CNC enters the alarm state. The help screen displays detailed information about the alarm that has been issued and how to reset it. The detailed information is displayed only for a limited number of P/S alarms. These alarms are often misunderstood and are rather difficult to understand.

- **Operation method**
  If you are not sure about a CNC operation, refer to the help screen for information about each operation.

- **Parameter table**
  When setting or referring to a system parameter, if you are not sure of the number of the parameter, the help screen displays a list of parameter Nos. for each function.

**Help Function Procedure**

**Procedure**

1. Press the [HELP] key on the MDI. HELP (INITIAL MENU) screen is displayed.

   ![HELP (INITIAL MENU) Screen]

   The user cannot switch the screen display from the PMC screen or CUSTOM screen to the help screen. The user can return to the normal CNC screen by pressing the [HELP] key or another function key.
ALARM DETAIL screen

2 Press soft key [ALAM] on the HELP (INITIAL MENU) screen to display detailed information about an alarm currently being raised.

Example:

HELP (ALARM DETAIL) 00010 N00001

NUMBER : 027
M'SAGE : NO AXES COMMANDED IN G43/G44
FUNCTION : TOOL LENGTH COMPENSATION C
ALARM :
IN TOOL LENGTH COMPENSATION TYPE C,
NO AXIS IS DESIGNATED IN G43 & G44
BLOCKS. IN TOOL LENGTH COMPENSATION
TYPE C, IT TRIES TO LATCH ON TO
ANOTHER AXIS WITHOUT OFFSET CANC–
LING.

>100 S 0 T0000
MEM **** *** *** 10:12:25
[ ALAM ][ OPR ][ PARA ][   ][   ]

Fig.13(b) ALARM DETAIL Screen when P/S Alarm No.27 is issued

Note that only details of the alarm identified at the top of the screen are displayed on the screen.
If the alarms are all reset while the help screen is displayed, the alarm displayed on the ALARM DETAIL screen is deleted, indicating that no alarm is issued.

HELP (ALARM DETAIL) 01234 N00001

NUMBER :
M'SAGE :
FUNCTION :
ALARM :
<<ALARM IS NOT GENERATED>>
ENTER THE DETAIL–REQUIRED ALARM NUMBER,
AND PRESS [SELECT] KEY

>100 S 0 T0000
MEM **** *** *** 10:12:25
[ ALAM ][ OPR ][ PARA ][   ][   ]

Fig.13(c) ALARM DETAIL Screen when No Alarm is issued
3 To get details on another alarm number, first enter the alarm number, then press soft key [SELECT]. This operation is useful for investigating alarms not currently being raised.

![Fig.13(d) How to select each ALARM DETAILS](image)

HELP (ALARM DETAIL) O1234 N00001

NUMBER : 100
M’SAGE : PARAMETER WRITE ENABLE
FUNCTION :
ALARM :

<<ALARM IS NOT GENERATED>>

![Fig.13(e) ALARM DETAIL Screen when P/S alarm No.100 is selected](image)

4 To determine an operating procedure for the CNC, press the soft key [OPR] key on the HELP (INITIAL MENU) screen. The OPERATION METHOD menu screen is then displayed. (See Fig. 13 (f).)

![Fig.13(f) OPERATION METHOD Menu Screen](image)

To select an operating procedure, enter an item No. from the keyboard then press the [SELECT] key.
When “1. PROGRAM EDIT” is selected, for example, the screen in Figure 13 (g) is displayed. On each OPERATION METHOD screen, it is possible to change the displayed page by pressing the PAGE key. The current page No. is shown at the upper right corner on the screen.

To return to the OPERATION METHOD menu screen, press the RETURN MENU key to display “[OPR]” again, and then press the [OPR] key again.

To directly select another OPERATION METHOD screen on the screen shown in Figure 13 (h), enter an item No. from the keyboard and press the [SELECT] key.

If you are not sure of the No. of a system parameter to be set, or to refer to a system parameter, press the [PARA] key on the HELP (INITIAL MENU) screen. A list of parameter Nos. for each function is displayed. (See Figure 13 (j).) It is possible to change the displayed page on the parameter screen. The current page No. is shown at the upper right corner on the screen.
To exit from the help screen, press the HELP key or another function key.

**Explanation**

- **Configuration of the Help Screen**

![Diagram of Help Screen Configuration]
The screen hardcopy function outputs the information displayed on the CNC screen as 640*480–dot bitmap data. This function makes it possible to produce a hard copy of a still image displayed on the CNC. The created bitmap data can be displayed on a PC.

**Screen Hardcopy Procedure**

1. Check the parameter settings. To use the screen hardcopy function, set bit 7 (HDC) of parameter 3301 to 1 and parameter 20 (I/O channel selection) to 4 (memory card I/F). Set other relative parameters (bits 0, 2, and 3 of parameter 3301) as needed.

2. Insert a memory card.

3. To start the function, set hardcopy start signal HDREQ <G067#7> to 1. Alternatively, hold down the [SHIFT] key for five seconds.

4. To end the function, press the [CAN] key. Alternatively, set hardcopy stop signal HDABT <G067#6> to 1.

5. While the screen hardcopy operation is in progress, the hardcopy in progress signal <F061#3> is tied to 1. For several tens of seconds (or several seconds, for a monochrome LCD) before the hardcopy operation ends, the screen image stands still.

6. When the screen hardcopy operation is completed, the hardcopy in progress signal <F061#3> goes 0.

While the screen hardcopy operation is in progress, the screen image keeps still. This means that the clock displayed on the screen indicates the beginning and end of the operation. When the clock stops counting seconds, the hardcopy operation starts. The clock resumes counting seconds when the screen hardcopy operation ends.

**NOTE**

1. During the screen hardcopy operation, key input is disabled for several tens of seconds. Until the screen hardcopy operation ends, the screen image lies still. During this period, the hardcopy in progress signal <F061#3> is tied to 1. No other signal is output. Avoid turning off the power indiscriminately during that period.

2. A normal hard copy may not be produced while the screen image is moving.
Limitations

A hard copy of the following screens cannot be produced.

1. System alarm screen
2. Screen while RS–232–C is being used
3. Screen during automatic or manual operation (A hard copy can be produced in a rest of the operation.)

File name

The bitmap files created by the screen hardcopy function are named as follows, in order in which they are created after power–up:

`HDCPY000.BMP` (Name of the first hardcopy file created after power–up)

`HDCPY001.BMP` (Name of the second hardcopy file created after power–up)

: 

`HDCPY099.BMP`

**NOTE**

1. A screen hardcopy file produced after the file HDCPY099.BMP is output will be named as HDCPY000.BMP.
2. If a BMP file output by the screen hardcopy function has the same name as a file present on a memory card, the file on the memory card is overwritten unconditionally.
3. When the hardcopy function is carried out after power is turned off and on again, the first output file is named as HDCPY000.BMP again. If the inserted memory card has a file having the same name, the file is unconditionally overwritten. Note this when continuously producing hard copies of various screens.

Colors of data

The number of colors used in created bitmap data depend on the LCD hardware and the display mode of the CNC screen. Table 14 (a) indicates the relationships.

<table>
<thead>
<tr>
<th>LCD hardware</th>
<th>CNC screen display mode</th>
<th>Colors displayed on CNC</th>
<th>Colors used in created BMP data</th>
<th>Remarks</th>
</tr>
</thead>
<tbody>
<tr>
<td>Monochrome LCD</td>
<td>—</td>
<td>2 colors</td>
<td>2 colors</td>
<td>Shades of gray are not supported.</td>
</tr>
<tr>
<td>Color LCD</td>
<td>VGA–compatible mode 3119#7=1</td>
<td>Character: 16 colors Graphic: 16 colors</td>
<td>When bit 0 of parameter 3301 is set to 0: 256 colors When bit 0 of parameter 3301 is set to 1: 16 colors</td>
<td>Note that colors may not be normally displayed in the 16–color mode.</td>
</tr>
<tr>
<td></td>
<td>VGA mode 3119#7=0</td>
<td>256 colors</td>
<td>256 colors</td>
<td></td>
</tr>
</tbody>
</table>
Table 14 (b) indicates the sizes of bitmap data created by the screen hardcopy function.

**Table 14 (b) Sizes of bitmap data created by the screen hardcopy function**

<table>
<thead>
<tr>
<th>Bitmap colors</th>
<th>File size (bytes)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Monochrome (2 colors)</td>
<td>38,462</td>
</tr>
<tr>
<td>Color (16 colors)</td>
<td>153,718</td>
</tr>
<tr>
<td>Color (256 colors)</td>
<td>308,278</td>
</tr>
</tbody>
</table>

If bit 2 (HCA) of parameter 3301 is set to 1, an alarm message can be output when the hardcopy operation ends in failure.
(P/S alarm Nos. 5212 to 5214)
For descriptions of these alarms, see APPENDIX G, “ALARM LIST.”
IV. MANUAL GUIDE

0
1 MANUAL GUIDE 0i
1.1 OVERVIEW

MANUAL GUIDE 0i was developed to aid in the generation of part programs for Series 0i-TB control systems. A part program consists of a set of machining instructions that the operator wants to execute. A part program uses alphabetic text for its instructions and numeric information as the target values for those instructions. In this way, a CNC program can be developed as a series of instructions, each of which performs a machining operation. Complex machining tasks can be accomplished by combining machining operations.

Part program development can be difficult if the operator is not familiar with the programming language used by the CNC. MANUAL GUIDE 0i is a “lead-through” programming aid that helps the operator to develop a CNC part program. MANUAL GUIDE 0i provides assistance as text and graphical information that is presented on the CNC screen. The software prompts the user to enter data and utilizes the user’s response to create a part program instruction.

MANUAL GUIDE 0i also allows users to edit existing part programs. By highlighting the desired part program line, the user can make changes in the same way that they originally developed the program. On-line help is also available during program development or as a handy programming reference.
1.2 INTRODUCTION

MANUAL GUIDE 0i is just one of the screens available to the user during CNC operation. It can be accessed at any time by pressing the “CUSTOM” pushbutton on the MDI panel. From this screen, the user can select display of the programmer’s help reference.

If the user wishes to create a new program (or edit an existing one), they can do so in background editing mode; there is no need to select “EDIT” mode. But, the user must ensure that the part program they want to edit is not an “active” part program on the CNC. If the part program is active, a warning screen will appear prompting the user to correct the problem.

MANUAL GUIDE 0i utilizes “advanced canned cycles” for milling operations, such as drilling, drilling pattern, patterned pocket and slot machining. These “advanced canned cycles” can be called from existing programs developed with other than MANUAL GUIDE 0i. The operation arguments are listed in the on-line programmer’s help reference.

MANUAL GUIDE 0i also utilizes “contour programming,” with which the user can enter contour figures that consist of lines and circles. This “contour programming” involves high-performance contour calculating such as 10 blocks pending and auxiliary calculation with 11 patterns.

MANUAL GUIDE 0i was developed to make the creation and editing of part programs easier for the user/operator. Once familiar with the programming language, however, you may find it easier to develop programs directly using the CNC program editor. MANUAL GUIDE 0i allows users to function at their own level. Those who are not familiar with CNC programming find it easy to use the graphic interface to enter information into a program. Those that are more advanced might use the on-board program editor, while referencing the on-line programmer’s help reference. In any case, the user has the ability to use MANUAL GUIDE 0i at a level at which they are comfortable.
1.3 PROGRAM CREATING OPERATIONS

1.3.1 Start up

The MANUAL GUIDE 0i screen can be brought up at any time by pressing the “CUSTOM” pushbutton on the MDI panel. From this screen, the user can enter the number of a program that they want to create or edit.

Even when the user wants to create a new program (or edit an existing one), they do not have to set the CNC operating mode to “EDIT.” With MANUAL GUIDE 0i, background editing is always possible. The user must ensure that the part program they wish to edit is not an “active” part program on the CNC. To determine whether the program is active, check that the “O” number at the top of the CNC screen is not the same as that of the program you wish to edit. To change the active program number, select the “PROG” pushbutton on the MDI key panel, enter “Oxxxx” (where xxxx is any number in program memory other than that which you wish to edit), and then press the cursor down (down arrow) key on the MDI key panel. The “O” number at the top of the screen will change to the number you entered.

```
00001
MANUAL GUIDE 0i
V1.000

INPUT THE PROGRAM NUMBER TO EDIT
IF THE PROGRAM NUMBER NOT EXIST,
IT WILL BE CREATED.

MAKE SURE THE PROGRAM YOU WILL EDIT IS
NOT THE ACTIVE PROGRAM ON THE CNC.

NUM=
```

If the program to be edited is currently active on the CNC, the CNC screen will display a warning screen to inform the operator. Select the “Left Arrow” soft-key on the display unit to return to the software’s main screen, and then enter the number of the program that you wish to create or edit.
1.3.2 Start up

The MANUAL GUIDE 0i screen can be brought up at any time by pressing the “CUSTOM” pushbutton on the MDI panel. From this screen the user can enter the number of the program that they wish to create or edit.

```
EDITING SAME PROGRAM IN
CNC AND MANUAL GUIDE 0I
CHANGE CNC PROGRAM SELECT

LEFT SOFT KEY FOR MAIN PAGE
```
1.3.3 Creating a New Part Program

To create a new part program, enter the number of the program you wish to create on the MANUAL GUIDE 0i main screen. If the system does not display a warning, the MANUAL GUIDE 0i editing screen will appear with the requested program number filled in and ready for user editing. The MANUAL GUIDE 0i editing screen should not be confused with the CNC’s native editor. To compare the two screens, press the “PROG” key on the MDI key panel. While the displayed screen resembles the MANUAL GUIDE 0i editing screen, you will note that it does not present the same information. Return to the MANUAL GUIDE 0i screen by pressing the “CUSTOM” key on the MDI key panel.

```
00015 ;
```

Using the editing screen, the user can either enter commands for the part program directly or use the four soft-keys to develop a part program. These soft-keys provide additional assistance in the form of both text and graphic guidance to streamline part program development.

To enter information directly using the editor, first place the cursor where the information should be inserted. Note that the editor inserts the new information “after” the current cursor position. If you have just created a new program, the cursor should be directly over the End of Block (EOB) character “;” on the screen. Any new information will then be inserted after the EOB and begin a new line of program. Take the time to understand how the editor inserts information into the program that is being edited.

Suppose a user wants to insert the text “T1M6;” into the newly created program. The user would check that the cursor is positioned over the “;” on the same line as the part program number and then enter “M3 S500[EOB]” (where [EOB] is not the string “EOB,” but the EOB key on the MDI key panel). The information will now be displayed as “>M3S500;” on the editor’s buffer line. To insert a new line into the part program, press the “INSERT” key on the MDI key panel. The new command is inserted into the part program and the cursor is positioned over the new line.
The user can continue to insert part program information or use the five soft-keys for interactive program development. While the user is editing a program, all changes are made directly in part program memory. To exit from the editing process, the user presses the far-left soft-key on the display unit (this is also referred to as the “Left Arrow” soft-key. This returns the user to the MANUAL GUIDE 0i main screen (the “start” screen).

Next, we will introduce the interactive method of adding information to the part program.
1.3.4 Process Assistance

We have already learned that, after we have created a new part program (or edited one that already exists), we can use the editor to enter information into the part program directly. In itself, however, this offers no real advantage over using the CNC’s native editor. So, MANUAL GUIDE 0i provides five soft-keys. These five soft-keys provide additional assistance to the user in the development of a part program. These assistance keys make programming much easier.

<table>
<thead>
<tr>
<th>PROCESS CONTROL INFORMATION</th>
</tr>
</thead>
<tbody>
<tr>
<td>-- FEED -- F=</td>
</tr>
<tr>
<td>-- SPINDLE -- DIR=</td>
</tr>
<tr>
<td>-- COOLANT -- CLT=</td>
</tr>
<tr>
<td>-- T-CODE -- T=</td>
</tr>
</tbody>
</table>

The first key we will consider is the “Process Assistance” key. On this screen, the user can enter information about the desired processing requirements for a part program. By using the cursor keys on the MDI key panel, the user can position the cursor to any desired field and enter information for that entry. Some entries require numerical information, while others are selectable by using the cursor left or right keys on the MDI key panel.

Let’s look at an example of these operations. We’ll enter the following information into the part program:

Feedrate: 0.3
Coolant: Flood

First, let’s position the cursor to the “FEED” entry (the cursor is automatically positioned to this entry when you first open the screen). Next, we’ll enter 0.3 on the MDI key panel and then press the “INPUT” key. The entry should now indicate “0.3”. To enter the coolant information, move the cursor down to the “COOLANT” entry (using the MDI key panel down arrow key) and then press the right cursor key (right arrow key on the MDI key panel) until the entry indicates “FLOOD.” Although this information is now in the process assistance, it has not yet been sent to the part program. To add this information to the part program, press the “ACCEPT” soft-key on the
display unit. The information is inserted into the program and the cursor remains where you originally placed it.

```
O0015 ;
F0.3 ;
M7;
%

[PROCESS] [G CODE] [M CODE] [CYCLE] [CONTUR]
```

Let’s move the cursor position to the “M7” line to prepare for more program development. The user can manually add other information into the part program from the editor screen or use the assistance soft-keys to assist in the development of the part program.
1.3.5 G-code Assistance

Now that we have added process information to the part program, machine tool movement is usually needed to complete the machining operation. Machine tool movement is performed using interpolations that control the movement of the tool between the specified points. We first need to establish a coordinate system that the CNC will use to determine axis movement. If we know the G-codes needed to set the CNC coordinate system, we could simply use the editor to add the necessary information. But in the case of our example, we are not sure of the correct G-Code.

To access the “G-Code Assistance” press the “G CODE” soft-key on the display unit. This will display the G-Code help menu. The G-code help menu lists all of the G-codes supported by your control system. The menu is divided into several pages. The total number of help pages and the current page appear at the top of the menu.

```
G CODE HELP 1 OF 7
G00 RAPID MOVE
G01 LINEAR MOVE
G02 CW CIRCLE
G03 CCW CIRCLE
G04 DWELL
G20 INCH MODE
G21 METRIC MODE
G22 STORED STROKE CHECK ON
G23 STORED STROKE CHECK OFF
```

PAGE KEYS FOR MORE
NUM=

INPUT 21 FOR G21 HELP
[          ] [          ] [          ] [          ] [          ]

The user can use the cursor page keys on the MDI key panel to control the display of the G-code help pages. The menu screens are of rollover-type. That is, attempting to advance past the last page will return to the first page. Conversely, attempting to back up beyond the first page will bring the user to the last page.

Since we are looking for coordinate setting information we will proceed to advance through the menu system until we see something that pertains to this topic. If we advance to the last page, we can see that G01 is used for linear cutting motion. By typing in “01” and pressing the “INPUT” key on the MDI key panel, the help information for G01 is displayed. The user will notice there are two soft-keys displayed at the bottom of the page. These two soft-keys control the information that is displayed about this topic.
G01 LINEAR MOVE
G01 WILL MOVE THE AXES AT PROGRAMMED
FEEDRATE TO THE END POINT SPECIFIED BY
THE PROGRAMMED COORDINATES.

[TXT] [GRAPH. ][ ][ ]

When the user first enters the help topic, text-based information is
displayed. When the user presses the “GRAPH.” soft-key, any
graphical information for that topic is displayed. In this way, the user
can confirm that the selected topic pertains to the information that
they need.

G01 LINEAR MOVE

\[ \text{START} \]

G01 EXAMPLE
START AT X0.0 Z0.0
LINEAR MOVE TO X100. Z100.0 FEED AT F0.5
G01 X100. Z100.0 F0.5

[TXT] [GRAPH. ][ ][ ]

NOTE
For some G-codes, there are no graphical help
screens. In these cases, no graphical help screen is
displayed when you press “GRAPH”.

The user can either return to the editor by pressing the Left Arrow
soft-key on the display unit, or directly enter the required information
into the help screen. To insert the program information into the help
screen, the user simply has to type in the command and press the
“INSERT” key on the MDI key panel. For our example, let’s set the
X- and Z-axes to 1.0. Since we have confirmed that the G01 command
is, in fact, the command we want, we would type in
“G01 X1. Z1.[EOB]” (where “EOB” is the End of Block key on the
MDII key panel), and then press the “INSERT” key on the MDI key panel. After inserting the line of code into the part program, the editor screen with our new command inserted will be displayed. To prepare for further program development, let’s move the cursor position to the G01X1.Z1. block.

```
O0015 ;
F300.;
M7;
G01X1.Z1.;
%
```

Commands such as interpolation, plane select, and mode switch can all be entered using the method mentioned above. Remember to use the “INSERT” key on the MDI key panel to insert any information that is in the buffer into the part program. Failure to do so will result in the buffered information being lost.
1.3.6 M-code Assistance

M-codes are used by the CNC to request the execution of machine auxiliary processes. An example is stopping the machine at the end of a part program. Just like the other commands we have developed, M-codes can be inserted directly into the part program by using the editor screen; or the user can use the “M-Code Assistance.” To select M-Code Assistance press the “M CODE” soft-key on the display unit. This will display the M-Code help menu.

```
M CODE HELP 1 OF 3
M00 PROGRAM STOP
M01 OPTIONAL STOP
M02 PROGRAM END
M03 SPINDLE CW
M04 SPINDLE CCW
M05 SPINDLE STOP
M06 TOOL CHANGE
M07 FLOOD COOLANT
M08 MIST COOLANT

PAGE KEYS FOR MORE
NUM=
INPUT 30 FOR M30 HELP
[][][][]
```

The M-Code menu display is similar to the G-Code menu display. The total number of help pages and the current page are displayed at the top of the screen. The M-Code menu display is manipulated in a similar way to the G-Code help display. The user controls the displayed page of the help screen by using the Page-Up and Page-Down cursor keys on the MDI key panel. This menu display is also “circular” in that attempting to advance past the last page returns the user to the beginning, and visa-versa.

In our example, we want to insert an optional process into our part program. So, we would page through the M-code help menus to find the entry we are looking for. On the first page is an entry called “M01 OPTIONAL STOP”. By typing “1” and then pressing the “INPUT” key on the MDI key panel, the help text for this M-code appears. The user will notice that, even though the “GRAPH.” key remains displayed, it is grayed to indicate that it is not available.
M01 OPTIONAL STOP
M01 will cause the part program to stop execution only if the OPTIONAL STOP function is active. This is usually a push button on the operator panel. If the optional stop becomes active, the operator will be required to press the cycle start button to continue.

[TEXT ][GRAPH. ][ ][ ][ ]

Just as with the G-code help menu, we can either return to the editor or type in the command while on this page. For our example, we’ll enter “M01[EOB]” and then press the “INSERT” key on the MDI key panel to insert this instruction into the part program. We’ll also position the cursor to the “M01;” block to prepare for further program entry.

O0015 ;
F300.;
M7;
G01X1.Z1.;
M01;
%

[PROCESS][G CODE][M CODE][CYCLE][CONTUR]
1.4 CANNED CYCLE MACHINING

MANUAL GUIDE 0i utilizes “canned cycle machining,” which allows the user to enter canned cycle blocks. These canned cycles give the user access to the following machining features.

<table>
<thead>
<tr>
<th>Lathe Drilling</th>
<th>Machining type block</th>
<th>G1100 Center drilling</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>G1101 Drilling</td>
<td>G1102 Tapping</td>
</tr>
<tr>
<td></td>
<td>G1103 Reaming</td>
<td>G1104 Boring</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Stock Removal in Turning</th>
<th>Machining type block</th>
<th>G1120 Outer rough</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>G1121 Inner rough</td>
<td>G1122 End face rough</td>
</tr>
<tr>
<td></td>
<td>G1123 Outer finish</td>
<td>G1124 Inner finish</td>
</tr>
<tr>
<td></td>
<td>G1125 End face finish</td>
<td></td>
</tr>
<tr>
<td>Figure block</td>
<td>G1400 Start point</td>
<td>G1401 Line</td>
</tr>
<tr>
<td></td>
<td>G1402 Arc CW</td>
<td>G1403 Arc CCW</td>
</tr>
<tr>
<td></td>
<td></td>
<td>G1406 End of figures</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Grooving in Turning</th>
<th>Machining type block</th>
<th>G1130 Outer rough</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>G1132 End face rough</td>
<td>G1133 Outer finish</td>
</tr>
<tr>
<td></td>
<td></td>
<td>G1135 End face finish</td>
</tr>
<tr>
<td>Figure block</td>
<td>G1460 Normal form</td>
<td>G1461 Trapezoidal form</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Threading</th>
<th>Machining type block</th>
<th>G1140 Outer thread</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>G1141 Inner thread</td>
<td>G1450 Start point and end points</td>
</tr>
</tbody>
</table>
1.4.1 Operation

To use “canned cycle machining” press the “CYCLE” soft-key on the display unit. The cycle machining menu will appear.
This cycle machining menu lists all the canned cycles supported by MANUAL GUIDE 0i. The menu is broken up into several pages. The total number of help pages and the current page appear at the top of the menu.
The user can use the page keys on the MDI key panel to control the display of the cycle machining menu pages. The menu screens are of rollover type. That is, attempting to advance beyond the last page will return to the first page. Conversely, attempting to go back beyond the first page will return the user to the last page.

By typing the number of the G-code displayed on the menu and then pressing the “INPUT” key on the MDI key panel, help information for a selected canned cycle block will appear.

The canned cycle forms are similar to those that appear on the process assistance screen. On this screen, the user can input the desired information for each canned-cycle. When the form is first displayed, it presents the requested canned cycle. For our example, we’ll enter the information for the G1000 canned cycle.

If we move the cursor down to the “F=” entry, the screen will prompt us to enter the drill cycle feedrate. Let’s set this value by entering “50” and then pressing the “INPUT” key on the MDI key panel. The feedrate will now be set to “50.00.” We’ll set the following information in the same way:
W = 1 : MACHINING TYPE (NO DWELL)
C = 5.000 : CLEARANCE
I = 1 : REFERENCE POSITION RETURN (INI-POINT RETURN)
F = 50.0 : FEEDRATE
P = 50 : DWELL TIME (in msec unit)
As you enter the information, you will notice that the address corresponding to the data entry in a guidance drawing is blinking. This allows the user to check their entry as they are entering it on the screen.

To insert a canned cycle into a part program, press the “ACCEPT” soft-key on the display unit. You will see the resulting block on the editor screen “G1000 W1. C10. I1. F50. P50. ;”. You have now entered a quite complex part program block into your part program without even knowing how to program a canned cycle.

On the editor screen, pressing the right-end soft-key causes the “EDIT” soft-key to appear. Pressing this soft-key causes the data entry screen for the corresponding canned cycle to appear. You can change the value displayed on this screen by typing in a new value.
and then pressing “INPUT.” Then, by pressing the “ACCEPT” soft-key, the original canned cycle block is changed to new one.

The canned cycles provided by MANUAL GUIDE 0i are configured as a pair of a machining type block and figure block. So, after entering a machining type block, such as G1130, on the editor screen, press “CYCLE” and then select figure block G-code, G1460 to G1461. For example, a canned cycle program would be entered as follows.

G1130 F0.2 E15. Q2.5 H1. K1. W1. ;

NOTE
MANUAL GUIDE 0i canned cycles must be entered as a pair of machining type block and figure block. Only one figure block can be entered for each machining type block.
### 1.4.2 Data for Each Canned Cycle

#### 1.4.2.1 Machining type block of Lathe drilling

##### Center drilling : G1100

<table>
<thead>
<tr>
<th>Data item</th>
<th>Comment</th>
</tr>
</thead>
<tbody>
<tr>
<td>F</td>
<td>FEED RATE</td>
</tr>
<tr>
<td>P</td>
<td>Dwell time at the bottom of hole, in unit of msec.</td>
</tr>
<tr>
<td>B</td>
<td>START POINT</td>
</tr>
<tr>
<td>L</td>
<td>DEPTH</td>
</tr>
<tr>
<td>Comment</td>
<td>Cutting feedrate</td>
</tr>
<tr>
<td></td>
<td>Dwell time at the bottom of hole, in unit of msec.</td>
</tr>
<tr>
<td></td>
<td>Z-coordinate of cutting start point</td>
</tr>
<tr>
<td></td>
<td>Depth of hole (positive value)</td>
</tr>
</tbody>
</table>

##### Drilling : G1101

<table>
<thead>
<tr>
<th>W</th>
<th>MACHINING TYPE</th>
<th>1 : Drilling</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td>2 : Peck drilling</td>
</tr>
<tr>
<td></td>
<td></td>
<td>4 : High speed peck drilling</td>
</tr>
<tr>
<td>F</td>
<td>FEED RATE</td>
<td>Cutting in depth of one cutting motion</td>
</tr>
<tr>
<td>Q</td>
<td>CUTTING DEPTH</td>
<td>Cutting in depth of one cutting motion</td>
</tr>
<tr>
<td>P</td>
<td>Dwell time</td>
<td>Dwell time at the bottom of hole, in unit of msec.</td>
</tr>
<tr>
<td>B</td>
<td>START POINT</td>
<td>Z-coordinate of cutting start point</td>
</tr>
<tr>
<td>L</td>
<td>DEPTH</td>
<td>Depth of hole (positive value)</td>
</tr>
</tbody>
</table>

##### Tapping : G1102

<table>
<thead>
<tr>
<th>W</th>
<th>MACHINING TYPE</th>
<th>1 : Normal tapping</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td>2 : Reverse tapping</td>
</tr>
<tr>
<td></td>
<td></td>
<td>3 : Rigid tapping</td>
</tr>
<tr>
<td></td>
<td></td>
<td>4 : Reverse rigid tapping</td>
</tr>
<tr>
<td>F</td>
<td>THREAD PITCH</td>
<td>Lead of a tapping thread</td>
</tr>
<tr>
<td>P</td>
<td>Dwell time</td>
<td>Dwell time at the bottom of hole, in unit of msec.</td>
</tr>
<tr>
<td>B</td>
<td>START POINT</td>
<td>Z-coordinate of cutting start point</td>
</tr>
<tr>
<td>L</td>
<td>DEPTH</td>
<td>Depth of hole (positive value)</td>
</tr>
</tbody>
</table>

##### Reaming : G1103

F	FEED RATE	Cutting feedrate
Q	CUTTING LIP LENGTH	Cutting lip length of a reamer at cutting start end
P	Dwell time	Dwell time at the bottom of hole, in unit of msec.
B	START POINT	Z-coordinate of cutting start point
L	DEPTH	Depth of hole (positive value)

##### Boring : G1104

F	FEED RATE	Cutting feedrate
Q	SHIFT AMOUNT	Shift in retraction for boring (positive value)
P	Dwell time	Dwell time at the bottom of hole, in unit of msec.
B	START POINT	Z-coordinate of cutting start point
L	DEPTH	Depth of hole (positive value)
1.4.2.2  Machining type block of Stock removal in turning

Outer Bar Roughing: G1120
Inner Bar Roughing: G1121
End Face Roughing: G1122

<table>
<thead>
<tr>
<th>Data item</th>
<th>Comment</th>
</tr>
</thead>
<tbody>
<tr>
<td>P</td>
<td>CUTTING DIRECTION</td>
</tr>
<tr>
<td></td>
<td>1 : Normal direction (from end face toward chuck)</td>
</tr>
<tr>
<td></td>
<td>2 : Reverse direction (from chuck toward end face)</td>
</tr>
<tr>
<td>F</td>
<td>FEED RATE</td>
</tr>
<tr>
<td>H</td>
<td>FINISH AMOUNT X</td>
</tr>
<tr>
<td></td>
<td>Finishing amount of X-axis direction (diameter)</td>
</tr>
<tr>
<td>K</td>
<td>FINISH AMOUNT Z</td>
</tr>
<tr>
<td></td>
<td>Finishing amount of Z-axis direction (radius)</td>
</tr>
<tr>
<td>Q</td>
<td>1ST CUTTING DEPTH</td>
</tr>
<tr>
<td></td>
<td>Depth of 1st cut in rough machining (diameter)</td>
</tr>
<tr>
<td>E</td>
<td>ESCAPE AMOUNT</td>
</tr>
<tr>
<td></td>
<td>Movement along the X-axis (in outer/inner surface machining : diameter)</td>
</tr>
<tr>
<td></td>
<td>or along the Z-axis (in end facing : radius) for retraction after cutting</td>
</tr>
<tr>
<td>W</td>
<td>ESCAPE TYPE</td>
</tr>
<tr>
<td></td>
<td>Escaping type after cutting in a roughing motions.</td>
</tr>
<tr>
<td></td>
<td>1 : Standard</td>
</tr>
<tr>
<td></td>
<td>The tool is retracted after cutting along the final figure outline</td>
</tr>
<tr>
<td></td>
<td>2 : Rapid</td>
</tr>
<tr>
<td></td>
<td>The tool is retracted immediately after cutting</td>
</tr>
<tr>
<td>I</td>
<td>END FACE REMOVAL</td>
</tr>
<tr>
<td></td>
<td>removal amount at the end face part (radius)</td>
</tr>
<tr>
<td>J</td>
<td>RATE OF CUTTING DEPTH</td>
</tr>
<tr>
<td></td>
<td>Ratio of the depth of an actual cut to the depth of cut entered by Q</td>
</tr>
<tr>
<td>U</td>
<td>MINIMUM CUT DEPTH</td>
</tr>
<tr>
<td></td>
<td>Limit of depth of cut (diameter)</td>
</tr>
<tr>
<td>V</td>
<td>EDGE ANGLE</td>
</tr>
<tr>
<td></td>
<td>Angle of the cutting edge. In case of that it was set to the value less</td>
</tr>
<tr>
<td></td>
<td>than 90 degrees, cutting edge compensation will be done automatically.</td>
</tr>
<tr>
<td>A</td>
<td>NOSE ANGLE</td>
</tr>
<tr>
<td></td>
<td>Angle of the tool. In the case of that pocket figure was inputted as</td>
</tr>
<tr>
<td></td>
<td>contour figure, cutting back compensation will be done automatically.</td>
</tr>
</tbody>
</table>

1.4.2.3  Machining type block of Finishing in turning

Outer Bar Finishing: G1123
Inner Bar Finishing: G1124
End Face Finishing: G1125

<table>
<thead>
<tr>
<th>Data item</th>
<th>Comment</th>
</tr>
</thead>
<tbody>
<tr>
<td>P</td>
<td>CUTTING DIRECTION</td>
</tr>
<tr>
<td></td>
<td>1 : Normal direction (from end face toward chuck)</td>
</tr>
<tr>
<td></td>
<td>2 : Reverse direction (from chuck toward end face)</td>
</tr>
<tr>
<td>F</td>
<td>FEED RATE</td>
</tr>
<tr>
<td>E</td>
<td>ESCAPE AMOUNT</td>
</tr>
<tr>
<td></td>
<td>Movement along the X-axis (in outer/inner surface machining : diameter)</td>
</tr>
<tr>
<td></td>
<td>or along the Z-axis (in end facing : radius) for retraction after cutting</td>
</tr>
<tr>
<td>V</td>
<td>EDGE ANGLE</td>
</tr>
<tr>
<td></td>
<td>Angle of the cutting edge. In case of that it was set to the value less</td>
</tr>
<tr>
<td></td>
<td>than 90 degrees, cutting edge compensation will be done automatically.</td>
</tr>
<tr>
<td>A</td>
<td>NOSE ANGLE</td>
</tr>
<tr>
<td></td>
<td>Angle of the tool. In the case of that pocket figure was inputted as</td>
</tr>
<tr>
<td></td>
<td>contour figure, cutting back compensation will be done automatically.</td>
</tr>
</tbody>
</table>
1.4.2.4 Figure block of Stock removal in turning and Finishing

NOTE
1 There are two ways of entering the figure block for stock removal cycles.
   The first involves using the contour programming described in chapter 1.5. By using this method, you can enter
   free-form figures that are created using lines and arcs by using the full functionality of contour calculations. By
   pressing [CONTUR], you can enter contour programming mode on the figure block G-code menu screen.
   The second method involves entering a figure block directly by selecting a figure block G-code. In this case, you must
   enter the end point coordinate and other necessary values for each figure block. You cannot use contour calculation.
2 The figure blocks used for a machining block can be replaced by a sub program. In this case, you must enter a
   sub program in which only a series of figure blocks are included, as well as a return block (M99). Instead of
   entering a series of figure blocks, M98 Pxxx (sub-program number) can be used.
   When using contour programming, this sub program and sub program calling block can be created automatically.
   For details, refer to section 1.5.

Start : G1400

<table>
<thead>
<tr>
<th>Data item</th>
<th>Comment</th>
</tr>
</thead>
<tbody>
<tr>
<td>X START POINT (X-AXIS)</td>
<td>X-axis coordinate of figure start point</td>
</tr>
<tr>
<td>Z START POINT (Z-AXIS)</td>
<td>Z-axis coordinate of figure start point</td>
</tr>
</tbody>
</table>

Line : G1401

<table>
<thead>
<tr>
<th>Data item</th>
<th>Comment</th>
</tr>
</thead>
<tbody>
<tr>
<td>X END POINT (X-AXIS)</td>
<td>X-axis coordinate of figure end point</td>
</tr>
<tr>
<td>Z END POINT (Z-AXIS)</td>
<td>Z-axis coordinate of figure end point</td>
</tr>
<tr>
<td>F FEED RATE</td>
<td>Feedrate of this figure, which is used in finishing motion</td>
</tr>
</tbody>
</table>

Arc CW : G1402
Arc CCW : G1403

<table>
<thead>
<tr>
<th>Data item</th>
<th>Comment</th>
</tr>
</thead>
<tbody>
<tr>
<td>X END POINT (X-AXIS)</td>
<td>X-axis coordinate of figure end point</td>
</tr>
<tr>
<td>Z END POINT (Z-AXIS)</td>
<td>Z-axis coordinate of figure end point</td>
</tr>
<tr>
<td>R RADIUS</td>
<td>Radius of arc</td>
</tr>
<tr>
<td>F FEED RATE</td>
<td>Feedrate of this figure, which is used in finishing motion</td>
</tr>
</tbody>
</table>

Figure End : G1406
No data is necessary in this figure block, but you must enter this block at the end of figure blocks that were entered just after machining type block.

### 1.4.2.5 Machining type block of Groove roughing in turning

<table>
<thead>
<tr>
<th>Outer Groove Roughing</th>
<th>: G1130</th>
</tr>
</thead>
<tbody>
<tr>
<td>End face Groove Roughing</td>
<td>: G1132</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Data item</th>
<th>Comment</th>
</tr>
</thead>
<tbody>
<tr>
<td>F FEED RATE</td>
<td>Cutting feedrate</td>
</tr>
<tr>
<td>E TOOL WIDTH</td>
<td>Width of grooving tool at cutting edge (radius)</td>
</tr>
<tr>
<td>Q CUTTING DEPTH</td>
<td>Depth of each cutting motion (outer/inner : diameter, end face : radius)</td>
</tr>
<tr>
<td>R DWELL TIME</td>
<td>Dwell time at the bottom of groove, in unit of msec.</td>
</tr>
<tr>
<td>H FINISH AMOUNT X</td>
<td>Finishing amount of X-axis direction (diameter)</td>
</tr>
<tr>
<td>K FINISH AMOUNT Z</td>
<td>Finishing amount of Z-axis direction (radius)</td>
</tr>
<tr>
<td>W CUTTING METHOD</td>
<td>Cutting sequence of groove part</td>
</tr>
<tr>
<td></td>
<td>1 : Single direction</td>
</tr>
<tr>
<td></td>
<td>Cutting is done from end face toward chuck side</td>
</tr>
<tr>
<td></td>
<td>2: Both direction</td>
</tr>
<tr>
<td></td>
<td>At first, cutting at the center of groove is done, and expanded to end face side and chuck side mutually</td>
</tr>
<tr>
<td>J RATE OF CUTTING DEPTH</td>
<td>Ratio of the depth of an actual cut to the depth of cut entered by Q</td>
</tr>
<tr>
<td>U MINIMUM CUT DEPTH</td>
<td>Limit of depth of cut (diameter)</td>
</tr>
</tbody>
</table>

### 1.4.2.6 Machining type block of Groove finishing in turning

<table>
<thead>
<tr>
<th>Outer Groove Finishing</th>
<th>: G1133</th>
</tr>
</thead>
<tbody>
<tr>
<td>End face Groove Finishing</td>
<td>: G1134</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Data item</th>
<th>Comment</th>
</tr>
</thead>
<tbody>
<tr>
<td>F FEED RATE</td>
<td>Cutting feedrate</td>
</tr>
<tr>
<td>E TOOL WIDTH</td>
<td>Width of grooving tool at cutting edge (radius)</td>
</tr>
<tr>
<td>W CUTTING METHOD</td>
<td>Cutting sequence of groove part</td>
</tr>
<tr>
<td></td>
<td>1 : Single direction</td>
</tr>
<tr>
<td></td>
<td>Cutting is done from end face toward chuck side</td>
</tr>
<tr>
<td></td>
<td>2: Both direction</td>
</tr>
<tr>
<td></td>
<td>At first, cutting at the center of groove is done, and expanded to end face side and chuck side mutually</td>
</tr>
</tbody>
</table>
## 1.4.2.7 Figure block of Grooving in turning

### Normal Groove : G1460

<table>
<thead>
<tr>
<th>Data item</th>
<th>Comment</th>
</tr>
</thead>
<tbody>
<tr>
<td>C</td>
<td>CHAMFER AMOUNT</td>
</tr>
<tr>
<td>X</td>
<td>START POINT X</td>
</tr>
<tr>
<td>Z</td>
<td>START POINT Z</td>
</tr>
<tr>
<td>U</td>
<td>END POINT (X/Z-AXIS)</td>
</tr>
<tr>
<td>D</td>
<td>GROOVE DEPTH</td>
</tr>
<tr>
<td>W</td>
<td>GROOVE WIDTH</td>
</tr>
<tr>
<td>M</td>
<td>NUMBER OF GROOVE</td>
</tr>
<tr>
<td>Y</td>
<td>PITCH</td>
</tr>
</tbody>
</table>

- C: CHAMFER AMOUNT: Chamfer amount of a groove (radius)
- X: START POINT X: X-axis coordinate of a point where grooving starts
- Z: START POINT Z: Z-axis coordinate of a point where grooving starts
- U: END POINT (X/Z-AXIS): X-axis or Z-axis coordinate of the end point of a groove. This data is necessary only at the depth of a groove is different. If no value is inputted, depth of start point and end point becomes equal. X value is used at outer groove, and Z value is used at end face groove.
- D: GROOVE DEPTH: Depth of a groove to be machine (radius)
- W: GROOVE WIDTH: Width of a groove to be machined (radius)
- M: NUMBER OF GROOVE: Number of grooves when more than one groove are to be machined at regular intervals.
- Y: PITCH: Distance between grooves when more than one groove are machined. When minus value is entered, grooves will be positioned from end face side toward chuck side. When plus value, it will be reversed (radius)

### Trapezoidal Groove : G1461

<table>
<thead>
<tr>
<th>Data item</th>
<th>Comment</th>
</tr>
</thead>
<tbody>
<tr>
<td>X</td>
<td>START POINT X</td>
</tr>
<tr>
<td>Z</td>
<td>START POINT Z</td>
</tr>
<tr>
<td>A</td>
<td>END POINT-1 (X-AXIS)</td>
</tr>
<tr>
<td>B</td>
<td>END POINT-1 (Z-AXIS)</td>
</tr>
<tr>
<td>C</td>
<td>CORNER R 1</td>
</tr>
<tr>
<td>D</td>
<td>CHAMFER 1</td>
</tr>
<tr>
<td>E</td>
<td>END POINT-2 (X-AXIS)</td>
</tr>
<tr>
<td>F</td>
<td>END POINT-2 (Z-AXIS)</td>
</tr>
<tr>
<td>H</td>
<td>CORNER R 2</td>
</tr>
<tr>
<td>I</td>
<td>CHAMFER 2</td>
</tr>
<tr>
<td>J</td>
<td>END POINT-3 (X-AXIS)</td>
</tr>
<tr>
<td>K</td>
<td>END POINT-3 (Z-AXIS)</td>
</tr>
<tr>
<td>L</td>
<td>CORNER R 3</td>
</tr>
<tr>
<td>T</td>
<td>CHAMFER 3</td>
</tr>
<tr>
<td>P</td>
<td>END POINT-4 (X-AXIS)</td>
</tr>
<tr>
<td>Q</td>
<td>END POINT-4 (Z-AXIS)</td>
</tr>
<tr>
<td>R</td>
<td>CORNER R 4</td>
</tr>
<tr>
<td>S</td>
<td>CHAMFER 4</td>
</tr>
<tr>
<td>V</td>
<td>FINAL POINT (X-AXIS)</td>
</tr>
<tr>
<td>W</td>
<td>FINAL POINT (Z-AXIS)</td>
</tr>
<tr>
<td>M</td>
<td>NUMBER OF GROOVE</td>
</tr>
<tr>
<td>Y</td>
<td>PITCH</td>
</tr>
</tbody>
</table>

- X: START POINT X: X-axis coordinate of a start point
- Z: START POINT Z: Z-axis coordinate of a start point
- A: END POINT-1 (X-AXIS): X-axis coordinate of a 1st line from start point
- B: END POINT-1 (Z-AXIS): Z-axis coordinate of a 1st line from start point
- C: CORNER R 1: Corner-R radius of the end point of line-1
- D: CHAMFER 1: Chamfering amount of the end point of line-1
- E: END POINT-2 (X-AXIS): X-axis coordinate of a 2nd line from 1st end point
- F: END POINT-2 (Z-AXIS): Z-axis coordinate of a 2nd line from 1st end point
- H: CORNER R 2: Corner-R radius of the end point of 2nd line
- I: CHAMFER 2: Chamfering amount of the end point of 2nd line
- J: END POINT-3 (X-AXIS): X-axis coordinate of a 3rd line from 2nd end point
- K: END POINT-3 (Z-AXIS): Z-axis coordinate of a 3rd line from 2nd end point
- L: CORNER R 3: Corner-R radius of the end point of 3rd line
- T: CHAMFER 3: Chamfering amount of the end point of 3rd line
- P: END POINT-4 (X-AXIS): X-axis coordinate of a 4th line from 3rd end point
- Q: END POINT-4 (Z-AXIS): Z-axis coordinate of a 4th line from 3rd end point
- R: CORNER R 4: Corner-R radius of the end point of 4th line
- S: CHAMFER 4: Chamfering amount of the end point of 4th line
- V: FINAL POINT (X-AXIS): X-axis coordinate of a 5th line from 4th end point
- W: FINAL POINT (Z-AXIS): Z-axis coordinate of a 5th line from 4th end point
- M: NUMBER OF GROOVE: Number of grooves when more than one groove are to be machined at regular intervals.
- Y: PITCH: Distance between grooves when more than one groove are machined. When minus value is entered, grooves will be positioned from end face side toward chuck side. When plus value, it will be reversed
NOTE
When both of Corner R and Chamfering data are entered at the same time for each point respectively, Corner R data is used and Chamfering data will be neglected.

1.4.2.8 Machining type block of Threading

Threading : G1140

<table>
<thead>
<tr>
<th>Data item</th>
<th>Comment</th>
</tr>
</thead>
<tbody>
<tr>
<td>Q</td>
<td>CUTTING DEPTH</td>
</tr>
<tr>
<td>J</td>
<td>CUTTING TIMES</td>
</tr>
</tbody>
</table>
| W | CUTTING METHOD | 1 : Single side cutting, constant cutting amount  
2 : Both side cutting, constant cutting amount  
3 : Straight cutting, constant cutting amount  
4 : Single side cutting, constant cutting depth  
5 : Both side cutting, constant cutting depth  
6 : Straight cutting, constant cutting depth |
| L | SPARK OUT | Number of finishing cutting to be done |
| H | FINISH AMOUNT | Finishing amount (diameter) |
| C | CLEARANCE X | Clearance along the X-axis in threading (diameter) |
| M | CLEARANCE Z | Clearance amount along the Z-axis in threading, and it means the distance required for the spindle to reach a stable speed (radius) |
| A | NOSE ANGLE | Tool tip angle used for only GENERAL thread |

NOTE
When both of Cutting depth and Cutting number are entered at the same time. Cutting depth data is used for actual threading motion, and Cutting number will be neglected.
1.4.2.9 Figure block of Threading

Thread figure : G1450

<table>
<thead>
<tr>
<th>Data item</th>
<th>Comment</th>
</tr>
</thead>
</table>
| R THREAD TYPE | 1 : General thread  
| | 2 : Metric thread  
| | 3 : Unified thread  
| | 4 : PT thread  
| | 5 : PF thread  |
| L THREADING LEAD | Thread lead. The least increment is 0.0001mm or 0.000001inch. This data is used for General, Metric, PT and PF thread. |
| N NUMBER OF THREAD PER 1 INCH | Number of thread per 1 inch. The least input increment is 0.1. This data is used for Unified thread only. |
| H THREAD HEIGHT | Thread height (radius) |
| P MULTI THREAD NUMBER | Number of thread at multiple thread screw |
| X START POINT X | X-coordinate of a thread start point |
| Z START POINT Z | Z-coordinate of a thread start point |
| A END POINT 1 (X) | X-coordinate of a 1st thread end point |
| B END POINT 1 (Z) | Z-coordinate of a 1st thread end point |
| C END POINT 2 (X) | X-coordinate of a 2nd continuous thread end point |
| D END POINT 2 (Z) | Z-coordinate of a 2nd continuous thread end point |
| E END POINT 3 (X) | X-coordinate of a 3rd continuous thread end point |
| F END POINT 3 (Z) | Z-coordinate of a 3rd continuous thread end point |
| I END POINT 4 (X) | X-coordinate of a 4th continuous thread end point |
| J END POINT 4 (Z) | Z-coordinate of a 4th continuous thread end point |
| Q END POINT 5 (X) | X-coordinate of a 5th continuous thread end point |
| S END POINT 5 (Z) | Z-coordinate of a 5th continuous thread end point |
| V END POINT 6 (X) | X-coordinate of a 6th continuous thread end point |
| W END POINT 6 (Z) | Z-coordinate of a 6th continuous thread end point |

**NOTE**

End point 2 to 6 are used at only when continuous thread machining under General thread is selected. When Metric, Unified, PT or PF is selected, only End point 1 is available.
1.5 CONTOUR PROGRAMMING

MANUAL GUIDE 0i also offers “contour programming,” by which the user can enter contour figures consisting of lines and circles. This “contour programming” involves high-performance contour calculation such as 10 blocks pending and auxiliary calculation with 11 patterns.

In “contour programming”, the operator can enter contour figures that are made up of lines and arcs. These contour figures can be converted to either a standard ISO-code program that traces the contour figure, such as G01/G02/G03, or figure data blocks for the stock removal cycle, such as G1400/G1401/G1402/G1403/G1406.

You can select the type of program that is to be made by the operation. For details, refer to the next chapter.

While entering a contour figure, auxiliary calculation (other than cross point calculation) can be used to obtain the end point coordinate values of a figure.

NOTE
In a Contour Programming, up to 40 figures can be entered.
1.5.1 Operations of Contour Programming

1.5.1.1 Calling Contour Programming Screen

To create a program with G01/G02/G03, press [CONTUR] on the MANUAL GUIDE 0i program screen.

```
O0015;
```

To enter figure blocks for the Stock removal cycle, press [CONTUR] on the cycle menu screen for the Stock removal cycle figure.

```
CYCLE MACHINING MENU 2 OF 5
*G1400 START
*G1401 LINE
*G1402 ARC (CW)
*G1403 ARC (CCW)
*G1404 FIGURE END

*CONTOUR FIGURE - PUSH SOFTKEY [CONTUR]

PAGE KEYS FOR MORE
INPUT IXXX FOR G1XXX HELP

[] [] [] [] [] [] [CONTUR]
```

In both cases, the contour program initial screen will be displayed.

**NOTE**
When you are going to enter figure blocks for the Stock removal cycle, you can either enter them directly immediately after the machining type block, or enter them as a sub program. The latter is useful when the same contour figure is used both for roughing and finishing. First, you can enter the figure blocks as the sub program for roughing, and then you need only enter a sub program that calls a block such as M98 Pxxx. For details on the operation, refer to chapter 1.5.1.5 “Convert to NC Program”.

- 698 -
1.5.1.2 Selecting of Method to Edit of Contour Program

Pressing “CONTUR” causes the initial screen for contour programming to be displayed. After the contour programming operation screen, the next screen appears to allow the user to select whether a new program is to be created, or whether an existing one is to be edited.

When you want to create a new program, press [NEW]. To work with an existing program, press [EDIT].

SELECT METHOD TO EDIT CONTOUR PROGRAM

CONTOUR PROGRAM IS EXISTING
[NEW]: CREATE NEW PROGRAM.
[EDIT]: EDIT EXISTED PROGRAM.

NOTE
In contour programming, a temporary working program must be allocated to hold a temporary NC program. A program number of this temporary program should be set in parameter No.9330 using a non-zero value. In this manual, all explanations assume that 9999 is set. If a program with this program number has already been registered in the CNC memory, the following warning screen will appear at the beginning of contour programming operation.

CONFIRM DELETE OF WORKING PROGRAM

WORKING PROGRAM EXIST. -> 09999
THIS PROGRAM WILL BE DELETE.
DO YOU CONTINUE CONTOUR PROGRAMMING ?

NOTE
If the program is used for other purpose already, press [EXIT] and get away from a contour programming. Then, after setting other program number in parameter 9330, and begin again.
1.5.1.3 Entering of Contour Program

Start Point

When the user selects new program entry, the data item screen for the start point will be displayed first.

<table>
<thead>
<tr>
<th>Data item</th>
<th>Comment</th>
</tr>
</thead>
<tbody>
<tr>
<td>START POINT X</td>
<td>X coordinate of a contour figure start point</td>
</tr>
<tr>
<td>START POINT Z</td>
<td>Z coordinate of a contour figure start point</td>
</tr>
<tr>
<td>FEED METHOD</td>
<td>Type of motion toward a start point (No G-code/G00/G01)</td>
</tr>
<tr>
<td>FEEDRATE</td>
<td>Feedrate under G01 selecting</td>
</tr>
</tbody>
</table>

[AUX.] : Call auxiliary calculating screen. The result of it will be set into start point coordinate data.

[OFFSET] : Call a cutter compensation setting screen. (Available at only when a parameter No.9341#5(DCD) is set to 1)

[OK] : Fix start point data and store into memory.

[EXIT] : Cancel start point entering and exit from contour programming.

NOTE

By setting a parameter No.9342#2(STP) to 1, data comment of start point can be changed to "APPROACH POINT".

Offset

On the data item screen, on which the start point of the previous clause or later line is described, pressing the [OFFSET] key causes the following screen for entering the cutter compensation setting to be displayed.

```
CUTTER COMPENSATION SETTING

OFFSET TYPE : NO OUTPUT

[NO OUT] [G41] [G42] [G40] [RETURN]
```

[NO OUT] : Do not output a command of cutter compensation

[G41] : Output G41

[G42] : Output G42

[G40] : Output G40 for offset canceling

[RETURN] : Return to former screen, start point or line

If necessary, enter offset number data. Otherwise leave it empty.
After entering the necessary data, press [RETURN] to return to the former screen.
Then, enter the remaining data, or modify the figure data and store it into memory by pressing [OK].
When G41 or G42 is selected, the “OFFSET NO.” item will be displayed. So, input the necessary offset number data.

**NOTE**
By setting bit 5 (DCD) of parameter No.9341 to 1, the above offset number data item can be cancelled.

**Select type of contour figure**
During contour programming, the following contour figure selecting or other operating soft-key will be displayed. In this screen operations for contour figure entering can be done.

```
[LINE] [ARC] [ARC] [CORNER] [CHAMP.]
```

By pushing right end soft-key, next soft-key page will be displayed.

```
[MODIFY] [RECALC] [GRAPH] [NC CNV] [STOP]
```

- **[LINE]**: Select a LINE
- **[ARC]**: Select a CW arc
- **[ARC]**: Select a CCW arc
- **[CORNER]**: Select a corner-R
- **[CHAMF.]**: Select a chamfering
- **[MODIFY]**: A data entering menu screen for each figure is displayed, and can be used for modifying a data that was previously entered.
- **[RECALC]**: Calculation for whole contour figures is done again, and must be done after modifying a part of contour figures or entering new figure.
- **[GRAPH]**: Figure drawing screen is displayed, and can be used for checking the entered figure. Enlarging, scale-down and others are available.
- **[NC CNV]**: Convert entered contour figures into NC motion program.
  After finishing conversion, a contour programming will be finished and exit to former screen.
- **[STOP]**: Stop a contour programming and after replying the prompt of it, it can exit to former screen. NC program will be never made.

**NOTE**
During a contour programming, only line / arc / chamfering / corner-R on an XY-plane can be entered.
Example of data entering for contour figure

If you select a line, the line screen is displayed, allowing you to enter all the figure data written on a drawing. Even though the end point coordinate value does not appear in a drawing, it can be determined by calculating the cross point coordinate between this figure and that to be entered next.

<table>
<thead>
<tr>
<th>Data item</th>
<th>Comment</th>
</tr>
</thead>
<tbody>
<tr>
<td>END POINT X</td>
<td>X coordinate of a line end point</td>
</tr>
<tr>
<td>END POINT Z</td>
<td>Z coordinate of a line end point</td>
</tr>
<tr>
<td>ANGLE A</td>
<td>Angle of line from +Z-axis. A positive angle is counter clockwise direction.</td>
</tr>
<tr>
<td>TOUCH STATE</td>
<td>Select from the following soft-key menu whether tangential or not between neighbor figure. [NO]: Not tangential [LAST]: Tangential with the preceding figure</td>
</tr>
<tr>
<td>FEEDRATE</td>
<td>Feedrate</td>
</tr>
</tbody>
</table>

NOTE
The feedrate data item is displayed when parameter No.9341#3(FCD) is set to 1.

[AUX.] : Call auxiliary calculating screen. The result of it will be set into end point coordinate or angle data.
[OFFSET] : Call a cutter compensation setting screen. (Available at only when a parameter No.9341#5(DCD) is set to 1)
[OK] : Fix line figure data and store into memory.
[CANCEL] : Cancel line figure data entering and return to the contour program list screen.

Modify contour figures

There are two ways of modifying contour figure data that has already been fixed and stored.

Method 1

Use a contour figure data screen
On the contour program list screen, position the cursor to the figure block that is to be modified, and then press [MODIFY]. The figure data screen corresponding to the selected figure is displayed, allowing you to enter new data. Enter the required new data and then press [OK]. Then, press [RECALC] to calculate all of the contour figures by using the newly entered data.

Method 2

Modify the data directly on a contour program list screen
On the contour program list screen, position the cursor to the data that is to be modified, enter a new value, and then press INPUT. Then, press [RECALC] to calculate all of the contour figures by using the newly entered data.

NOTE
To clear a data entry, press CAN and then INPUT.
Insert a new contour figure
Position the cursor to the figure block immediately before the position where a new figure should be inserted. Then, using the procedure described in examples 2 and 3, enter new figure block. Then, press [RECALC] to calculate all of the contour figures using the newly entered data.

Delete a contour figure
Position the cursor to the head of the figure block or figure symbol to be deleted, and then press DELETE. The prompt "ARE YOU SURE TO DELETE BLOCK?" will appear. Press [YES] to delete the figure. Press [NO] to abandon the deletion. Then, press [RECALC] to calculate all of the contour figures using the newly entered data.

Change a contour figure
To change the figure type of a previously input contour figure, first delete the old figure block, and then insert a new figure block.
1.5.1.4 Checking Contour Figures

Entered contour figures can be checked on the screen by means of operations such as zooming-in, zooming-out, and so on. On the program list screen, press [GRAPH]. The graphic drawing screen shown below will appear. A drawing scale appears at the bottom of the screen.

[LARGE] [SMALL] [ AUTO ] [ REAL ] [RETURN]

Pressing the right-end soft-key causes the next soft-key page to appear.

[ ← ] [ → ] [ ↑ ] [ ↓ ] [CENTER]

[LARGE] : Double a scale factor.
[SMALL] : Make a scale factor half.
[AUTO] : Decide a scale factor automatically in order to draw a whole part within a screen.
[RETURN] : Return to a contour program list screen.
[←] [→] [↑] [↓] : Move a view point to each direction. Cursor key can be used also to move.
[CENTER] : Move a drawing figure at the center of a screen.
1.5.1.5 **Convert to NC Program**

Entered contour figures can be converted to NC programs in the form of G-code.
Press [NC CNV]. The following screen appears.

```
CONFIRM CONVERSION OF NC PROGRAM
YOU CAN SELECT NC CONVERSION TYPE

PUSH [YES] WITH NO DATA INPUT
→ NC PROGRAM WILL BE ENTERED TO ACTUAL PROGRAM

ENTER SUB PROGRAM NUMBER, THEN PUSH [YES]
→ NC PROGRAM WILL BE ENTERED AS A SUB PROGRAM

[YES] [NO] [] [] [] []
```

By following the message displayed on the screen, press [YES] immediately or press it after entering a sub program number.
If you press [YES] without entering a sub program number, the contour figures will be entered immediately after the cursor before the start of Contour programming.
If you press [YES] after entering a new sub program number, the contour figure will be entered into the newly made sub program, and a sub-program calling block such as M98 Pxxx will be entered immediately after the cursor before the start of Contour programming.
By pressing [NO], you can abandon the conversion operation.
Contour figures can be converted to the following G-code programs.

<table>
<thead>
<tr>
<th>Type of Figure</th>
<th>Symbol</th>
<th>G-code</th>
<th>G-code</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td>Normal ISO-code program</td>
<td>Figure block for Stock removal cycle</td>
</tr>
<tr>
<td>Start point</td>
<td>●</td>
<td>G00 or G01</td>
<td>G1400</td>
</tr>
<tr>
<td>Line</td>
<td>→</td>
<td>G01</td>
<td>G1401</td>
</tr>
<tr>
<td>Arc (CW)</td>
<td>∘</td>
<td>G02</td>
<td>G1402</td>
</tr>
<tr>
<td>Arc (CCW)</td>
<td>√</td>
<td>G03</td>
<td>G1403</td>
</tr>
<tr>
<td>Corner R</td>
<td>R</td>
<td>G02 or G03</td>
<td>G1402 or G1403</td>
</tr>
<tr>
<td>Chamfering</td>
<td>C</td>
<td>G01</td>
<td>G1401</td>
</tr>
<tr>
<td>Cutter compensation</td>
<td></td>
<td>G41 or G42</td>
<td>None</td>
</tr>
<tr>
<td>Cutter compensation cancel</td>
<td></td>
<td>G40</td>
<td>None</td>
</tr>
</tbody>
</table>
NOTE

1 Converted NC program blocks are stored immediately after the block to which the cursor was positioned. After a return to these previous screens, the cursor will be positioned to the head of the NC program that was newly stored after conversion.

2 If there are any figures for which the end points are pending, NC program conversion will be done for the contour figure immediately before the pending block.

3 After the conversion of a contour figure program into an NC program, the original contour figure is left as is so that it can be recalled when contour programming is next performed. (After the cycle program is executed, the original contour figure is not left.)

4 A value of up to eight digits can be entered for the axis command (X/Y) of a converted NC program, and the value must always have a decimal point. The decimal digits conform to the minimum setting units, with any lower digits being rounded off.

### IS-B form

<table>
<thead>
<tr>
<th></th>
<th>Least input increment</th>
<th>Least command increment</th>
<th>Max.</th>
</tr>
</thead>
<tbody>
<tr>
<td>mm</td>
<td>0.001 mm</td>
<td>0.001 mm</td>
<td>±99999.999 mm</td>
</tr>
<tr>
<td>inch</td>
<td>0.0001 inch</td>
<td>0.0001 inch</td>
<td>±9999.9999 inch</td>
</tr>
</tbody>
</table>

### IS-C form

<table>
<thead>
<tr>
<th></th>
<th>Least input increment</th>
<th>Least command increment</th>
<th>Max.</th>
</tr>
</thead>
<tbody>
<tr>
<td>mm</td>
<td>0.0001 mm</td>
<td>0.0001 mm</td>
<td>±9999.9999 mm</td>
</tr>
<tr>
<td>inch</td>
<td>0.000001 inch</td>
<td>0.000001 inch</td>
<td>±9999.99999 inch</td>
</tr>
</tbody>
</table>

NOTE

5 By setting bit 0 (IJR) of parameter No.9341 to 1, address "R" is output as the radius data of arc n. By setting it to 0, data "I" and "J" are output as center point coordinates.

6 Even if data having the same value is output continuously for a given address, they will never be canceled.
1.5.2 Detail of Contour Figure Data

This chapter describes the details of the contour figure data, which is entered on the contour figure data screen.
Details of the contour figure data for the start point and line are given in the previous chapter. Refer to the explanation as necessary.

1.5.2.1 Arc

<table>
<thead>
<tr>
<th>Data item</th>
<th>Comment</th>
</tr>
</thead>
<tbody>
<tr>
<td>END POINT X</td>
<td>X coordinate of an arc end point</td>
</tr>
<tr>
<td>END POINT Z</td>
<td>Z coordinate of an arc end point</td>
</tr>
<tr>
<td>RADIUS R</td>
<td>Radius of an arc, but plus value only</td>
</tr>
<tr>
<td>CENTER I</td>
<td>X coordinate of an arc center</td>
</tr>
<tr>
<td>CENTER K</td>
<td>Z coordinate of an arc center</td>
</tr>
<tr>
<td>TOUCH STATE</td>
<td>Select from the following soft-key menu whether tangential or not between neighbor figure. [NO] : Not tangential [LAST] : Tangential with the preceding figure</td>
</tr>
<tr>
<td>FEEDRATE</td>
<td>Feedrate under G01 selecting</td>
</tr>
</tbody>
</table>

NOTE
The feedrate data item is displayed when parameter No.9341#3(FCD) is set to 1.

[AUX.] : Call auxiliary calculating screen. The result of it will be set into start point coordinate data.
[OK]  : Fix arc figure data and store into memory.
[CANCEL] : Cancel arc figure data entering and return to the contour program list screen.

1.5.2.2 Corner R

<table>
<thead>
<tr>
<th>Data item</th>
<th>Comment</th>
</tr>
</thead>
<tbody>
<tr>
<td>RADIUS R</td>
<td>Radius of a corner R, but plus value only</td>
</tr>
<tr>
<td>FEEDRATE</td>
<td>Feedrate</td>
</tr>
</tbody>
</table>

NOTE
The feedrate data item is displayed when parameter No.9341#3(FCD) is set to 1.

[OK] : Fix corner R figure data and store into memory.
[CANCEL] : Cancel corner R figure data entering and return to the contour program list screen.
1.5.2.3 Chamfering

<table>
<thead>
<tr>
<th>Data item</th>
<th>Comment</th>
</tr>
</thead>
<tbody>
<tr>
<td>CAMFER C</td>
<td>Chamfering amount, but plus value only</td>
</tr>
<tr>
<td>FEEDRATE</td>
<td>Feedrate</td>
</tr>
</tbody>
</table>

**NOTE**

The feedrate data item is displayed when parameter No.9341#3(FCD) is set to 1.

[OK] : Fix chamfering figure data and store into memory.
[CANCEL] : Cancel chamfering figure data entering and return to the contour program list screen.

1.5.2.4 Select Crossing Point of Figure

During the calculation of a contour figure, such as between a line and an arc for example, there may be cases in which two or more cross points or figures are possible. In this case, the screen for selecting a cross point or figure appears.

[PREV.]/[NEXT] : Cross point or figure should be selected is changed. The active one blinks among some figures should be selected.
[OK] : Select an active figure, blinking, finally.
[CANCEL] : Cancel a selecting operation. And then, store the actual figure into memory still keeping it in pending.
1.5.3 Detail of Contour Calculation

This chapter explains the details of contour calculations, such as those for cross points or tangential points, that are supported by contour programming.

A figure or part of a contour for which an end point has not yet been determined is said to be in the pending state. A pending figure is indicated by a dotted line.

On the screen for entering contour figure data, more data input items than required will appear. These data items are used to calculate the cross points with the immediately preceding pending figure block, and also to calculate the end point.

Ten successive figure blocks can be specified as pending blocks.

1.5.3.1 Line

(1) When the preceding figure is not pending
   (a) Only X is inputted
       -> This line is determined as a vertical line.
   (b) Only Z is inputted
       -> This line is determined as a horizontal line.
   (c) A and either X or Z are inputted
       -> The end point that is not inputted is calculated.

![Diagram of vertical line](image)

(2) When the preceding figure specifying an arc is not pending, and "TOUCH LAST" is specified in the line.
   (a) Either X or Z is inputted
       -> The angle A is calculated automatically, and an end point is determined.

       If neither X nor Z is inputted, this line will be pending.

![Diagram of automatically calculated angle](image)

- 709 -
(3) When the preceding figure is pending, and "TOUCH LAST" is specified in the line.
   (a) Both X and Z, and A are inputted
       -> The cross point between the preceding figure is calculated.

       ![Diagram of cross point calculation](image1)

       When the preceding figure is an arc, the cross point selection screen is displayed, so select a necessary one.

(4) When the preceding figure is pending arc, and "TOUCH LAST" is specified in the line.
    It is assumed that the radius and the center point coordinate (I,K) of arc have already inputted.
   (a) Only A is inputted
       -> The tangential point selection screen is displayed, so select a necessary one.
       This line will be pending.

       ![Diagram of tangential point selection](image2)

   (b) Both X and Z are inputted
       -> The tangential point selection screen is displayed, so select a necessary one.
       This line will be determined.

       ![Diagram of tangential point selection](image3)
(c) A and either X or Z are inputted

-> The tangential point selection screen is displayed, so select a necessary one.
This line will be determined.

If the positional relationship between the tangential point and the line is such that an inputted A conflicts
with the inputted X or Z, a warning message is displayed to indicate that invalid data has been inputted.
1.5.3.2 Arc

(1) When the preceding figure is not pending, and "TOUCH LAST" is not specified in the arc
   (a) I and K are inputted
       -> This arc will be pending.
   (b) X, Z and R are inputted
       -> The selection screen for either "Long path arc" or "Short path arc" is displayed, so select a necessary one.

![Arc Diagram](image)

(c) X, Z, I and K are inputted
    -> This arc is determined.

**NOTE**
If the distance (radius) between the start point and center differs from the end point and center, the figure is displayed based on the actual form, and the actual figure will not be machined correctly.

(4) Only R is inputted
    -> By specifying "TOUCH LAST" and inputting a line with A=0 degree and Y coordinate as an immediately after figure, this arc can be determined. But the selection screen for either "Long path arc" or "Short path arc" is displayed, so select a necessary one.

![Tangential Point Diagram](image)
(2) When the preceding figure is not pending, and "TOUCH LAST" is specified in the arc
(a) X and Z are inputted
   -> The radius is automatically calculated and this arc will be determined.

(3) When the preceding figure is pending (for which the start point has been determined), and "TOUCH LAST" is not specified in this arc
(a) R, I and K are inputted
   -> The cross point selection screen is displayed, so select a necessary one. This arc will be pending.
(b) X, Z, I and K are inputted
   -> The cross point selection screen is displayed, so select a necessary one. This arc will be determined.
(4) When the preceding figure is pending (for which the start point has been determined), and "TOUCH LAST" is specified in the arc
(a) R, I an K are inputted
   -> The tangential point is calculated, and this arc will be pending.

(b) X, Z, I and K are inputted
   -> The tangential point is calculated, and this arc will be determined.

**NOTE**
If the distance (radius) between the start point and center differs from the end point and center, the figure is displayed based on the actual form, and the actual figure will not be machined correctly.

(c) R and X, Z are inputted
   -> The selection screen for either "Long path arc" or "Short path arc" is displayed, so select a necessary one.
(5) When the preceding figure "arc" is pending (for which the start point has been determined and only R is to be inputted), and "TOUCH LAST" is specified in the arc.
  (a) R, X and Z are inputted
      -> The selection screen for either "Long path arc" or "Short path arc" is displayed, so select a necessary one. This arc will be determined.

(b) R, X and Z are inputted
      -> The selection screen for either "Long path arc" or "Short path arc" is displayed, so select a necessary one. This arc will be pending.
1.5.3.3 Line tangential to two arcs

By inputting three successive figures as follows, line (2) that is tangential to two arcs can be specified as shown in the above drawing. The end points of (1) and (2) are determined, while (3) is left pending. Among the above four possible lines, depending on the direction of the two arcs, the line that makes the smoothest connection to the arcs is automatically selected.

Arc (1):
I and K are inputted. (A start point is determined. This arc is pending.)

Line (2):
Only "TOUCH LAST" is inputted.

Arc (3):
R, I and K are inputted.
1.5.3.4 Arc that Contacts to both Crossing Lines and Arcs

By inputting three successive figures as follows, arc (2) that is tangential to two lines or arcs can be specified as shown in the above drawing. The end points of (1) and (2) are determined, while (3) is left pending. When (3) is a line, it is determined.

Line (1) or Arc (1):
Line that is pending (for which A is inputted and the start point has been determined), or Arc that is pending (for which I and K are inputted and the start point has been determined)

Arc (2):
R and "TOUCH LAST" are inputted.

Line (3) or Arc (3):
Line with A, X and, or Arc with R, I, K and "TOUCH LAST"

When either figure (1) or (3) is an arc, or when both of them are arcs, the selection screen for multiple arcs is displayed, so select a suitable one.
1.5.3.5 Arc that Contacts to Uncrossing Line and Arc

By inputting three successive figures as follows, arc (2) that is tangential to line (1) and arc (3) that do not cross, can be specified as shown in the above drawing. The end points of (1) and (2) are determined, while (3) is left pending.

Among the multiple possible arcs shown above, the arc that makes the smoothest connection to line (1) and arc (3) is automatically selected. But, even though a "Long path arc" and "Short path arc" remain, select whichever is necessary from the selection screen.

Line (1):
  Line that is pending (for which A is inputted and the start point has been determined)

Arc (2):
  R and "TOUCH LAST" are inputted.

Arc (3):
  Arc with R, I and K
1.5.3.6 Arc that Contacts to Uncrossing 2 Arcs

By inputting three successive figures as follows, arc (2) that is tangential to arcs (1) and (3) that do not cross can be specified as shown in the above drawing.

The end points of (1) and (2) are determined, while (3) is left pending. Among the multiple possible arcs shown above, the arc that makes the smoothest connection to arcs (1) and (3) is automatically selected. But, even though a "Long path arc" and "Short path arc" remain, select whichever is necessary from the selection screen.

Arc (1):
Arc with I and K, and it is pending (for which the start point has been determined)

Arc (2):
R and "TOUCH LAST" are inputted.

Arc (3):
Arc with R, I and K
1.5.4 Details of Auxiliary Calculation

This chapter explains the details of the auxiliary calculation. By using this auxiliary calculation, the coordinates of a point or the angle of a line can be determined. Furthermore, the form of a contour, such as the amount of shift from the original form for a tool radius can be entered easily.

1.5.4.1 General

(1) Data items in which auxiliary calculation can be used
   (a) Start point
       - Coordinate (X, Z) of start point
   (b) Line
       - Coordinate (X, Z) of end point
       - Angle of a line (A)
   (c) Arc
       - Coordinate (X, Z) of end point
       - Coordinate (I, K) of center
       - Specifying an arc

(2) Calculation type available in auxiliary calculation
   (a) Calculation of coordinate
       - A point specified by polar coordinate
       - A point specified by a point, angle and distance
       - A point specified by rotating a point
       - Neighbor point of a line
       - Cross point between 2 lines
       - Cross point between line and arc
       - Cross point between 2 arcs
   (b) Calculation of angle
       - Angle of the line passes 2 points
       - Angle of a line rectangular to the line passes 2 points
   (c) Specify an arc (Center and radius)
       - An arc passes 1 point and its center coordinate has been determined
       - An arc passes 2 points and its radius has been determined
       - An arc passes 3 points
1.5.4.2 Start Point

Selecting type of calculation

On the data-entry screen for a start point, press [AUX.]. The following calculation type menu screen will appear.

By pressing the cursor key, scroll through the menu comments until you find the one to select.

```
SELECT CALCULATION OF START POINT

1. POINT BY POLAR COORD.

[] [] [] [] [OK] [CANCEL]
```

[OK] : Use the active calculation type

[CANCEL] : Cancel selecting operations and return to the previous screen

**NOTE**

When bit 5 (AUX) of parameter No.9342 is set to 1, the menu for auxiliary calculation is displayed as shown above. By setting it to 0, the menu is displayed as a list of comments for each calculation type.

This parameter is available for other auxiliary calculation menus.
Entering data for calculation

- A point specified by polar coordinate

<table>
<thead>
<tr>
<th>Data item</th>
<th>Comment</th>
</tr>
</thead>
<tbody>
<tr>
<td>DIST. D</td>
<td>Distance between the point and work coordinate origin</td>
</tr>
<tr>
<td>ANGLE A</td>
<td>Angle of line from +Z-axis. A positive angle is counter clockwise direction.</td>
</tr>
</tbody>
</table>

- A point specified by a point, angle and distance

<table>
<thead>
<tr>
<th>Data item</th>
<th>Comment</th>
</tr>
</thead>
<tbody>
<tr>
<td>POINT X</td>
<td>X coordinate of the base point</td>
</tr>
<tr>
<td>POINT Z</td>
<td>Z coordinate of the base point</td>
</tr>
<tr>
<td>DIST. D</td>
<td>Distance between the point and the base point</td>
</tr>
<tr>
<td>ANGLE A</td>
<td>Angle of line from +Z-axis. A positive angle is counter clockwise direction.</td>
</tr>
</tbody>
</table>

- A point specified by rotating a point

<table>
<thead>
<tr>
<th>Data item</th>
<th>Comment</th>
</tr>
</thead>
<tbody>
<tr>
<td>POINT X</td>
<td>X coordinate of the base point</td>
</tr>
<tr>
<td>POINT Z</td>
<td>Z coordinate of the base point</td>
</tr>
<tr>
<td>CENTER I</td>
<td>X coordinate of the rotating center</td>
</tr>
<tr>
<td>CENTER K</td>
<td>Z coordinate of the rotating center</td>
</tr>
<tr>
<td>ANGLE A</td>
<td>Angle of line from +Z-axis. A positive angle is counter clockwise direction.</td>
</tr>
</tbody>
</table>

- Neighbor point of a line

You can determine the nearest point to the line. Furthermore, you can determine the nearest point to the line that has been moved through a specific distance. This can be useful for determining the end point of an approaching motion from a certain point close to the line.

(1) When specifying a line with one point and an angle

<table>
<thead>
<tr>
<th>Data item</th>
<th>Comment</th>
</tr>
</thead>
<tbody>
<tr>
<td>BASE POINT X</td>
<td>X coordinate of the base point positioned apart from a line</td>
</tr>
<tr>
<td>BASE POINT Z</td>
<td>Z coordinate of the base point positioned apart from a line</td>
</tr>
<tr>
<td>PASS POINT U</td>
<td>X coordinate of a certain point on the line</td>
</tr>
<tr>
<td>PASS POINT W</td>
<td>Z coordinate of a certain point on the line</td>
</tr>
<tr>
<td>ANGLE A</td>
<td>Angle of line from +Z-axis. A positive angle is counter clockwise direction.</td>
</tr>
<tr>
<td>SHIFT DIST. D</td>
<td>When the line should be specified by shifting an original line, enter the shifting</td>
</tr>
<tr>
<td>SHIFT DIRC.</td>
<td>Select a shifting direction by arrow soft-keys</td>
</tr>
</tbody>
</table>
(2) When specifying a line with two points
By pressing [XZ,XZ], you can specify a line with two passing points.
By pressing [XZ, A], you can select the above type by using an angle again.

<table>
<thead>
<tr>
<th>Data item</th>
<th>Comment</th>
</tr>
</thead>
<tbody>
<tr>
<td>BASE POINT X</td>
<td>X coordinate of the base point positioned apart from a line</td>
</tr>
<tr>
<td>BASE POINT Z</td>
<td>Z coordinate of the base point positioned apart from a line</td>
</tr>
<tr>
<td>PASS POINT U</td>
<td>X coordinate of the 1st passing point on the line</td>
</tr>
<tr>
<td>PASS POINT W</td>
<td>Z coordinate of the 1st passing point on the line</td>
</tr>
<tr>
<td>PASS POINT P</td>
<td>X coordinate of the 2nd passing point on the line</td>
</tr>
<tr>
<td>PASS POINT Q</td>
<td>Z coordinate of the 2nd passing point on the line</td>
</tr>
<tr>
<td>SHIFT DIST. D</td>
<td>When the line should be specified by shifting an original line, enter the shifting distance</td>
</tr>
<tr>
<td>SHIFT DIRC.</td>
<td>Select a shifting direction by arrow soft-keys</td>
</tr>
</tbody>
</table>

- Cross point between 2 lines

The cross point of two lines can be calculated. Furthermore, this calculation can also be done for a line that is shifted from its original position by some distance.
This can be useful when entering a tool path that is shifted from the original figure by an amount equal to the tool radius.

(a) When specifying a line with one point and an angle
Initially, the following data items are displayed for Line-1.

<table>
<thead>
<tr>
<th>Data item</th>
<th>Comment</th>
</tr>
</thead>
<tbody>
<tr>
<td>PASS POINT X</td>
<td>X coordinate of a certain point on the line</td>
</tr>
<tr>
<td>BASE POINT Z</td>
<td>Z coordinate of a certain point on the line</td>
</tr>
<tr>
<td>ANGLE A</td>
<td>Angle of line from +Z-axis. A positive angle is counter clockwise direction.</td>
</tr>
<tr>
<td>SHIFT DIST. D</td>
<td>When the line should be specified by shifting an original line, enter the shifting distance</td>
</tr>
<tr>
<td>SHIFT DIRC.</td>
<td>Select a shifting direction by arrow soft-keys</td>
</tr>
</tbody>
</table>

By pressing [NEXT] after entering the necessary data, a similar data item screen for Line-2 is displayed. By pressing [PREV.], you can return to the previous screen for Line-1.

(b) When specifying a line with two points
By pressing [XZ,XZ], you can specify a line with two passing points.
By pressing [XZ, A], you can select the above type by using an angle again.
The following data items are displayed respectively for Line-1 and Line-2.

<table>
<thead>
<tr>
<th>Data item</th>
<th>Comment</th>
</tr>
</thead>
<tbody>
<tr>
<td>PASS POINT X</td>
<td>X coordinate of the 1st passing point on the line</td>
</tr>
<tr>
<td>PASS POINT Z</td>
<td>Z coordinate of the 1st passing point on the line</td>
</tr>
<tr>
<td>PASS POINT U</td>
<td>X coordinate of the 2nd passing point on the line</td>
</tr>
</tbody>
</table>
- Cross point between line and arc

The cross point between a line and arc can be calculated. For the line, one that has been shifted through some distance can be used for the calculation. This is useful for entering a tool path that has been shifted from the original figure by an amount equal to the tool radius.

(a) When specifying a line with one point and an angle

Initially, the following data items are displayed for the Line.

<table>
<thead>
<tr>
<th>Data item</th>
<th>Comment</th>
</tr>
</thead>
<tbody>
<tr>
<td>PASS POINT X</td>
<td>X coordinate of the 1st passing point on the line</td>
</tr>
<tr>
<td>PASS POINT Z</td>
<td>Z coordinate of the 1st passing point on the line</td>
</tr>
<tr>
<td>ANGLE A</td>
<td>Angle of line from +Z-axis. A positive angle is counter clockwise direction.</td>
</tr>
<tr>
<td>SHIFT DIST. D</td>
<td>When the line should be specified by shifting an original line, enter the shifting</td>
</tr>
<tr>
<td>SHIFT DIRC.</td>
<td>Select a shifting direction by arrow soft-keys</td>
</tr>
</tbody>
</table>

By pressing [NEXT] after entering the necessary data, the following screen for the Arc is displayed. By pressing [PREV.], you can return to the previous screen for the Line. By pressing [NEXT] after entering the necessary data, a similar data item screen for Line-2 is displayed. By pressing [PREV.], you can return to the previous screen for Line-1.

<table>
<thead>
<tr>
<th>Data item</th>
<th>Comment</th>
</tr>
</thead>
<tbody>
<tr>
<td>CENTER I</td>
<td>X coordinate of an arc center</td>
</tr>
<tr>
<td>CENTER K</td>
<td>Z coordinate of an arc center</td>
</tr>
<tr>
<td>RADIUS R</td>
<td>Radius of an arc, but plus value only</td>
</tr>
<tr>
<td>SELECT</td>
<td>Select necessary cross point from two possible points by arrow soft-keys</td>
</tr>
</tbody>
</table>

(b) When specifying a line with two points

By pressing [XZ,XZ], you can specify a line with two passing points.

By pressing [XZ, A], you can select the above type using an angle again.

<table>
<thead>
<tr>
<th>Data item</th>
<th>Comment</th>
</tr>
</thead>
<tbody>
<tr>
<td>PASS POINT X</td>
<td>X coordinate of the 1st passing point on the line</td>
</tr>
<tr>
<td>PASS POINT Z</td>
<td>Z coordinate of the 1st passing point on the line</td>
</tr>
<tr>
<td>PASS POINT U</td>
<td>X coordinate of the 2nd passing point on the line</td>
</tr>
<tr>
<td>PASS POINT W</td>
<td>Z coordinate of the 2nd passing point on the line</td>
</tr>
<tr>
<td>SHIFT DIST. D</td>
<td>When the line should be specified by shifting an original line, enter the shifting distance</td>
</tr>
<tr>
<td>SHIFT DIRC.</td>
<td>Select a shifting direction by arrow soft-keys</td>
</tr>
</tbody>
</table>

Data screen for the arc is displayed quite similar to the case of i).
- Cross point between 2 arcs

On the screen as shown below, data for two arcs can be entered and the cross point between them can be calculated.

<table>
<thead>
<tr>
<th>Data item</th>
<th>Comment</th>
</tr>
</thead>
<tbody>
<tr>
<td>CENTER X1</td>
<td>X coordinate of an arc-1 center</td>
</tr>
<tr>
<td>CENTER Z1</td>
<td>Z coordinate of an arc-1 center</td>
</tr>
<tr>
<td>RADIUS R1</td>
<td>Radius of an arc-1, but plus value only</td>
</tr>
<tr>
<td>CENTER X2</td>
<td>X coordinate of an arc-2 center</td>
</tr>
<tr>
<td>CENTER Z2</td>
<td>Z coordinate of an arc-2 center</td>
</tr>
<tr>
<td>RADIUS R2</td>
<td>Radius of an arc-2, but plus value only</td>
</tr>
<tr>
<td>SELECT</td>
<td>Select necessary cross point from two possible points by arrow soft-keys</td>
</tr>
</tbody>
</table>

Execution of auxiliary calculation

After entering all of the necessary data for each of the above calculation types, press [OK]. The auxiliary calculation is done, and then the result is entered into the coordinate data item (X, Z) of the start point.

By pressing [CANCEL], you can return to the auxiliary calculation menu screen.
1.5.4.3 Line

As part of the auxiliary calculation for a line, the end point coordinate and angle can be calculated. The following soft-keys are displayed on the auxiliary calculation menu screen.

[ENDPNT] : Menu screen for end point calculation is displayed
[ANGLE]  : Menu screen for angle calculation is displayed

For the end point calculation, these items are similar to those for the start point, so refer to the preceding explanation.

Selecting type of calculation

On the menu screen for the auxiliary calculation of a line, press [ANGLE]. The following menu screen for angle calculation appears. By pressing the cursor key, you can scroll through the menu comments until you find the type that you want to select.

```
SELECT CALCULATION OF ANGLE (LINE)

1. ANGLE OF LINE

[ENDPT][ANGLE][] [OK][CANCEL]
```

Entering data for calculation

- Angle of the line passes 2 points

<table>
<thead>
<tr>
<th>Data item</th>
<th>Comment</th>
</tr>
</thead>
<tbody>
<tr>
<td>POINT X</td>
<td>X coordinate of the 1st passing point on the line</td>
</tr>
<tr>
<td>POINT Z</td>
<td>Z coordinate of the 1st passing point on the line</td>
</tr>
<tr>
<td>POINT U</td>
<td>X coordinate of the 2nd passing point on the line, this should be apart from the 1st point</td>
</tr>
<tr>
<td>POINT W</td>
<td>Z coordinate of the 2nd passing point on the line, this should be apart from the 1st point</td>
</tr>
</tbody>
</table>
- Angle of a line rectangular to the line passes 2 points
  The angle of a line that is rectangular to a line and which passes
  through two points can be calculated.

<table>
<thead>
<tr>
<th>Data item</th>
<th>Comment</th>
</tr>
</thead>
<tbody>
<tr>
<td>POINT X</td>
<td>X coordinate of the 1st passing point on the line</td>
</tr>
<tr>
<td>POINT Z</td>
<td>Z coordinate of the 1st passing point on the line</td>
</tr>
<tr>
<td>POINT U</td>
<td>X coordinate of the 2nd passing point on the line, this should be apart from the 1st point</td>
</tr>
<tr>
<td>POINT W</td>
<td>Z coordinate of the 2nd passing point on the line, this should be apart from the 1st point</td>
</tr>
</tbody>
</table>

Execution of auxiliary calculation
After entering all of the necessary data for each of the above calculation types, press [OK]. The auxiliary calculation is performed, after which the result is entered into the end point coordinate (X, Z) or angle (A) of the line.
By pressing [CANCEL], you can return to the auxiliary calculation menu screen.
1.5.4.4 Arc

As part of the auxiliary calculation for an arc, the end point coordinate and center coordinate can be calculated. Furthermore, the arc itself can be specified by entering the likes of three passing points. The following soft-keys are displayed on the auxiliary calculation menu screen.

[ENDPNT] : Menu screen for end point calculation is displayed
[CENTER] : Menu screen for center point calculation is displayed
[CIRCLE] : Menu screen for circle specifying is displayed

For the end point and center point calculation, they are quite similar to those for the start point case, so refer to the preceding explanation.

Selecting type of calculation

On the menu screen for auxiliary calculation of an arc, press [CIRCLE]. The following menu screen for specifying a circle is displayed.

By pressing the cursor keys, you can scroll through the menu items until you find the item that you want to select. The currently selected item is highlighted in yellow.

```
SELECT CALCULATION OF CIRCLE (ARC
1. CIRCLE BY CENT. & POINT
[ENDPNT][CENTER][CIRCLE][OK][CANCEL]
```
Entering data for calculation

- An arc passes 1 point and its center coordinate has been determined

<table>
<thead>
<tr>
<th>Data item</th>
<th>Comment</th>
</tr>
</thead>
<tbody>
<tr>
<td>POINT X</td>
<td>X coordinate of a certain point on the arc</td>
</tr>
<tr>
<td>POINT Z</td>
<td>Z coordinate of a certain point on the arc</td>
</tr>
<tr>
<td>CENTER I</td>
<td>X coordinate of an arc center</td>
</tr>
<tr>
<td>CENTER K</td>
<td>Z coordinate of an arc center</td>
</tr>
</tbody>
</table>

- An arc passes 2 points and its radius has been determined

<table>
<thead>
<tr>
<th>Data item</th>
<th>Comment</th>
</tr>
</thead>
<tbody>
<tr>
<td>POINT X</td>
<td>X coordinate of the 1st passing point on the arc</td>
</tr>
<tr>
<td>POINT Z</td>
<td>Z coordinate of the 1st passing point on the arc</td>
</tr>
<tr>
<td>POINT U</td>
<td>X coordinate of the 2nd passing point on the arc, this should be apart from other points</td>
</tr>
<tr>
<td>POINT W</td>
<td>Z coordinate of the 2nd passing point on the arc, this should be apart from other points</td>
</tr>
<tr>
<td>RADIUS R</td>
<td>Radius of the arc, but plus value only</td>
</tr>
<tr>
<td>SELECT</td>
<td>Select necessary one from two possible arcs by arrow soft-keys</td>
</tr>
</tbody>
</table>

- An arc passes 3 points

<table>
<thead>
<tr>
<th>Data item</th>
<th>Comment</th>
</tr>
</thead>
<tbody>
<tr>
<td>POINT X</td>
<td>X coordinate of the 1st passing point on the arc</td>
</tr>
<tr>
<td>POINT Z</td>
<td>Z coordinate of the 1st passing point on the arc</td>
</tr>
<tr>
<td>POINT U</td>
<td>X coordinate of the 2nd passing point on the arc, this should be apart from other points</td>
</tr>
<tr>
<td>POINT W</td>
<td>Z coordinate of the 2nd passing point on the arc, this should be apart from other points</td>
</tr>
<tr>
<td>POINT P</td>
<td>X coordinate of the 3rd passing point on the arc, this should be apart from other points</td>
</tr>
<tr>
<td>POINT Q</td>
<td>Z coordinate of the 3rd passing point on the arc, this should be apart from other points</td>
</tr>
</tbody>
</table>

Execution of auxiliary calculation

After entering all the necessary data for each of the above calculation types, press [OK]. The auxiliary calculation is performed, after which the result is entered into the end point coordinate (X, Z) or center point coordinate (I, K) of an arc.

When circle specification is selected by [CIRCLE], the radius and center point coordinate are calculated and the results are entered into these data items.

By pressing [CANCEL], you can return to the auxiliary calculation menu screen.
1.5.5 Others

1.5.5.1 Calculation of Inputting Data

Data can be entered for those items on the contour programming screen by using pocket calculator type calculation, as follows.

Addition:
\[ 10 + 10 \] [INPUT] \[\rightarrow\] \[20\]

Subtraction:
\[ 10 - 10 \] [INPUT] \[\rightarrow\] \[0\]

Multiplication:
\[ 10 \times 10 \] [INPUT] \[\rightarrow\] \[100\]

Division:
\[ 10 / 10 \] [INPUT] \[\rightarrow\] \[1\]

SIN:
\[ S30 \] [INPUT] \[\rightarrow\] \[0.5\]

COS:
\[ C60 \] [INPUT] \[\rightarrow\] \[0.5\]

TAN:
\[ T45 \] [INPUT] \[\rightarrow\] \[1\]

Square root:
\[ R9 \] [INPUT] \[\rightarrow\] \[3\]

NOTE
1. For + - * /, more than two terms cannot be handled at once. The third and subsequent terms are neglected. So, \(1 + 2 + 3\) will be calculated as \(1 + 2\).
2. The calculation of SIN, COS, TAN and Square root can be done as only independent calculations. The second and subsequent terms, if specified, will be neglected. \(C60 + S60\) will be calculated as \(C60\) only.
Calculation based on previously input data is also possible.
1.5.5.2 Notes should be paid Attention in Contour Programming

NOTE
1. No more than forty figures can be entered for a contour program.
2. During contour program operation, if the screen is changed to another ones by the user pressing the likes of a function button, the active screen displayed in contour programming will be forced to close.
3. If the CNC power is turned off during contour program operation, the contour figures entered up until that point will be preserved, but menus or data under inputting operations will be canceled.

1.5.5.3 Notes should be paid Attention in Macro Executor

NOTE
1. When MANUAL GUIDE 0i is installed in a macro program of a macro executor, the following macro variables and program number are used by this function, so they will never be used by other functions.
   - Program number: O1000 - O1299
     O3000 - O3299
     O5000 - O5099
     O6000 - O6899
     O7200 - O7999
     O8000 - O8699
     O9700 - O9919
   - Macro variables: #20000 - #23999,
     #30000 - #31199,
     #10000 - #11999
2. When MANUAL GUIDE 0i is installed, 2 megabytes of the program memory area assigned to the macro executor will be occupied by this function. So, ensure that an area of at least 2 megabytes is available as the custom software capacity. Furthermore, when a machine tool builder creates their own macro programs and installs them into a macro executor, there may be cases in which a greater capacity than that described above is necessary.
## 1.6 PARAMETER

<table>
<thead>
<tr>
<th>Parameter</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>9050</td>
<td>STGECF</td>
</tr>
<tr>
<td></td>
<td>Cutting feedrate override at the start of cutting in drilling. Valid data range : 0 to 255 Units : 1%</td>
</tr>
<tr>
<td>9292</td>
<td>S1TTMN</td>
</tr>
<tr>
<td></td>
<td>M-code output before normal tapping in turning Valid data range : 0 to 999 Units : 1% When 0 is set to this parameter, this M-code is not output</td>
</tr>
<tr>
<td>9293</td>
<td>S1TTMR</td>
</tr>
<tr>
<td></td>
<td>M-code output before reverse tapping in turning Valid data range : 0 to 999 Units : 1% When 0 is set to this parameter, this M-code is not output</td>
</tr>
<tr>
<td>9294</td>
<td>S1STPM</td>
</tr>
<tr>
<td></td>
<td>M-code for stopping Valid data range : 0 to 999 Units : 1% When 0 is set to this parameter, M05 is output</td>
</tr>
<tr>
<td>9295</td>
<td>S1NMLM</td>
</tr>
<tr>
<td></td>
<td>M-code for rotating spindle CW direction Valid data range : 0 to 999 Units : 1% When 0 is set to this parameter, M03 is output</td>
</tr>
<tr>
<td>9296</td>
<td>S1RVSM</td>
</tr>
<tr>
<td></td>
<td>M-code for rotating spindle CCW direction Valid data range : 0 to 999 Units : 1% When 0 is set to this parameter, M04 is output</td>
</tr>
<tr>
<td>9330</td>
<td>TMPPNO</td>
</tr>
<tr>
<td></td>
<td>The program number that will be used as a temporary program storing area for NC program conversion. When 0 is set, warning message will be displayed and NC program conversion will never start.</td>
</tr>
</tbody>
</table>
IJR = 0 : An arc command in I/J format will be outputted at NC program conversion
     = 1 : An arc command in R format will be outputted.
RAD = 0 : Unit of an angle data is “Degree”
     = 1 : Unit of an angle data is “Radian”
FCD = 0 : Inputting of feedrate data is disable
     = 1 : Inputting of feedrate data is available
G41 = 0 : Inputting of cutter-R compensation data is disable
     = 1 : Inputting of cutter-R compensation data is available
DCD = 0 : Offset number inputting is available at "G41"=1
     = 1 : Offset number inputting is disable at “G41”=1
CMP = 0 : Start point screen is displayed at the beginning.
     = 1 : Offset data screen is displayed at the beginning.
M99 = 0 : M99 is not outputted at the end of converted NC program
     = 1 : M99 is outputted at the end of converted NC program

COL = 0 : Use standard colors for guidance drawing
     = 1 : Use colors set in parameter 9344 to 9353 for guidance drawing
KEY = 0 : All cursor keys, Up, Down, Left and Right are prepared in MDI keys
     = 1 : Only Up and Down cursor keys are prepared in MDI keys
     • Up, Down, Left and Right keys will be displayed as the 3rd page soft-key on a contour program list screen.
     • In a contour program list screen, a cursor will move toward right or left by Down or Up cursor key respectively.
STP = 0 : “START POINT” is displayed in a start point data window
     = 1 : “APPROACH POINT” is displayed in a start point data window
AUX = 0 : The menu for auxiliary calculation is displayed by the list of comment
     = 1 : The menu for auxiliary calculation is displayed by drawing
SNC = 0 : In semi-finishing of bar machining, tool back figure compensation is not carried out.

= 1 : The above tool back figure compensation is carried out. However, in this case, there may be a case that it takes a little long time to begin the next cutting motion after moving toward cutting start position. This time depends on the entered figure.

SFC = 0 : For arcs created in bar machining, tool radius compensation is applied using only the tool-tip radius. The finishing amount is used as a shift amount for compensation.

= 1 : The compensation stated above uses both tool-tip radius and finishing amount.

SGT = 0 : Cutting edge compensation is disabled.

= 1 : Cutting edge compensation is enabled.

NCR = 0 : G41 and G42 is used in the bar finishing cycle.

= 1 : G41 or G42 is not used.

MTA = 0 : Multiple threading is carried out by shifting the start point of each thread.

= 1 : Multiple threading is carried out by specifying an angle (Q).

SFG = 0 : Bar machining including very small steps is disabled.

= 1 : Bar machining including very small steps is enabled.
RFN = 0 : Semi finish machining is carried out always.
    = 1 : Semi finish machining is carried not carried out.

NOTE
According to the position of the cutting start point and the end point of an entered figure, semi finish machining may be carried out, regardless of the value set in the parameter.

TLBACK Angle at which the back of the tool is raised above the workpiece in cutting onto an intermediate part.
Valid data range: 0 to 180 Units: 1 degree
<table>
<thead>
<tr>
<th>Parameter</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>9802</td>
<td>PCOV1 (Override of the feed amount when the cutting angle of a tool is greater than 90 degrees but less than or equal to 135 degrees.)</td>
</tr>
<tr>
<td>9803</td>
<td>PCOV2 (Override of the feed amount when the cutting angle of a tool is greater than 90 degrees but less than or equal to 135 degrees.)</td>
</tr>
<tr>
<td>9804</td>
<td>PCOV3 (Override of the feed amount when the cutting angle of a tool is greater than 180 degrees but less than or equal to 225 degrees.)</td>
</tr>
<tr>
<td>9805</td>
<td>PCOV4 (Override of the feed amount when the cutting angle of a tool is greater than 225 degrees but less than 270 degrees. Setting range: 0 to 20 Increment: 10%)</td>
</tr>
</tbody>
</table>

**NOTE**

The override is invalid when the cutting angle is 90 degrees, 180 degrees, or 270 degrees. In order to use this feature, set all parameters of 9802 - 9805 to non-zero value.
CLGRVX  Clearance (diameter) of the X-axis in outer or inner grooving.
Valid data range: 0 to 99,999,999
Units: 0.001mm, 0.0001inch

CLGRVZ  Clearance (radius) of the Z-axis in end face grooving.
Valid data range: 0 to 99,999,999
Units: 0.001mm, 0.0001inch

GRVBCK  Pecking clearance for grooving (radius).
Valid data range: 0 to 99,999,999
Units: 0.001mm, 0.0001inch

OVLGRV  Overlaps between each cutting in grooving (proportion to the tool width).
Valid data range: 0 to 100  Units: 1%

TRDMIN  Minimum depth (radius) of cut for threading.
Valid data range: 0 to 99,999,999
Units: 0.001mm, 0.0001inch

DRLDEC  Reduced depth of cut in peck or high-speed peck drilling (radius)
Valid data range: 0 to 99,999,999
Units: 0.001mm, 0.0001inch
<table>
<thead>
<tr>
<th>9851</th>
<th>DRLRET</th>
</tr>
</thead>
</table>
| **DRLRET** | Return clearance for peck or high-speed peck drilling (radius)  
Valid data range: 0 to 99,999,999  
Units: 0.001mm, 0.0001inch |

<table>
<thead>
<tr>
<th>9852</th>
<th>DRLMIN</th>
</tr>
</thead>
</table>
| **DRLMIN** | Minimum depth of cut for peck or high-speed peck drilling (radius)  
Valid data range: 0 to 99,999,999  
Units: 0.001mm, 0.0001inch |
1.7 ALARMS

If one or more of the set of the parameters or inputted programs are not correct when an attempt is made to execute that program, the following P/S alarms are raised.
When an alarm other than the following P/S alarms is raised, refer to the relevant NC operator’s manual.

<table>
<thead>
<tr>
<th>Alarm</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>3001</td>
<td>Cause: The value of canned cycle data is incorrect. For example, a negative value is entered for an item that must be positive. Action: Display the block data of pop-up window, at which is occurred the alarm, and enter the correct data after confirming it. Reference: 1.4.2 Data for Each Canned Cycle</td>
</tr>
<tr>
<td>3002</td>
<td>Cause: Some figure data is incorrect. Action: Check the figure block data. and enter the correct data. Reference: 1.4.2 Data for Each Canned Cycle</td>
</tr>
<tr>
<td>3005</td>
<td>Cause: The value of feedrate data is missing or incorrect. Action: Confirm the block data, at which is occurred the alarm and enter the correct value of feedrate. Reference: 1.4.2 Data for Each Canned Cycle</td>
</tr>
<tr>
<td>3006</td>
<td>Cause: The value of depth of cut is missing or incorrect. Action: Confirm the block data, at which is occurred the alarm and enter the correct value of cutting depth. Reference: 1.4.2 Data for Each Canned Cycle P pocketing</td>
</tr>
<tr>
<td>3016</td>
<td>Cause: Finishing allowance or tool nose radius is too large, for bar machining. Action: Specify a smaller finishing allowance or use a tool with a smaller tool nose radius. Reference: 1.4.2 Data for Each Canned Cycle</td>
</tr>
<tr>
<td>3017</td>
<td>Cause: In a Bar machining, a figure to be internally created cannot be made correctly when the parameter 9767 bit5(SFG), and the length of the last contour figure is less than the tool nose radius. Action: Confirm the tool or block data, at which is occurred the alarm and select the tool of smaller radius than the last time. Or, make the last contour figure large. Reference: 1.4.2 Data for Each Canned Cycle</td>
</tr>
<tr>
<td>3020</td>
<td>Cause: Cutting in bar machining is impossible because of the relationship between the tool angle, cutting edge angle, and clearance angle (parameter 9801) for the tool used. This alarm is raised when the sum of the above three angles is less than or equal to 90 degrees or is greater than or equal to 180 degrees. Action: Check these three angles value, and if necessary change the tool. Reference: 1.4.2 Data for Each Canned Cycle</td>
</tr>
<tr>
<td>3022</td>
<td>Cause: The figure data is incorrect in Bar machining. Action: Check the figure data of the Bar machining. Reference: 1.4.2 Data for Each Canned Cycle</td>
</tr>
<tr>
<td>Alarm</td>
<td>Description</td>
</tr>
<tr>
<td>-------</td>
<td>-------------</td>
</tr>
<tr>
<td>3025</td>
<td><strong>Cause</strong></td>
</tr>
<tr>
<td></td>
<td><strong>Action</strong></td>
</tr>
<tr>
<td></td>
<td><strong>Reference</strong></td>
</tr>
<tr>
<td>3026</td>
<td><strong>Cause</strong></td>
</tr>
<tr>
<td></td>
<td><strong>Action</strong></td>
</tr>
<tr>
<td></td>
<td><strong>Reference</strong></td>
</tr>
<tr>
<td>3028</td>
<td><strong>Cause</strong></td>
</tr>
<tr>
<td></td>
<td><strong>Action</strong></td>
</tr>
<tr>
<td></td>
<td><strong>Reference</strong></td>
</tr>
<tr>
<td>3029</td>
<td><strong>Cause</strong></td>
</tr>
<tr>
<td></td>
<td><strong>Action</strong></td>
</tr>
<tr>
<td></td>
<td><strong>Reference</strong></td>
</tr>
</tbody>
</table>
V. MAINTENANCE
In a system using this CNC, batteries are used as follows:

<table>
<thead>
<tr>
<th>Use</th>
<th>Component connected to battery</th>
</tr>
</thead>
<tbody>
<tr>
<td>Memory backup in the CNC control unit</td>
<td>CNC control unit</td>
</tr>
<tr>
<td>Preservation of the current position indicated by the separate absolute pulse coder</td>
<td>Separate detector interface unit</td>
</tr>
<tr>
<td>Preservation of the current position indicated by the absolute pulse coder built into the motor</td>
<td>Servo amplifier</td>
</tr>
</tbody>
</table>

Used batteries must be discarded according to appropriate local ordinances or rules. When discarding batteries, insulate them by using tape and so forth to prevent the battery terminals from short-circuiting.
Part programs, offset data, and system parameters are stored in CMOS memory in the control unit. The power to the CMOS memory is backed up by a lithium battery mounted on the front panel of the control unit. The above data is not lost even when the main battery goes dead. The backup battery is mounted on the control unit at shipping. This battery can maintain the contents of memory for about a year.

When the voltage of the battery becomes low, alarm message “BAT” blinks on the display and the battery alarm signal is output to the PMC. When this alarm is displayed, replace the battery as soon as possible. In general, the battery can be replaced within one or two weeks, however, this depends on the system configuration.

If the voltage of the battery becomes any lower, memory can no longer be backed up. Turning on the power to the control unit in this state causes system alarm 935 (ECC error) to occur because the contents of memory are lost. Clear the entire memory and reenter data after replacing the battery.

Therefore, FANUC recommends that the battery be replaced once a year regardless of whether alarms are generated.

The power to the control unit must be turned on when the battery is replaced. If the battery is disconnected when the power is turned off, the contents of memory are lost.

Observe the following precautions for lithium batteries:

**WARNING**

If an unspecified battery is used, it may explode.

Replace the battery only with the specified battery (A02B-0200-K102.)

In addition to the Lithium battery built into the CNC control unit, commercial D–size alkaline batteries can be used by installing the battery case externally.

**NOTE**

A lithium battery is installed as standard at the factory.
Replacing the lithium battery

1. Method of Replacing Battery

1. Prepare a new lithium battery (ordering drawing number: A02B-0200-K102).
2. Turn on the power of the control unit once for about 30 seconds.
3. Turn off the power of the control unit.
4. Remove the old battery from the top of the CNC control unit.
   First unplug the battery connector then take the battery out of its case.
   The battery case of a control unit without option slots is located at the top right end of the unit. That of a control unit with 2 slots is located in the central area of the top of the unit (between fans).
5. Insert a new battery and reconnect the connector.

NOTE
Complete steps (3) to (5) within 10 minutes. Do not leave the control unit without a battery for any longer than the period shown, as this will result in the contents of memory being lost.

WARNING
Incorrect battery replacement may cause an explosion. Do not use a battery other than that specified (specification: A02B-0200-K102).
**Replacing the alkaline dry cells (size D)**

1. Prepare two new alkaline dry cells (size D).
2. Turn on the power of the control unit once for about 30 seconds.
3. Turn off the power of the control unit.
4. Remove the battery case cover.
5. Replace the batteries, paying careful attention to their orientation.
6. Replace the battery case cover.

**NOTE**

When replacing the dry cells, use the same procedure as that for lithium battery replacement procedure, described above.
Use of alkaline dry cells  
(size D)

Connection

Power from the external batteries is supplied through the connector to which the lithium battery is connected. The lithium battery, provided as standard, can be replaced with external batteries in the battery case (A02B–0236–C281) according to the battery replacement procedures described above.

NOTE
1 Install the battery case (A02B–0236–C281) in a location where the batteries can be replaced even when the control unit power is on.
2 The battery cable connector is attached to the control unit by means of a simple lock system. To prevent the connector from being disconnected due to the weight of the cable or tension within the cable, fix the cable section within 50 cm of the connector.
1.2 BATTERY FOR SEPARATE ABSOLUTE PULSE CODERS (6VDC)

One battery unit can maintain current position data for six absolute pulse coders for a year. When the voltage of the battery becomes low, APC alarms 3n6 to 3n8 (n: axis number) are displayed on the LCD display. When APC alarm 3n7 is displayed, replace the battery as soon as possible. In general, the battery should be replaced within one or two weeks, however, this depends on the number of pulse coders used.

If the voltage of the battery becomes any lower, the current positions for the pulse coders can no longer be maintained. Turning on the power to the control unit in this state causes APC alarm 3n0 (reference position return request alarm) to occur. Return the tool to the reference position after replacing the battery.

Therefore, FANUC recommends that the battery be replaced once a year regardless of whether APC alarms are generated. See Section 7.1.3 for details of connecting the battery to separate absolute pulse coders.

Replacing batteries

Obtain four commercially available alkaline batteries (size D).

1. Turn on the power of the machine (turn on the servo amplifier).
2. Loosen the screws of the battery case, and remove the cover.
3. Replace the dry batteries in the case.
   
   Note the polarity of the batteries as shown in the figure below (orient two batteries one way and the other two in the opposite direction).

(4) After installing the new batteries, replace the cover.
(5) Turn off the power to the machine.

**WARNING**

If the batteries are installed incorrectly, an explosion may occur. Never use batteries other than the specified type (Size D alkaline batteries).
CAUTION

The battery must be replaced with the power of the machine turned on (the servo amplifier turned on). Note that, if batteries are replaced while no power is supplied to the CNC, the recorded absolute position is lost.

1.3 BATTERY FOR ABSOLUTE PULSE CODER BUILT INTO THE MOTOR (6VDC)

The battery for the absolute pulse coder built into the motor is installed in the servo amplifier. For how to connect and replace the battery, refer to the following manuals:

- FANUC SERVO MOTOR αis series Maintenance Manual
- FANUC SERVO MOTOR βis series Maintenance Manual
- FANUC SERVO MOTOR βis series (I/O Link Option) Maintenance Manual
APPENDIX
### TAPE CODE LIST

<table>
<thead>
<tr>
<th>Character</th>
<th>ISO code</th>
<th>EIA code</th>
<th>Remarks</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>8 7 6 5 4 3 2 1</td>
<td>8 7 6 5 4 3 2 1</td>
<td>Custom macro B</td>
</tr>
<tr>
<td></td>
<td>Not used</td>
<td>Used</td>
<td></td>
</tr>
<tr>
<td>0</td>
<td></td>
<td>0 0 0 0 0 0 0 0</td>
<td>Number 0</td>
</tr>
<tr>
<td>1</td>
<td></td>
<td>1 0 0 0 0 0 0 0</td>
<td>Number 1</td>
</tr>
<tr>
<td>2</td>
<td></td>
<td>2 0 0 0 0 0 0 0</td>
<td>Number 2</td>
</tr>
<tr>
<td>3</td>
<td></td>
<td>3 0 0 0 0 0 0 0</td>
<td>Number 3</td>
</tr>
<tr>
<td>4</td>
<td></td>
<td>4 0 0 0 0 0 0 0</td>
<td>Number 4</td>
</tr>
<tr>
<td>5</td>
<td></td>
<td>5 0 0 0 0 0 0 0</td>
<td>Number 5</td>
</tr>
<tr>
<td>6</td>
<td></td>
<td>6 0 0 0 0 0 0 0</td>
<td>Number 6</td>
</tr>
<tr>
<td>7</td>
<td></td>
<td>7 0 0 0 0 0 0 0</td>
<td>Number 7</td>
</tr>
<tr>
<td>8</td>
<td></td>
<td>8 0 0 0 0 0 0 0</td>
<td>Number 8</td>
</tr>
<tr>
<td>9</td>
<td></td>
<td>9 0 0 0 0 0 0 0</td>
<td>Number 9</td>
</tr>
<tr>
<td>A</td>
<td></td>
<td>a 0 0 0 0 0 0 0</td>
<td>Address A</td>
</tr>
<tr>
<td>B</td>
<td></td>
<td>b 0 0 0 0 0 0 0</td>
<td>Address B</td>
</tr>
<tr>
<td>C</td>
<td></td>
<td>c 0 0 0 0 0 0 0</td>
<td>Address C</td>
</tr>
<tr>
<td>D</td>
<td></td>
<td>d 0 0 0 0 0 0 0</td>
<td>Address D</td>
</tr>
<tr>
<td>E</td>
<td></td>
<td>e 0 0 0 0 0 0 0</td>
<td>Address E</td>
</tr>
<tr>
<td>F</td>
<td></td>
<td>f 0 0 0 0 0 0 0</td>
<td>Address F</td>
</tr>
<tr>
<td>G</td>
<td></td>
<td>g 0 0 0 0 0 0 0</td>
<td>Address G</td>
</tr>
<tr>
<td>H</td>
<td></td>
<td>h 0 0 0 0 0 0 0</td>
<td>Address H</td>
</tr>
<tr>
<td>I</td>
<td></td>
<td>i 0 0 0 0 0 0 0</td>
<td>Address I</td>
</tr>
<tr>
<td>J</td>
<td></td>
<td>j 0 0 0 0 0 0 0</td>
<td>Address J</td>
</tr>
<tr>
<td>K</td>
<td></td>
<td>k 0 0 0 0 0 0 0</td>
<td>Address K</td>
</tr>
<tr>
<td>L</td>
<td></td>
<td>l 0 0 0 0 0 0 0</td>
<td>Address L</td>
</tr>
<tr>
<td>M</td>
<td></td>
<td>m 0 0 0 0 0 0 0</td>
<td>Address M</td>
</tr>
<tr>
<td>N</td>
<td></td>
<td>n 0 0 0 0 0 0 0</td>
<td>Address N</td>
</tr>
<tr>
<td>O</td>
<td></td>
<td>o 0 0 0 0 0 0 0</td>
<td>Address O</td>
</tr>
<tr>
<td>P</td>
<td></td>
<td>p 0 0 0 0 0 0 0</td>
<td>Address P</td>
</tr>
<tr>
<td>Q</td>
<td></td>
<td>q 0 0 0 0 0 0 0</td>
<td>Address Q</td>
</tr>
<tr>
<td>R</td>
<td></td>
<td>r 0 0 0 0 0 0 0</td>
<td>Address R</td>
</tr>
<tr>
<td>S</td>
<td></td>
<td>s 0 0 0 0 0 0 0</td>
<td>Address S</td>
</tr>
<tr>
<td>T</td>
<td></td>
<td>t 0 0 0 0 0 0 0</td>
<td>Address T</td>
</tr>
<tr>
<td>U</td>
<td></td>
<td>u 0 0 0 0 0 0 0</td>
<td>Address U</td>
</tr>
<tr>
<td>V</td>
<td></td>
<td>v 0 0 0 0 0 0 0</td>
<td>Address V</td>
</tr>
<tr>
<td>W</td>
<td></td>
<td>w 0 0 0 0 0 0 0</td>
<td>Address W</td>
</tr>
<tr>
<td>X</td>
<td></td>
<td>x 0 0 0 0 0 0 0</td>
<td>Address X</td>
</tr>
<tr>
<td>Y</td>
<td></td>
<td>y 0 0 0 0 0 0 0</td>
<td>Address Y</td>
</tr>
<tr>
<td>Z</td>
<td></td>
<td>z 0 0 0 0 0 0 0</td>
<td>Address Z</td>
</tr>
<tr>
<td>ISO code</td>
<td>EIA code</td>
<td>Remarks</td>
<td></td>
</tr>
<tr>
<td>----------</td>
<td>----------</td>
<td>---------</td>
<td></td>
</tr>
<tr>
<td>Character</td>
<td>8 7 6 5 4 3 2 1</td>
<td>Character</td>
<td>8 7 6 5 4 3 2 1</td>
</tr>
<tr>
<td>DEL</td>
<td>○ ○ ○ ○ ○ ○ ○ ○ ○ ○</td>
<td>Del</td>
<td>○ ○ ○ ○ ○ ○ ○ ○ ○ ○</td>
</tr>
<tr>
<td>NUL</td>
<td>○</td>
<td>Blank</td>
<td>○</td>
</tr>
<tr>
<td>BS</td>
<td>○</td>
<td>BS</td>
<td>○</td>
</tr>
<tr>
<td>HT</td>
<td>○</td>
<td>Tab</td>
<td>○</td>
</tr>
<tr>
<td>LF or NL</td>
<td>○ ○</td>
<td>CR or EOB</td>
<td>○ ○</td>
</tr>
<tr>
<td>CR</td>
<td>○</td>
<td></td>
<td>○ ○ ○ ○ ○</td>
</tr>
<tr>
<td>SP</td>
<td>○</td>
<td>SP</td>
<td>○</td>
</tr>
<tr>
<td>%</td>
<td>○ ○ ○ ○ ○</td>
<td>ER</td>
<td>○ ○ ○ ○ ○</td>
</tr>
<tr>
<td>(</td>
<td>○ ○ ○ ○</td>
<td>(2–4–5)</td>
<td>○ ○ ○ ○</td>
</tr>
<tr>
<td>)</td>
<td>○ ○ ○ ○</td>
<td>(2–4–7)</td>
<td>○ ○ ○ ○</td>
</tr>
<tr>
<td>+</td>
<td>○ ○ ○ ○</td>
<td>+</td>
<td>○ ○ ○ ○</td>
</tr>
<tr>
<td>–</td>
<td>○ ○ ○ ○</td>
<td>–</td>
<td>○</td>
</tr>
<tr>
<td>:</td>
<td>○ ○ ○ ○</td>
<td></td>
<td></td>
</tr>
<tr>
<td>/</td>
<td>○ ○ ○ ○</td>
<td>/</td>
<td>○ ○ ○ ○</td>
</tr>
<tr>
<td>.</td>
<td>○ ○ ○ ○</td>
<td>.</td>
<td>○ ○ ○ ○</td>
</tr>
<tr>
<td>#</td>
<td>○ ○ ○ ○</td>
<td>Parameter (No.6012)</td>
<td></td>
</tr>
<tr>
<td>$</td>
<td>○ ○ ○ ○</td>
<td></td>
<td></td>
</tr>
<tr>
<td>&amp;</td>
<td>○ ○ ○ ○</td>
<td>&amp;</td>
<td>○ ○ ○ ○</td>
</tr>
<tr>
<td>¥</td>
<td>○ ○ ○ ○</td>
<td></td>
<td></td>
</tr>
<tr>
<td>*</td>
<td>○ ○ ○ ○</td>
<td>Parameter (No.6010)</td>
<td></td>
</tr>
<tr>
<td>,</td>
<td>○ ○ ○ ○</td>
<td>,</td>
<td>○ ○ ○ ○</td>
</tr>
<tr>
<td>;</td>
<td>○ ○ ○ ○</td>
<td></td>
<td>○ ○ ○ ○</td>
</tr>
<tr>
<td>&lt;</td>
<td>○ ○ ○ ○</td>
<td></td>
<td></td>
</tr>
<tr>
<td>=</td>
<td>○ ○ ○ ○</td>
<td>Parameter (No.6011)</td>
<td></td>
</tr>
<tr>
<td>&gt;</td>
<td>○ ○ ○ ○</td>
<td></td>
<td></td>
</tr>
<tr>
<td>?</td>
<td>○ ○ ○ ○</td>
<td></td>
<td></td>
</tr>
<tr>
<td>@</td>
<td>○ ○ ○ ○</td>
<td></td>
<td></td>
</tr>
<tr>
<td>&quot;</td>
<td>○ ○ ○ ○</td>
<td></td>
<td></td>
</tr>
<tr>
<td>[</td>
<td>○ ○ ○ ○</td>
<td>Parameter (No.6013)</td>
<td></td>
</tr>
<tr>
<td>]</td>
<td>○ ○ ○ ○</td>
<td>Parameter (No.6014)</td>
<td></td>
</tr>
<tr>
<td>Code</td>
<td>Meaning</td>
<td></td>
<td></td>
</tr>
<tr>
<td>-------------</td>
<td>----------------------------------------------------------------</td>
<td></td>
<td></td>
</tr>
<tr>
<td>/C0002</td>
<td>The character will not be registered in memory, but will be ignored.</td>
<td></td>
<td></td>
</tr>
<tr>
<td>/C0110</td>
<td>The character will be registered in memory, but will be ignored during program execution.</td>
<td></td>
<td></td>
</tr>
<tr>
<td>/C0280</td>
<td>The character will be registered in memory. If it is used in a statement other than a comment, an alarm occurs.</td>
<td></td>
<td></td>
</tr>
<tr>
<td>/C0086</td>
<td>If it is used in a statement other than a comment, the character will not be registered in memory. If it is used in a comment, it will be registered in memory.</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

2 Codes not in this table are ignored if their parity is correct.

3 Codes with incorrect parity cause the TH alarm. But they are ignored without generating the TH alarm when they are in the comment section.

4 A character with all eight holes punched is ignored and does not generate TH alarm in EIA code.
Some functions cannot be added as options depending on the model.
In the tables below, \( \mathbb{P} \) : presents a combination of arbitrary axis addresses using \( X \) and \( Z \).
\( x = 1 \text{st basic axis (} X \text{ usually)} \)
\( z = 2 \text{nd basic axis (} Z \text{ usually)} \)

### Functions

<table>
<thead>
<tr>
<th>Functions</th>
<th>Illustration</th>
<th>Tape format</th>
</tr>
</thead>
<tbody>
<tr>
<td>Positioning (G00)</td>
<td>Start point</td>
<td>G00 ( \mathbb{P} _ _ ; )</td>
</tr>
<tr>
<td>Linear interpolation (G01)</td>
<td>Start point</td>
<td>G01 ( \mathbb{P} _ F _ ; )</td>
</tr>
<tr>
<td>Circular interpolation (G02, G03)</td>
<td>Start point</td>
<td>G17 ( \begin{cases} G02 \ G03 \end{cases} X _ Y _ \left{ \begin{array}{l} R _ \ I _ J _ \end{array} \right} F _ ; )</td>
</tr>
<tr>
<td></td>
<td></td>
<td>G18 ( \begin{cases} G02 \ G03 \end{cases} X _ Z _ \left{ \begin{array}{l} R _ \ I _ K _ \end{array} \right} F _ ; )</td>
</tr>
<tr>
<td></td>
<td></td>
<td>G19 ( \begin{cases} G02 \ G03 \end{cases} Y _ Z _ \left{ \begin{array}{l} R _ \ J _ K _ \end{array} \right} F _ ; )</td>
</tr>
<tr>
<td>Helical interpolation (G02, G03)</td>
<td>Start point</td>
<td>G17 ( \begin{cases} G02 \ G03 \end{cases} X _ Y _ \left{ \begin{array}{l} R _ \ I _ J _ \end{array} \right} \alpha _ F _ ; )</td>
</tr>
<tr>
<td></td>
<td></td>
<td>G18 ( \begin{cases} G02 \ G03 \end{cases} X _ Z _ \left{ \begin{array}{l} R _ \ I _ K _ \end{array} \right} \alpha _ F _ ; )</td>
</tr>
<tr>
<td></td>
<td></td>
<td>G19 ( \begin{cases} G02 \ G03 \end{cases} Y _ Z _ \left{ \begin{array}{l} R _ \ J _ K _ \end{array} \right} \alpha _ F _ ; )</td>
</tr>
<tr>
<td></td>
<td></td>
<td>( \alpha ) : Any axis other than circular interpolation axes.</td>
</tr>
<tr>
<td>Dwell (G04)</td>
<td></td>
<td>G04 { X _ _ P _ _ } ;</td>
</tr>
<tr>
<td>Functions</td>
<td>Illustration</td>
<td>Tape format</td>
</tr>
<tr>
<td>---------------------------------</td>
<td>--------------</td>
<td>------------------------------------------------------------------------------</td>
</tr>
<tr>
<td>Cylindrical interpolation</td>
<td></td>
<td>G07.1 ( r ); Cylindrical interpolation mode \ G07.1 ( 0 ); Cylindrical interpolation mode cancel ( r ): Radius of cylinder</td>
</tr>
<tr>
<td>Advanced preview control (G08)</td>
<td></td>
<td>G08 P1; Advanced preview control mode on \ G08 P0; Advanced preview control mode off</td>
</tr>
<tr>
<td>Change of offset value by program (G10)</td>
<td></td>
<td>Tool geometry offset value \ G10 P_ X_ Z_ R_ Q_ ; Tool wear offset value \ G10 P_ X_ Z_ R_ Q_ ; ( P=1000 ) Geometry offset number ( P=) Wear offset number</td>
</tr>
<tr>
<td>Polar coordinate interpolation (G12.1, G13.1) (G112, G113)</td>
<td></td>
<td>G12.1 ; Polar coordinate interpolation mode \ G13.1 ; Polar coordinate interpolation mode cancel</td>
</tr>
<tr>
<td>Plane selection (G17, G18, G19)</td>
<td></td>
<td>G17 ; X_pY_p plane selection \ G18 ; Z_pX_p plane selection \ G19 ; Y_pZ_p plane selection</td>
</tr>
<tr>
<td>Inch/metric conversion (G20, G21)</td>
<td></td>
<td>Inch input : G20 \ Metric input : G21</td>
</tr>
<tr>
<td>Stored stroke check 2, 3 (G22, G23)</td>
<td></td>
<td>G22_ X_ Z_ I_ K_ ; G23_</td>
</tr>
<tr>
<td>Spindle speed fluctuation detection (G25, G26)</td>
<td></td>
<td>G25 \ G26 P_ Q_ R_ ;</td>
</tr>
<tr>
<td>Reference position return check (G27)</td>
<td></td>
<td>G27 \ P_ ;</td>
</tr>
<tr>
<td>Reference position return (G28) 2nd. reference position return (G30)</td>
<td></td>
<td>G28 \ P_ ; \ G30 \ P_ ;</td>
</tr>
<tr>
<td>Skip function (G31)</td>
<td></td>
<td>G31 \ P_ F_ ;</td>
</tr>
</tbody>
</table>
## B. LIST OF FUNCTIONS AND TAPE FORMAT

### (3/5)

<table>
<thead>
<tr>
<th>Functions</th>
<th>Illustration</th>
<th>Tape format</th>
</tr>
</thead>
<tbody>
<tr>
<td>Thread cutting (G32)</td>
<td></td>
<td>Equal lead thread cutting G32 IP F_;</td>
</tr>
<tr>
<td>Variable–lead thread cutting (G34)</td>
<td></td>
<td>G34 IP F_ K_;</td>
</tr>
<tr>
<td>Automatic tool compensation (G36, G37)</td>
<td></td>
<td>G36 X xa ; G37 Z za ;</td>
</tr>
<tr>
<td>Cutter compensation (G40, G41, G42)</td>
<td></td>
<td>{ G41 } IP_; G42 IP_; G40 ; Cancel</td>
</tr>
<tr>
<td>Coordinate system setting</td>
<td></td>
<td>G50 IP_; Coordinate system setting G50 S_;</td>
</tr>
<tr>
<td>Spindle speed setting (G50)</td>
<td></td>
<td>Spindle speed setting G50 S_;</td>
</tr>
<tr>
<td>Polygon turning (G50.2, G51.2) (G250, G251)</td>
<td></td>
<td>G51.2 (G251) P_ Q_; G50.2 (G250); Cancel</td>
</tr>
<tr>
<td>Workpiece coordinate system preset (G50.3)</td>
<td></td>
<td>G50.3 IP 0 ;</td>
</tr>
<tr>
<td>Local coordinate system (G52)</td>
<td></td>
<td>G52 IP_;</td>
</tr>
<tr>
<td>Selecting machine coordinate system (G53)</td>
<td></td>
<td>G53 IP_;</td>
</tr>
</tbody>
</table>
### Functions

<table>
<thead>
<tr>
<th>Functions</th>
<th>Illustration</th>
<th>Tape format</th>
</tr>
</thead>
</table>
| Selecting a workpiece coordinate system (G54 to G59) | ![Workpiece coordinate system](image) | {G54} 
G54 : Display workpiece origin offset; 
G54 : Display workpiece coordinate system; 
G59 : Display machining coordinate system; |
| Custom macro (G65, G66, G67) | ![Custom macro](image) | One-shot call 
G65 P_ L_ <argument> ; 
P : Program number 
L : Repetition count; 
G66 P_ L_ <argument> ; 
G67 ; Cancel |
| Canned cycle (G71 to G76) (G90, G92, G94) | Refer to II.13. FUNCTIONS TO SIMPLIFY PROGRAMMING | N_ G70 P_ Q_ ; 
G71 U_ R_ ; 
G71 P_ Q_ U_ W_ F_ S_ T_ ; 
G72 W_ R_ ; 
G72 P_ Q_ U_ W_ F_ S_ T_ ; 
G73 U_ W_ R_ ; 
G73 P_ Q_ U_ W_ F_ S_ T_ ; 
G74 R_ ; 
G74 X(u)_ Z(w)_ P_ Q_ R_ F_ ; 
G75 R_ ; 
G75 X(u)_ Z(w)_ P_ Q_ R_ F_ ; 
G76 P_ Q_ R_ ; 
G76 X(u)_ Z(w)_ P_ Q_ R_ F_ ; |
| Canned cycle for drilling (G80 to G89) | Refer to II.13. FUNCTIONS TO SIMPLIFY PROGRAMMING | G80 ; Cancel 
G83 X(U)_ C(H)_ Z(W)_ R_ Q_ P_ F_ K_ M_ ; 
G84 X(U)_ C(H)_ Z(W)_ R_ P_ F_ K_ M_ ; 
G85 X(U)_ C(H)_ Z(W)_ R_ P_ F_ K_ M_ ; 
G87 Z(W)_ C(H)_ X(U)_ R_ Q_ P_ F_ K_ M_ ; 
G88 Z(W)_ C(H)_ X(U)_ R_ P_ F_ K_ M_ ; |
| Constant surface speed control (G96/G97) | Surface speed (m/min or feet/min) | G96 S_ ; Starts constant surface speed control (Surface speed command) 
G97 S_ ; Constant surface speed is cancelled (Maximum spindle speed command) |
| Feed per minute (G98) Feed per revolution (G99) | mm/min inch/min mm/rev inch/rev | G98 ... F_ ; 
G99 ... F_ ; |
| Absolute/incremental programming (when G code system A) | X_ Z_ C_ ; Absolute programming 
U_ W_ H_ ; Incremental programming (Identified by an address word specified with a G function such as G00 or G01) |
### Functions

<table>
<thead>
<tr>
<th>Functions</th>
<th>Illustration</th>
<th>Tape format</th>
</tr>
</thead>
<tbody>
<tr>
<td>Absolute/incremental programming (G90/G91)</td>
<td></td>
<td>G90_; Absolute programming</td>
</tr>
<tr>
<td>(during G code system B, C)</td>
<td></td>
<td>G91_; Incremental programming</td>
</tr>
<tr>
<td></td>
<td></td>
<td>G90_; G91_; Used together</td>
</tr>
<tr>
<td>(G98/G99)</td>
<td>I point</td>
<td>G98_;</td>
</tr>
<tr>
<td>(during G code system B, C)</td>
<td>R point</td>
<td>G98_;</td>
</tr>
<tr>
<td></td>
<td>Z point</td>
<td>G99_;</td>
</tr>
</tbody>
</table>
## C. RANGE OF COMMAND VALUE

### Linear axis
- In case of millimeter input, feed screw is millimeter

<table>
<thead>
<tr>
<th>Increment system</th>
<th>IS–B</th>
<th>IS–C</th>
</tr>
</thead>
<tbody>
<tr>
<td>Least input increment</td>
<td>0.001 mm</td>
<td>0.0001 mm</td>
</tr>
</tbody>
</table>
| Least command increment | X : 0.0005 mm (diameter specification)  
Y : 0.001 mm (radius specification) | X : 0.00005 mm (diameter specification)  
Y : 0.0001 mm (radius specification) |
| Max. programmable dimension | ±99999.999 mm | ±999.9999 mm |
| Max. rapid traverse *1 | 240000 mm/min | 100000 mm/min |
| Feedrate range *1 | Feed per minute : 1 to 240000 mm/min  
Feed per revolution : 0.0001 to 500.0000 mm/rev | Feed per minute : 1 to 100000 mm/min  
Feed per revolution : 0.0001 to 500.0000 mm/rev |
| Incremental feed | 0.001, 0.01, 0.1 mm/step | 0.0001, 0.01, 0.1 mm/step |
| Tool compensation | 0 to ±999.999 mm | 0 to ±999.999 mm |
| Dwell time | 0 to 99999.999 sec | 0 to 99999.999 sec |

### Increment system
- In case of inch input, feed screw is millimeter

<table>
<thead>
<tr>
<th>Increment system</th>
<th>IS–B</th>
<th>IS–C</th>
</tr>
</thead>
<tbody>
<tr>
<td>Least input increment</td>
<td>0.0001 inch</td>
<td>0.00001 inch</td>
</tr>
</tbody>
</table>
| Least command increment | X : 0.00005 inch (diameter specification)  
Y : 0.001 inch (radius specification) | X : 0.000005 inch (diameter specification)  
Y : 0.0001 inch (radius specification) |
| Max. programmable dimension | ±99999.9999 inch | ±393.70078 inch |
| Max. rapid traverse *1 | 240000 mm/min | 100000 mm/min |
| Feedrate range *1 | Feed per minute : 0.01 to 9600 inch/min  
Feed per revolution : 0.000001 to 9.999999 inch/rev | Feed per minute : 0.01 to 4000 inch/min  
Feed per revolution : 0.000001 to 9.999999 inch/rev |
| Incremental feed | 0.0001, 0.001, 0.01, 0.1 inch/step | 0.000001, 0.0001, 0.01, 0.01 inch/step |
| Tool compensation | 0 to ±99.9999 inch | 0 to ±99.9999 inch |
| Dwell time | 0 to 99999.999 sec | 0 to 99999.999 sec |
### Increment system

<table>
<thead>
<tr>
<th></th>
<th>IS–B</th>
<th>IS–C</th>
</tr>
</thead>
<tbody>
<tr>
<td>Least input increment</td>
<td>0.0001 inch</td>
<td>0.00001 inch</td>
</tr>
<tr>
<td>Least command increment</td>
<td>X: 0.00005 inch (diameter specification)</td>
<td>X: 0.000005 inch (diameter specification)</td>
</tr>
<tr>
<td></td>
<td>Y: 0.0001 inch (radius specification)</td>
<td>Y: 0.00001 inch (radius specification)</td>
</tr>
<tr>
<td>Max. programmable</td>
<td>±9999.9999 inch</td>
<td>±999.9999 inch</td>
</tr>
<tr>
<td>Max. rapid traverse *1</td>
<td>9600 inch/min</td>
<td>4000 inch/min</td>
</tr>
<tr>
<td>Feedrate range *1</td>
<td>Feed per minute:</td>
<td>Feed per minute:</td>
</tr>
<tr>
<td></td>
<td>0.01 to 9600 inch/min</td>
<td>0.01 to 4000 inch/min</td>
</tr>
<tr>
<td></td>
<td>Feed per revolution</td>
<td>Feed per revolution</td>
</tr>
<tr>
<td></td>
<td>0.000001 to 9.999999</td>
<td>0.000001 to 9.999999</td>
</tr>
<tr>
<td></td>
<td>inch/rev</td>
<td>inch/rev</td>
</tr>
<tr>
<td>Incremental feed</td>
<td>0.0001, 0.001, 0.01, 0.1 inch/step</td>
<td>0.00001, 0.0001, 0.001, 0.01 inch/step</td>
</tr>
<tr>
<td>Tool compensation</td>
<td>0 to ±99.9999 inch</td>
<td>0 to ±99.9999 inch</td>
</tr>
<tr>
<td>Dwell time</td>
<td>0 to 99999.999 sec</td>
<td>0 to 9999.9999 sec</td>
</tr>
</tbody>
</table>

### In case of inch input, feed screw is inch

- Least input increment: 0.0001 inch
- Least command increment:
  - X: 0.00005 inch (diameter specification)
  - Y: 0.0001 inch (radius specification)
- Max. programmable dimension: ±9999.9999 inch
- Max. rapid traverse *1: 9600 inch/min
- Feedrate range *1:
  - Feed per minute: 0.01 to 9600 inch/min
  - Feed per revolution: 0.000001 to 9.999999 inch/rev
- Incremental feed: 0.0001, 0.001, 0.01, 0.1 inch/step
- Tool compensation: 0 to ±99.9999 inch
- Dwell time: 0 to 99999.999 sec

### In case of millimeter input, feed screw is inch

- Least input increment: 0.001 mm
- Least command increment:
  - X: 0.00005 inch (diameter specification)
  - Y: 0.0001 inch (radius specification)
- Max. programmable dimension: ±99999.999 mm
- Max. rapid traverse *1: 9600 inch/min
- Feedrate range *1:
  - Feed per minute: 1 to 240000 mm/min
  - Feed per revolution: 0.0001 to 500.0000 mm/rev
- Incremental feed: 0.001, 0.01, 0.1 mm/step
- Tool compensation: 0 to ±999.999 mm
- Dwell time: 0 to 99999.999 sec
Rotation axis

<table>
<thead>
<tr>
<th>Increment system</th>
<th>IS–B</th>
<th>IS–C</th>
</tr>
</thead>
<tbody>
<tr>
<td>Least input increment</td>
<td>0.001 deg</td>
<td>0.0001 deg</td>
</tr>
<tr>
<td>Least command increment</td>
<td>0.001 deg</td>
<td>0.0001 deg</td>
</tr>
<tr>
<td>Max. programmable dimension</td>
<td>±99999.999 deg</td>
<td>±9999.9999 deg</td>
</tr>
<tr>
<td>Max. rapid traverse *1</td>
<td>240000 deg/min</td>
<td>100000 deg/min</td>
</tr>
<tr>
<td>Feedrate range *1</td>
<td>1 to 240000 deg/min</td>
<td>1 to 100000 deg/min</td>
</tr>
<tr>
<td>Incremental feed</td>
<td>0.001, 0.01, 0.1, 1 deg/step</td>
<td>0.0001, 0.001, 0.01, 0.1 deg/step</td>
</tr>
</tbody>
</table>

NOTE
*1 The feedrate range shown above are limitations depending on CNC interpolation capacity.
As a whole system, limitations depending on servo system must also be considered.
NOMOGRAPHS
The leads of a thread are generally incorrect in $\delta_1$ and $\delta_2$, as shown in Fig. D.1 (a), due to automatic acceleration and deceleration. Thus distance allowances must be made to the extent of $\delta_1$ and $\delta_2$ in the program.

**Fig.D.1(a) Incorrect thread position**

### Explanations

- **How to determine $\delta_2$**

  \[
  \delta_2 = T_1 V \quad \text{(mm)} \quad \ldots \quad (1)
  \]

  \[
  V = \frac{1}{60} RL
  \]

  Time constant $T_1$ (sec) of the servo system: Usually 0.033 s.

  - $T_1$: Time constant of servo system (sec)
  - $V$: Cutting speed (mm/sec)
  - $R$: Spindle speed (min⁻¹)
  - $L$: Thread feed (mm)

- **How to determine $\delta_1$**

  \[
  \delta_1 = (t - T_1 + T_1 \exp(-\frac{L}{T_1}))V \quad \ldots \quad (2)
  \]

  \[
  a = \exp(-\frac{L}{T_1}) \quad \ldots \quad (3)
  \]

  Time constant $T_1$ (sec) of the servo system: Usually 0.033 s.

  - $T_1$: Time constant of servo system (sec)
  - $V$: Cutting speed (mm/sec)

  The lead at the beginning of thread cutting is shorter than the specified lead $L$, and the allowable lead error is $\Delta L$. Then as follows.

  \[
  a = \frac{\Delta L}{L}
  \]

  When the value of $HtI$ is determined, the time lapse until the thread accuracy is attained. The time $HtI$ is substituted in (2) to determine $\delta_1$: Constants $V$ and $T_1$ are determined in the same way as for $\delta_2$. Since the calculation of $\delta_1$ is rather complex, a nomography is provided on the following pages.
• How to use nomograph

First specify the class and the lead of a thread. The thread accuracy, $\alpha$, will be obtained at (1), and depending on the time constant of cutting feed acceleration/ deceleration, the $\delta_1$ value when $V = 10\, \text{mm/s}$ will be obtained at (2). Then, depending on the speed of thread cutting, $\delta_1$ for speed other than $10\, \text{mm/s}$ can be obtained at (3).

![Fig.D.1(b) Nomograph](image)

**NOTE**

The equations for $\delta_1$, and $\delta_2$ are for when the acceleration/ deceleration time constant for cutting feed is 0.
D.2
SIMPLE
CALCULATION OF INCORRECT THREAD LENGTH

Explanations

• How to determine $\delta_2$

$$\delta_2 = \frac{LR}{1800} \ast (\text{mm})$$

$R$ : Spindle speed (min$^{-1}$)
$L$ : Thread lead (mm)

* When time constant $T$ of the servo system is 0.033 s.

• How to determine $\delta_1$

$$\delta_1 = \frac{LR}{1800} \ast (-1-\ln a) \ (\text{mm})$$

$$= \delta_2(-1-\ln a) \ (\text{mm})$$

$R$ : Spindle speed (min$^{-1}$)
$L$ : Thread lead (mm)

* When time constant $T$ of the servo system is 0.033 s.

Following $a$ is a permitted value of thread.

<table>
<thead>
<tr>
<th>$a$</th>
<th>$-1-\ln a$</th>
</tr>
</thead>
<tbody>
<tr>
<td>0.005</td>
<td>4.298</td>
</tr>
<tr>
<td>0.01</td>
<td>3.605</td>
</tr>
<tr>
<td>0.015</td>
<td>3.200</td>
</tr>
<tr>
<td>0.02</td>
<td>2.912</td>
</tr>
</tbody>
</table>

Examples

$R=350\text{min}^{-1}$
$L=1\text{mm}$
$a=0.01$ then

$$\delta_2 = \frac{350 \times 1}{1800} = 0.194 \ (\text{mm})$$

$$\delta_1 = \delta_2 \times 3.605 = 0.701 \ (\text{mm})$$
Nomograph for obtaining approach distance $\delta_1$
When servo system delay (by exponential acceleration/deceleration at cutting or caused by the positioning system when a servo motor is used) is accompanied by cornering, a slight deviation is produced between the tool path (tool center path) and the programmed path as shown in Fig. D.3 (a).

Time constant $T_1$ of the exponential acceleration/deceleration is fixed to 0.

![Fig. D.3 (a) Slight deviation between the tool path and the programmed path](image)

This tool path is determined by the following parameters:

- Feedrate ($V_1, V_2$)
- Corner angle ($\theta$)
- Exponential acceleration / deceleration time constant ($T_1$) at cutting ($T_1 = 0$)
- Presence or absence of buffer register.

The above parameters are used to theoretically analyze the tool path and above tool path is drawn with the parameter which is set as an example. When actually programming, the above items must be considered and programming must be performed carefully so that the shape of the workpiece is within the desired precision. In other words, when the shape of the workpiece is not within the theoretical precision, the commands of the next block must not be read until the specified feedrate becomes zero. The dwell function is then used to stop the machine for the appropriate period.
Analysis

The tool path shown in Fig. D.3 (b) is analyzed based on the following conditions:
Feedrate is constant at both blocks before and after cornering.
The controller has a buffer register. (The error differs with the reading speed of the tape reader, number of characters of the next block, etc.)

\[V_x = V \cos \phi_1\]
\[V_{x1} = V \sin \phi_1\]
\[V_{x2} = V \cos \phi_2\]
\[V_{y2} = V \sin \phi_2\]

- Description of conditions and symbols

\[V_x\] : Feedrate at both blocks before and after cornering
\[V_{x1}\] : X-axis component of feedrate of preceding block
\[V_{y1}\] : Y-axis component of feedrate of preceding block
\[V_{x2}\] : X-axis component of feedrate of following block
\[V_{y2}\] : Y-axis component of feedrate of following block
\[\phi_1\] : Angle formed by specified path direction of preceding block and X-axis
\[\phi_2\] : Angle formed by specified path direction of following block and X-axis

Fig. D.3(b) Example of tool path
• Initial value calculation

The initial value when cornering begins, that is, the X and Y coordinates at the end of command distribution by the controller, is determined by the feedrate and the positioning system time constant of the servo motor.

\[X_0 = V_{x1}(T_1 + T_2)\]
\[Y_0 = V_{y1}(T_1 + T_2)\]

\(T_1\):Exponential acceleration / deceleration time constant. (T=0)

\(T_2\):Time constant of positioning system (Inverse of position loop gain)

– Analysis of corner tool path

The equations below represent the feedrate for the corner section in X–axis direction and Y–axis direction.

\[V_x(t) = (V_{x2} - V_{x1})[1 - \frac{V_{x1}}{T_1 - T_2} (T_1 \exp(-\frac{t}{T_1}) - T_2 \exp(-\frac{t}{T_2}))\] + \(V_{x1}\]]
\[V_y(t) = \frac{V_{y1} - V_{y2}}{T_1 - T_2} (T_1 \exp(-\frac{t}{T_1}) - T_2 \exp(-\frac{t}{T_2}))\] + \(V_{y2}\)

Therefore, the coordinates of the tool path at time \(t\) are calculated from the following equations:

\[X(t) = \int_0^t V_x(t)dt - X_0\]
\[= \frac{V_{x2} - V_{x1}}{T_1 - T_2} (T_1 \exp(-\frac{t}{T_1}) - T_2 \exp(-\frac{t}{T_2})) - V_{x2}(T_1 + T_2 - t)\]

\[Y(t) = \int_0^t V_y(t)dt - Y_0\]
\[= \frac{V_{y1} - V_{y2}}{T_1 - T_2} (T_1 \exp(-\frac{t}{T_1}) - T_2 \exp(-\frac{t}{T_2})) - V_{y2}(T_1 + T_2 - t)\]
When a servo motor is used, the positioning system causes an error between input commands and output results. Since the tool advances along the specified segment, an error is not produced in linear interpolation. In circular interpolation, however, radial errors may be produced, specially for circular cutting at high speeds.

This error can be obtained as follows:

\[
\Delta r = \frac{1}{2} (T_1^2 + T_2^2 (1 - \alpha^2)) \frac{V^2}{\alpha^2} \quad \ldots \ldots \quad (1)
\]

\(\Delta r\) : Maximum radius error (mm)
\(v\) : Feedrate (mm/s)
\(r\) : Circle radius (mm)
\(T_1\) : Exponential acceleration/deceleration time constant (sec)
\(T_2\) : Time constant of positioning system (sec). (Inverse of position loop gain)
\(\alpha\) : Feed forward coefficient (%)

In the case of bell–shaped acceleration/deceleration and linear acceleration/deceleration after cutting feed interpolation, an approximation of this radius error can be obtained with the following expression:

Linear acceleration/deceleration after cutting feed interpolation

\[
\Delta r = \left( \frac{1}{24} T_1^2 + \frac{1}{2} T_2^2 (1 - \alpha^2) \right) \frac{V^2}{\alpha^2}
\]

Bell–shaped acceleration/deceleration after cutting feed interpolation

\[
\Delta r = \left( \frac{1}{48} T_1^2 + \frac{1}{2} T_2^2 (1 - \alpha^2) \right) \frac{V^2}{\alpha^2}
\]

Thus, the radius error in the case of bell–shaped acceleration/deceleration and linear acceleration/deceleration after interpolation is smaller than in case of exponential acceleration/deceleration by a factor of 12, excluding any error caused by a servo loop time constant.

Since the machining radius \(r\) (mm) and allowable error \(\Delta r\) (mm) of the workpiece is given in actual machining, the allowable limit feedrate \(v\) (mm/sec) is determined by equation (1).

Since the acceleration/deceleration time constant at cutting which is set by this equipment varies with the machine tool, refer to the manual issued by the machine tool builder.
Parameter 3402 (CLR) is used to select whether resetting the CNC places it in the cleared state or in the reset state (0: reset state/1: cleared state). The symbols in the tables below mean the following:

○: The status is not changed or the movement is continued.
×: The status is cancelled or the movement is interrupted.

<table>
<thead>
<tr>
<th>Item</th>
<th>When turning power on</th>
<th>Cleared</th>
<th>Reset</th>
</tr>
</thead>
<tbody>
<tr>
<td><strong>Setting data</strong></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Offset value</td>
<td>○</td>
<td>○</td>
<td>○</td>
</tr>
<tr>
<td>Data set by the MDI setting operation</td>
<td>○</td>
<td>○</td>
<td>○</td>
</tr>
<tr>
<td>Parameter</td>
<td>○</td>
<td>○</td>
<td>○</td>
</tr>
<tr>
<td><strong>Various data</strong></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Programs in memory</td>
<td>○</td>
<td>○</td>
<td>○</td>
</tr>
</tbody>
</table>
| Contents in the buffer storage | ×                     | ×            | ○ : MDI mode
                              |                       |              | × : Other mode | |
| Display of sequence number| ○                     | ○ (Note 1)   | ○ (Note 1) |
| One shot G code           | ×                     | ×            | ×      |
| **Modal G code**          | Initial G codes. (The G20 and G21 codes return to the same state they were in when the power was last turned off.) | Initial G codes. (G20/G21 are not changed.) | ○      |
| F                         | Zero                  | Zero         | ○      |
| S, T, M                   | ×                     | ○            | ○      |
| K (Number of repeats)     | ×                     | ×            | ×      |
| Work coordinate value     | Zero                  | ○            | ○      |
### E. STATUS WHEN TURNING POWER ON, WHEN CLEAR AND WHEN RESET

<table>
<thead>
<tr>
<th>Item</th>
<th>When turning power on</th>
<th>Cleared</th>
<th>Reset</th>
</tr>
</thead>
<tbody>
<tr>
<td><strong>Action in operation</strong></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Movement</td>
<td>×</td>
<td>×</td>
<td>×</td>
</tr>
<tr>
<td>Dwell</td>
<td>×</td>
<td>×</td>
<td>×</td>
</tr>
<tr>
<td>Issuance of M, S and T codes</td>
<td>×</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Tool offset</td>
<td>×</td>
<td>Depending on parameter LVK(No.5003#6)</td>
<td></td>
</tr>
<tr>
<td>Tool nose radius compensation</td>
<td>×</td>
<td>×</td>
<td></td>
</tr>
<tr>
<td>Storing called subprogram number</td>
<td>×</td>
<td>× (Note 2)</td>
<td></td>
</tr>
<tr>
<td><strong>Output signals</strong></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>CNC alarm signal AL</td>
<td>Extinguish if there is no cause for the alarm</td>
<td>Extinguish if there is no cause for the alarm</td>
<td>Extinguish if there is no cause for the alarm</td>
</tr>
<tr>
<td>Reference position return completion LED</td>
<td>×</td>
<td>(× : Emergency stop)</td>
<td>(× : Emergency stop)</td>
</tr>
<tr>
<td>S, T and B codes</td>
<td>×</td>
<td>×</td>
<td>×</td>
</tr>
<tr>
<td>M code</td>
<td>×</td>
<td>×</td>
<td>×</td>
</tr>
<tr>
<td>M, S and T strobe signals</td>
<td>×</td>
<td>×</td>
<td>×</td>
</tr>
<tr>
<td>Spindle revolution signal (S analog signal)</td>
<td>×</td>
<td>×</td>
<td>×</td>
</tr>
<tr>
<td>CNC ready signal MA</td>
<td>ON</td>
<td>×</td>
<td>×</td>
</tr>
<tr>
<td>Servo ready signal SA</td>
<td>ON (When other than servo alarm)</td>
<td>ON (When other than servo alarm)</td>
<td>ON (When other than servo alarm)</td>
</tr>
<tr>
<td>Cycle start LED (STL)</td>
<td>×</td>
<td>×</td>
<td>×</td>
</tr>
<tr>
<td>Feed hold LED (SPL)</td>
<td>×</td>
<td>×</td>
<td>×</td>
</tr>
</tbody>
</table>

**NOTE**
1. When heading is performed, the main program number is displayed.
2. When a reset is performed during execution of a subprogram, control returns the main program. Execution cannot be started from the middle of the subprogram.
<table>
<thead>
<tr>
<th>Character</th>
<th>Code</th>
<th>Comment</th>
<th>Character</th>
<th>Code</th>
<th>Comment</th>
</tr>
</thead>
<tbody>
<tr>
<td>A</td>
<td>065</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>B</td>
<td>066</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>C</td>
<td>067</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>D</td>
<td>068</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>E</td>
<td>069</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>F</td>
<td>070</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>G</td>
<td>071</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>H</td>
<td>072</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>I</td>
<td>073</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>J</td>
<td>074</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>K</td>
<td>075</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>L</td>
<td>076</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>M</td>
<td>077</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>N</td>
<td>078</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>O</td>
<td>079</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>P</td>
<td>080</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Q</td>
<td>081</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>R</td>
<td>082</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>S</td>
<td>083</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>T</td>
<td>084</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>U</td>
<td>085</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>V</td>
<td>086</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>W</td>
<td>087</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>X</td>
<td>088</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Y</td>
<td>089</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Z</td>
<td>090</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>0</td>
<td>048</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>1</td>
<td>049</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>2</td>
<td>050</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>3</td>
<td>051</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>4</td>
<td>052</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>5</td>
<td>053</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

F. CHARACTER–TO–CODES CORRESPONDENCE TABLE
### 1) Program errors (P/S alarm)

<table>
<thead>
<tr>
<th>Number</th>
<th>Message</th>
<th>Contents</th>
</tr>
</thead>
<tbody>
<tr>
<td>000</td>
<td>PLEASE TURN OFF POWER</td>
<td>A parameter which requires the power off was input, turn off power.</td>
</tr>
<tr>
<td>001</td>
<td>TH PARITY ALARM</td>
<td>TH alarm (A character with incorrect parity was input). Correct the tape.</td>
</tr>
<tr>
<td>002</td>
<td>TV PARITY ALARM</td>
<td>TV alarm (The number of characters in a block is odd). This alarm will</td>
</tr>
<tr>
<td></td>
<td></td>
<td>be generated only when the TV check is effective.</td>
</tr>
<tr>
<td>003</td>
<td>TOO MANY DIGITS</td>
<td>Data exceeding the maximum allowable number of digits was input. (Refer</td>
</tr>
<tr>
<td></td>
<td></td>
<td>to the item of max. programmable dimensions.)</td>
</tr>
<tr>
<td>004</td>
<td>ADDRESS NOT FOUND</td>
<td>A numeral or the sign &quot;−&quot; was input without an address at the beginning</td>
</tr>
<tr>
<td></td>
<td></td>
<td>of a block. Modify the program .</td>
</tr>
<tr>
<td>005</td>
<td>NO DATA AFTER ADDRESS</td>
<td>The address was not followed by the appropriate data but was followed</td>
</tr>
<tr>
<td></td>
<td></td>
<td>by another address or EOB code. Modify the program.</td>
</tr>
<tr>
<td>006</td>
<td>ILLEGAL USE OF NEGATIVE SIGN</td>
<td>Sign &quot;−&quot; input error (Sign &quot;−&quot; was input after an address with which it</td>
</tr>
<tr>
<td></td>
<td></td>
<td>cannot be used. Or two or more &quot;−&quot; signs were input.) Modify the program.</td>
</tr>
<tr>
<td>007</td>
<td>ILLEGAL USE OF DECIMAL POINT</td>
<td>Decimal point &quot;.&quot; input error (A decimal point was input after an address</td>
</tr>
<tr>
<td></td>
<td></td>
<td>which it can not be used. Or two decimal points were input.) Modify the</td>
</tr>
<tr>
<td></td>
<td></td>
<td>program.</td>
</tr>
<tr>
<td>009</td>
<td>ILLEGAL ADDRESS INPUT</td>
<td>Unusable character was input in significant area. Modify the program.</td>
</tr>
<tr>
<td>010</td>
<td>IMPROPER G–CODE</td>
<td>An unusable G code or G code corresponding to the function not provided</td>
</tr>
<tr>
<td></td>
<td></td>
<td>is specified. Modify the program.</td>
</tr>
<tr>
<td>011</td>
<td>NO FEEDRATE COMMANDED</td>
<td>Feedrate was not commanded to a cutting feed or the feedrate was inade-</td>
</tr>
<tr>
<td></td>
<td></td>
<td>quate. Modify the program.</td>
</tr>
<tr>
<td>014</td>
<td>ILLEGAL LEAD COMMAND</td>
<td>In variable lead threading, the lead incremental and decremental output-</td>
</tr>
<tr>
<td></td>
<td></td>
<td>ed by address K exceed the maximum command value or a command such that</td>
</tr>
<tr>
<td></td>
<td></td>
<td>the lead becomes a negative value is given. Modify the program.</td>
</tr>
<tr>
<td>015</td>
<td>TOO MANY AXES COMMANDED</td>
<td>An attempt has been made to move the tool along more than the maximum</td>
</tr>
<tr>
<td></td>
<td></td>
<td>number of simultaneously controlled axes. Alternatively, no axis move-</td>
</tr>
<tr>
<td></td>
<td></td>
<td>ment command or an axis movement command for two or more axes has been</td>
</tr>
<tr>
<td></td>
<td></td>
<td>specified in the block containing the command for skip using the torque</td>
</tr>
<tr>
<td></td>
<td></td>
<td>limit signal (G31 P99/98). The command must be accompanied with an axis</td>
</tr>
<tr>
<td></td>
<td></td>
<td>movement command for a single axis, in the same block.</td>
</tr>
<tr>
<td>020</td>
<td>OVER TOLERANCE OF RADIUS</td>
<td>In circular interpolation (G02 or G03), difference of the distance be-</td>
</tr>
<tr>
<td></td>
<td></td>
<td>tween the start point and the center of an arc and that between the end</td>
</tr>
<tr>
<td></td>
<td></td>
<td>point and the center of the arc exceed the value specified in parameter</td>
</tr>
<tr>
<td></td>
<td></td>
<td>No. 3410.</td>
</tr>
<tr>
<td>021</td>
<td>ILLEGAL PLANE AXIS COMMANDED</td>
<td>An axis not included in the selected plane (by using G17, G18, G19) was</td>
</tr>
<tr>
<td></td>
<td></td>
<td>commanded in circular interpolation. Modify the program.</td>
</tr>
<tr>
<td>022</td>
<td>CIRCULAR INTERPOLATION</td>
<td>In circular interpolation, radius R, or the distance between the start</td>
</tr>
<tr>
<td></td>
<td></td>
<td>point and the center of the arc, I, J, or K, has not been specified.</td>
</tr>
<tr>
<td>023</td>
<td>ILLEGAL RADIUS COMMAND</td>
<td>In circular interpolation by radius designation, negative value was com-</td>
</tr>
<tr>
<td></td>
<td></td>
<td>manded for address R. Modify the program.</td>
</tr>
<tr>
<td>Number</td>
<td>Message</td>
<td>Contents</td>
</tr>
<tr>
<td>--------</td>
<td>---------</td>
<td>----------</td>
</tr>
<tr>
<td>028</td>
<td>ILLEGAL PLANE SELECT</td>
<td>In the plane selection command, two or more axes in the same direction are commanded. Modify the program.</td>
</tr>
<tr>
<td>029</td>
<td>ILLEGAL OFFSET VALUE</td>
<td>The offset values specified by T code is too large. Modify the program.</td>
</tr>
<tr>
<td>030</td>
<td>ILLEGAL OFFSET NUMBER</td>
<td>The offset number in T function specified for tool offset is too large. Modify the program.</td>
</tr>
<tr>
<td>031</td>
<td>ILLEGAL P COMMAND IN G10</td>
<td>In setting an offset amount by G10, the offset number following address P was excessive or it was not specified. Modify the program.</td>
</tr>
<tr>
<td>032</td>
<td>ILLEGAL OFFSET VALUE IN G10</td>
<td>In setting an offset amount by G10 or in writing an offset amount by system variables, the offset amount was excessive.</td>
</tr>
<tr>
<td>033</td>
<td>NO SOLUTION AT NRC</td>
<td>A point of intersection cannot be determined for tool nose radius compensation. Modify the program.</td>
</tr>
<tr>
<td>034</td>
<td>NO CIRC ALLOWED IN ST-UP/EXT BLK</td>
<td>The start up or cancel was going to be performed in the G02 or G03 mode in tool nose radius compensation. Modify the program.</td>
</tr>
<tr>
<td>035</td>
<td>CAN NOT COMMANDED G31</td>
<td>Skip cutting (G31) was specified in tool nose radius compensation mode. Modify the program.</td>
</tr>
<tr>
<td>037</td>
<td>CAN NOT CHANGE PLANE IN NRC</td>
<td>The offset plane is switched in tool nose radius compensation. Modify the program.</td>
</tr>
<tr>
<td>038</td>
<td>INTERFERENCE IN CIRCULAR BLOCK</td>
<td>Overcutting will occur in tool nose radius compensation because the arc start point or end point coincides with the arc center. Modify the program.</td>
</tr>
<tr>
<td>039</td>
<td>CHF/CNR NOT ALLOWED IN NRC</td>
<td>Chamfering or corner R was specified with a start-up, a cancel, or switching between G41 and G42 in tool nose radius compensation. The program may cause overcutting to occur in chamfering or corner R. Modify the program.</td>
</tr>
<tr>
<td>040</td>
<td>INTERFERENCE IN G90/G94 BLOCK</td>
<td>Overcutting will occur in tool nose radius compensation in canned cycle G90 or G94. Modify the program.</td>
</tr>
<tr>
<td>041</td>
<td>INTERFERENCE IN NRC</td>
<td>Overcutting will occur in tool nose radius compensation. Modify the program.</td>
</tr>
<tr>
<td>046</td>
<td>ILLEGAL REFERENCE RETURN COMMAND</td>
<td>Other than P2, P3 and P4 are commanded for 2nd, 3rd and 4th reference position return command.</td>
</tr>
<tr>
<td>050</td>
<td>CHF/CNR NOT ALLOWED IN THRD BLK</td>
<td>Chamfering or corner R is commanded in the thread cutting block. Modify the program.</td>
</tr>
<tr>
<td>051</td>
<td>MISSING MOVE AFTER CHF/CNR</td>
<td>Improper movement or the move distance was specified in the block next to the chamfering or corner R block. Modify the program.</td>
</tr>
<tr>
<td>052</td>
<td>CODE IS NOT G01 AFTER CHF/CNR</td>
<td>The block next to the chamfering or corner R block is not G01. Modify the program.</td>
</tr>
<tr>
<td>053</td>
<td>TOO MANY ADDRESS COMMANDS</td>
<td>In the chamfering and corner R commands, two or more of I, K and R are specified. Otherwise, the character after a comma (&quot;,&quot;) is not C or R in direct drawing dimensions programming. Modify the program.</td>
</tr>
<tr>
<td>054</td>
<td>NO TAPER ALLOWED AFTER CHF/CNR</td>
<td>A block in which chamfering in the specified angle or the corner R was specified includes a taper command. Modify the program.</td>
</tr>
<tr>
<td>055</td>
<td>MISSING MOVE VALUE IN CHF/CNR</td>
<td>In chamfering or corner R block, the move distance is less than chamfer or corner R amount.</td>
</tr>
<tr>
<td>056</td>
<td>NO END POINT &amp; ANGLE IN CHF/CNR</td>
<td>Neither the end point nor angle is specified in the command for the block next to that for which only the angle is specified (A). Modify the program.</td>
</tr>
<tr>
<td>Number</td>
<td>Message</td>
<td>Message</td>
</tr>
<tr>
<td>--------</td>
<td>---------</td>
<td>---------</td>
</tr>
<tr>
<td>057</td>
<td>NO SOLUTION OF BLOCK END</td>
<td>Block end point is not calculated correctly in direct dimension drawing programming. Modify the program.</td>
</tr>
<tr>
<td>058</td>
<td>END POINT NOT FOUND</td>
<td>Block end point is not found in direct dimension drawing programming. Modify the program.</td>
</tr>
<tr>
<td>059</td>
<td>PROGRAM NUMBER NOT FOUND</td>
<td>In an external program number search or external workpiece number search, a specified program number was not found. Otherwise, a program specified for searching is being edited in background processing. Otherwise, a program specified by an one-touch macro call is not registered in memory. Check the program number and external signal. Or discontinue the background editing.</td>
</tr>
<tr>
<td>060</td>
<td>SEQUENCE NUMBER NOT FOUND</td>
<td>Commanded sequence number was not found in the sequence number search. Check the sequence number.</td>
</tr>
<tr>
<td>061</td>
<td>ADDRESS P/Q NOT FOUND IN G70–G73</td>
<td>Address P or Q is not specified in G70, G71, G72, or G73 command. Modify the program.</td>
</tr>
<tr>
<td>062</td>
<td>ILLEGAL COMMAND IN G71–G76</td>
<td>1. The depth of cut in G71 or G72 is zero or negative value. &lt;br&gt;2. The repetitive count in G73 is zero or negative value. &lt;br&gt;3. The negative value is specified to $\Delta i$ or $\Delta k$ is zero in G74 or G75. &lt;br&gt;4. A value other than zero is specified to address U or W, though $\Delta i$ or $\Delta k$ is zero in G74 or G75. &lt;br&gt;5. A negative value is specified to $\Delta d$, though the relief direction in G74 or G75 is determined. &lt;br&gt;6. Zero or a negative value is specified to the height of thread or depth of cut of first time in G76. &lt;br&gt;7. The specified minimum depth of cut in G76 is greater than the height of thread. &lt;br&gt;8. An unusable angle of tool tip is specified in G76. Modify the program.</td>
</tr>
<tr>
<td>063</td>
<td>SEQUENCE NUMBER NOT FOUND</td>
<td>The sequence number specified by address P in G70, G71, G72, or G73 command cannot be searched. Modify the program.</td>
</tr>
<tr>
<td>064</td>
<td>SHAPE PROGRAM NOT MONOTONOUSLY</td>
<td>A target shape which is not monotonous increase or decrease was specified in a repetitive canned cycle (G71 or G72).</td>
</tr>
<tr>
<td>065</td>
<td>ILLEGAL COMMAND IN G71–G73</td>
<td>1. G00 or G01 is not commanded at the block with the sequence number which is specified by address P in G71, G72, or G73 command. &lt;br&gt;2. Address Z(W) or X(U) was commanded in the block with a sequence number which is specified by address P in G71 or G72, respectively. Modify the program.</td>
</tr>
<tr>
<td>066</td>
<td>IMPROPER G–CODE IN G71–G73</td>
<td>An unallowable G code was commanded between two blocks specified by address P in G71, G72, or G73. Modify the program.</td>
</tr>
<tr>
<td>067</td>
<td>CAN NOT OPERATE IN MDI MODE</td>
<td>G70, G71, G72, or G73 command with address P and Q was specified. Modify the program.</td>
</tr>
<tr>
<td>068</td>
<td>P/S ALARM</td>
<td>For G71 type II, 11 or more pockets were set. Modify the program.</td>
</tr>
<tr>
<td>069</td>
<td>FORMAT ERROR IN G70–G73</td>
<td>The final move command in the blocks specified by P and Q of G70, G71, G72, or G73 ended with chamfering or corner R.</td>
</tr>
<tr>
<td>070</td>
<td>NO PROGRAM SPACE IN MEMORY</td>
<td>The memory area is insufficient. Delete any unnecessary programs, then retry.</td>
</tr>
<tr>
<td>071</td>
<td>DATA NOT FOUND</td>
<td>The address to be searched was not found. Or the program with specified program number was not found in program number search. Check the data.</td>
</tr>
<tr>
<td>072</td>
<td>TOO MANY PROGRAMS</td>
<td>The number of programs to be stored exceeded 200. Delete unnecessary programs and execute program registration again.</td>
</tr>
<tr>
<td>Number</td>
<td>Message</td>
<td>Contents</td>
</tr>
<tr>
<td>--------</td>
<td>---------</td>
<td>----------</td>
</tr>
<tr>
<td>073</td>
<td>PROGRAM NUMBER ALREADY IN USE</td>
<td>The commanded program number has already been used. Change the program number or delete unnecessary programs and execute program registration again.</td>
</tr>
<tr>
<td>074</td>
<td>ILLEGAL PROGRAM NUMBER</td>
<td>The program number is other than 1 to 9999. Modify the program number.</td>
</tr>
<tr>
<td>075</td>
<td>PROTECT</td>
<td>An attempt was made to register a program whose number was protected.</td>
</tr>
<tr>
<td>076</td>
<td>ADDRESS P NOT DEFINED</td>
<td>Address P (program number) was not commanded in the block which includes an M98, G65, or G66 command. Modify the program.</td>
</tr>
<tr>
<td>077</td>
<td>SUB PROGRAM NESTING ERROR</td>
<td>The subprogram was called in five folds. Modify the program.</td>
</tr>
<tr>
<td>078</td>
<td>NUMBER NOT FOUND</td>
<td>A program number or a sequence number which was specified by address P in the block which includes an M98, M99, M65 or G66 was not found. The sequence number specified by a GOTO statement was not found. Otherwise, a called program is being edited in background processing. Correct the program, or discontinue the background editing.</td>
</tr>
<tr>
<td>079</td>
<td>PROGRAM VERIFY ERROR</td>
<td>In memory or program collation, a program in memory does not agree with that read from an external I/O device. Check both the programs in memory and those from the external device.</td>
</tr>
<tr>
<td>080</td>
<td>G37 ARRIVAL SIGNAL NOT ASSERTED</td>
<td>In the automatic tool compensation function (G36, G37), the measurement position reach signal (XAE or ZAE) is not turned on within an area specified in parameter 6254 (value ε). This is due to a setting or operator error.</td>
</tr>
<tr>
<td>081</td>
<td>OFFSET NUMBER NOT FOUND IN G37</td>
<td>Automatic tool compensation (G36, G37) was specified without a T code. (Automatic tool compensation function) Modify the program.</td>
</tr>
<tr>
<td>082</td>
<td>T–CODE NOT ALLOWED IN G37</td>
<td>T code and automatic tool compensation (G36, G37) were specified in the same block. (Automatic tool compensation function) Modify the program.</td>
</tr>
<tr>
<td>083</td>
<td>ILLEGAL AXIS COMMAND IN G37</td>
<td>In automatic tool compensation (G36, G37), an invalid axis was specified or the command is incremental. Modify the program.</td>
</tr>
<tr>
<td>085</td>
<td>COMMUNICATION ERROR</td>
<td>When entering data in the memory by using Reader / Puncher interface, an overrun, parity or framing error was generated. The number of bits of input data or setting of baud rate or specification No. of I/O unit is incorrect.</td>
</tr>
<tr>
<td>086</td>
<td>DR SIGNAL OFF</td>
<td>When entering data in the memory by using Reader / Puncher interface, the ready signal (DR) of reader / puncher was turned off. Power supply of I/O unit is off or cable is not connected or a P.C.B. is defective.</td>
</tr>
<tr>
<td>087</td>
<td>BUFFER OVERFLOW</td>
<td>When entering data in the memory by using Reader / Puncher interface, though the read terminate command is specified, input is not interrupted after 10 characters read. I/O unit or P.C.B. is defective.</td>
</tr>
<tr>
<td>090</td>
<td>REFERENCE INCOMPLETE RETURN</td>
<td>The reference position return cannot be performed normally because the reference position return start point is too close to the reference position or the speed is too slow. Separate the start point far enough from the reference position, or specify a sufficiently fast speed for reference position return. Check the program contents.</td>
</tr>
<tr>
<td>091</td>
<td>REFERENCE INCOMPLETE RETURN</td>
<td>In the automatic operation halt state, manual reference position return cannot be performed.</td>
</tr>
<tr>
<td>092</td>
<td>AXES NOT ON THE REFERENCE POINT</td>
<td>The commanded axis by G27 (Reference position return check) did not return to the reference position.</td>
</tr>
<tr>
<td>094</td>
<td>P TYPE NOT ALLOWED (COORD CHG)</td>
<td>P type cannot be specified when the program is restarted. (After the automatic operation was interrupted, the coordinate system setting operation was performed.) Perform the correct operation according to the operator’s manual.</td>
</tr>
<tr>
<td>Number</td>
<td>Message</td>
<td>Contents</td>
</tr>
<tr>
<td>--------</td>
<td>---------------------------------------------</td>
<td>----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------</td>
</tr>
<tr>
<td>095</td>
<td>P TYPE NOT ALLOWED (EXT OFS CHG)</td>
<td>P type cannot be specified when the program is restarted. (After the automatic operation was interrupted, the external workpiece offset amount changed.) Perform the correct operation according to th operator’s manual.</td>
</tr>
<tr>
<td>096</td>
<td>P TYPE NOT ALLOWED (WRK OFS CHG)</td>
<td>P type cannot be specified when the program is restarted. (After the automatic operation was interrupted, the workpiece offset amount changed.) Perform the correct operation according to th operator’s manual.</td>
</tr>
<tr>
<td>097</td>
<td>P TYPE NOT ALLOWED (AUTO EXEC)</td>
<td>P type cannot be directed when the program is restarted. (After power ON, after emergency stop or P/S alarm 94 to 97 were reset, no automatic operation was performed.) Perform automatic operation.</td>
</tr>
<tr>
<td>098</td>
<td>G28 FOUND IN SEQUENCE RETURN</td>
<td>A command of the program restart was specified without the reference position return operation after power ON or emergency stop, and G28 was found during search. Perform the reference position return.</td>
</tr>
<tr>
<td>099</td>
<td>MDI EXEC NOT ALLOWED AFT. SEARCH</td>
<td>After completion of search in program restart, a move command is given with MDI.</td>
</tr>
<tr>
<td>100</td>
<td>PARAMETER WRITE ENABLE</td>
<td>On the PARAMETER(SETTING) screen, PWE (parameter writing enabled) is set to 1. Set it to 0, then reset the system.</td>
</tr>
<tr>
<td>101</td>
<td>PLEASE CLEAR MEMORY</td>
<td>The power turned off while rewriting the memory by program edit operation. If this alarm has occurred, press &lt;RESET&gt; while pressing &lt;PROG&gt;, and only the program being edited will be deleted. Register the deleted program.</td>
</tr>
<tr>
<td>111</td>
<td>CALCULATED DATA OVERFLOW</td>
<td>The result of calculation is out of the allowable range (–10^47 to –10^-29, 0, and 10^-29 to 10^47).</td>
</tr>
<tr>
<td>112</td>
<td>DIVIDED BY ZERO</td>
<td>Division by zero was specified. (including tan 90°) Modify the program.</td>
</tr>
<tr>
<td>113</td>
<td>IMPROPER COMMAND</td>
<td>A function which cannot be used in custom macro is commanded. Modify the program.</td>
</tr>
<tr>
<td>114</td>
<td>FORMAT ERROR IN MACRO</td>
<td>There is an error in other formats than &lt;Formula&gt;. Modify the program.</td>
</tr>
<tr>
<td>115</td>
<td>ILLEGAL VARIABLE NUMBER</td>
<td>A value not defined as a variable number is designated in the custom macro or in high-speed cycle cutting. Modify the program.</td>
</tr>
<tr>
<td>116</td>
<td>WRITE PROTECTED VARIABLE</td>
<td>The left side of substitution statement is a variable whose substitution is inhibited. Modify the program.</td>
</tr>
<tr>
<td>118</td>
<td>PARENTHESIS NESTING ERROR</td>
<td>The nesting of bracket exceeds the upper limit (quintuple). Modify the program.</td>
</tr>
<tr>
<td>119</td>
<td>ILLEGAL ARGUMENT</td>
<td>The SQRT argument is negative, BCD argument is negative, or other values than 0 to 9 are present on each line of BIN argument. Modify the program.</td>
</tr>
<tr>
<td>122</td>
<td>QUADRUPLE MACRO MODAL–CALL</td>
<td>A total of four macro calls and macro modal calls are nested. Modify the program.</td>
</tr>
<tr>
<td>123</td>
<td>CAN NOT USE MACRO COMMAND IN DNC</td>
<td>Macro control command is used during DNC operation. Modify the program.</td>
</tr>
<tr>
<td>124</td>
<td>MISSING END STATEMENT</td>
<td>DO – END does not correspond to 1 : 1. Modify the program.</td>
</tr>
<tr>
<td>125</td>
<td>FORMAT ERROR IN MACRO</td>
<td>&lt;Formula&gt; format is erroneous. Modify the program.</td>
</tr>
<tr>
<td>126</td>
<td>ILLEGAL LOOP NUMBER</td>
<td>In DO&lt;n, 1 ≤ n ≤ 3 is not established. Modify the program.</td>
</tr>
<tr>
<td>127</td>
<td>NC, MACRO STATEMENT IN SAME BLOCK</td>
<td>NC and custom macro commands coexist. Modify the program.</td>
</tr>
<tr>
<td>128</td>
<td>ILLEGAL MACRO SEQUENCE NUMBER</td>
<td>The sequence number specified in the branch command was not 0 to 9999. Or, it cannot be searched. Modify the program.</td>
</tr>
<tr>
<td>Number</td>
<td>Message</td>
<td>Contents</td>
</tr>
<tr>
<td>--------</td>
<td>----------------------------------------</td>
<td>------------------------------------------------------------------------------------------------------------------------------------------</td>
</tr>
<tr>
<td>129</td>
<td>ILLEGAL ARGUMENT ADDRESS</td>
<td>An address which is not allowed in &lt;Argument Designation &gt; is used. Modify the program.</td>
</tr>
<tr>
<td>130</td>
<td>ILLEGAL AXIS OPERATION</td>
<td>An axis control command was given by PMC to an axis controlled by CNC. Or an axis control command was given by CNC to an axis controlled by PMC. Modify the program.</td>
</tr>
<tr>
<td>131</td>
<td>TOO MANY EXTERNAL ALARM MESSAGES</td>
<td>Five or more alarms have generated in external alarm message. Consult the PMC ladder diagram to find the cause.</td>
</tr>
<tr>
<td>132</td>
<td>ALARM NUMBER NOT FOUND</td>
<td>No alarm No. concerned exists in external alarm message clear. Check the PMC ladder diagram.</td>
</tr>
<tr>
<td>133</td>
<td>ILLEGAL DATA IN EXT. ALARM MSG</td>
<td>Small section data is erroneous in external alarm message or external operator message. Check the PMC ladder diagram.</td>
</tr>
<tr>
<td>135</td>
<td>SPINDLE ORIENTATION PLEASE</td>
<td>Without any spindle orientation, an attempt was made for spindle indexing. Perform spindle orientation.</td>
</tr>
<tr>
<td>136</td>
<td>C/H–CODE &amp; MOVE CMD IN SAME BLK</td>
<td>A move command of other axes was specified to the same block as spindle indexing addresses C, H. Modify the program.</td>
</tr>
<tr>
<td>137</td>
<td>M–CODE &amp; MOVE CMD IN SAME BLK.</td>
<td>A move command of other axes was specified to the same block as M–code related to spindle indexing. Modify the program.</td>
</tr>
<tr>
<td>139</td>
<td>CAN NOT CHANGE PMC CONTROL AXIS</td>
<td>An axis is selected in commanding by PMC axis control. Modify the program.</td>
</tr>
<tr>
<td>145</td>
<td>ILLEGAL COMMAND G112/G113</td>
<td>The conditions are incorrect when the polar coordinate interpolation starts or it is canceled.</td>
</tr>
<tr>
<td></td>
<td></td>
<td>1) In modes other than G40, G12.1/G13.1 was specified.</td>
</tr>
<tr>
<td></td>
<td></td>
<td>2) An error is found in the plane selection. Parameters No. 5460 and No. 5461 are incorrectly specified. Modify the value of program or parameter.</td>
</tr>
<tr>
<td>146</td>
<td>IMPROPER G CODE</td>
<td>G codes which cannot be specified in the polar coordinate interpolation mode was specified. See section II–4.4 and modify the program.</td>
</tr>
<tr>
<td>150</td>
<td>ILLEGAL TOOL GROUP NUMBER</td>
<td>Tool Group No. exceeds the maximum allowable value. Modify the program.</td>
</tr>
<tr>
<td>151</td>
<td>TOOL GROUP NUMBER NOT FOUND</td>
<td>The tool group commanded in the machining program is not set. Modify the value of program or parameter.</td>
</tr>
<tr>
<td>152</td>
<td>NO SPACE FOR TOOL ENTRY</td>
<td>The number of tools within one group exceeds the maximum value registrable. Modify the number of tools.</td>
</tr>
<tr>
<td>153</td>
<td>T–CODE NOT FOUND</td>
<td>In tool life data registration, a T code was not specified where one should be. Correct the program.</td>
</tr>
<tr>
<td>155</td>
<td>ILLEGAL T–CODE IN M06</td>
<td>In the machining program, M06 and T code in the same block do not correspond to the group in use. Correct the program.</td>
</tr>
<tr>
<td>156</td>
<td>P/L COMMAND NOT FOUND</td>
<td>P and L commands are missing at the head of program in which the tool group is set. Correct the program.</td>
</tr>
<tr>
<td>157</td>
<td>TOO MANY TOOL GROUPS</td>
<td>The number of tool groups to be set exceeds the maximum allowable value. (See parameter No. 6800 bit 0 and 1) Modify the program.</td>
</tr>
<tr>
<td>158</td>
<td>ILLEGAL TOOL LIFE DATA</td>
<td>The tool life to be set is too excessive. Modify the setting value.</td>
</tr>
<tr>
<td>159</td>
<td>TOOL DATA SETTING INCOMPLETE</td>
<td>During executing a life data setting program, power was turned off. Set again.</td>
</tr>
<tr>
<td>175</td>
<td>ILLEGAL G107 COMMAND</td>
<td>Conditions when performing circular interpolation start or cancel not correct. To change the mode to the cylindrical interpolation mode, specify the command in a format of &quot;G07.1 rotation–axis name radius of cylinder.&quot;</td>
</tr>
<tr>
<td>Number</td>
<td>Message</td>
<td>Contents</td>
</tr>
<tr>
<td>--------</td>
<td>---------------------------------------------------</td>
<td>------------------------------------------------------------------------------------------------------------------------------------------</td>
</tr>
<tr>
<td>176</td>
<td>IMPROPER G–CODE IN G107</td>
<td>Any of the following G codes which cannot be specified in the cylindrical interpolation mode was specified.</td>
</tr>
<tr>
<td></td>
<td></td>
<td>1) G codes for positioning, such as G28, G76, G81 – G89, including the codes specifying the rapid traverse cycle</td>
</tr>
<tr>
<td></td>
<td></td>
<td>2) G codes for setting a coordinate system: G50, G52</td>
</tr>
<tr>
<td></td>
<td></td>
<td>3) G code for selecting coordinate system: G53 G54–G59</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Modify the program.</td>
</tr>
<tr>
<td>190</td>
<td>ILLEGAL AXIS SELECT</td>
<td>In the constant surface speed control, the axis specification is wrong. (See parameter No. 3770.) The specified axis command (P) contains an illegal value. Correct the program.</td>
</tr>
<tr>
<td>194</td>
<td>SPINDLE COMMAND IN SYNCHRO–MODE</td>
<td>A contour control mode, spindle positioning (Ce–axis control) mode, or rigid tapping mode was specified during the serial spindle synchronous control mode. Correct the program so that the serial spindle synchronous control mode is released in advance.</td>
</tr>
<tr>
<td>197</td>
<td>C–AXIS COMMANDED IN SPINDLE MODE</td>
<td>The program specified a movement along the Ci–axis when the signal CON(DGN=G027#7) was off. Correct the program, or consult the PMC ladder diagram to find the reason the signal is not turned on.</td>
</tr>
<tr>
<td>199</td>
<td>MACRO WORD UNDEFINED</td>
<td>Undefined macro word was used. Modify the custom macro.</td>
</tr>
<tr>
<td>200</td>
<td>ILLEGAL S CODE COMMAND</td>
<td>In the rigid tapping, an S value is out of the range or is not specified. The maximum values for S which can be specified in rigid tapping is set in parameters S241 to S243. Change the setting in the parameter or modify the program.</td>
</tr>
<tr>
<td>201</td>
<td>FEEDRATE NOT FOUND IN RIGID TAP</td>
<td>In the rigid tapping, no F value is specified. Correct the program.</td>
</tr>
<tr>
<td>202</td>
<td>POSITION LSI OVERFLOW</td>
<td>In the rigid tapping, spindle distribution value is too large.</td>
</tr>
<tr>
<td>203</td>
<td>PROGRAM MISS AT RIGID TAPPING</td>
<td>In the rigid tapping, position for a rigid M code (M29) or an S command is incorrect. Modify the program.</td>
</tr>
<tr>
<td>204</td>
<td>ILLEGAL AXIS OPERATION</td>
<td>In the rigid tapping, an axis movement is specified between the rigid M code (M29) block and G84 (G88) block. Modify the program.</td>
</tr>
<tr>
<td>205</td>
<td>RIGID MODE DI SIGNAL OFF</td>
<td>1 Rigid tapping signal (DGNG061 #1) is not 1 when G84 (G88) is executed though the rigid M code (M29) is specified.</td>
</tr>
<tr>
<td></td>
<td></td>
<td>2 The spindle of rigid tapping is not selected in a multi–spindle system (by DI signal G27, #0 and #1, or G61, #4 and #5). Consult the PMC ladder diagram to find the reason the signal is not turned on.</td>
</tr>
<tr>
<td>207</td>
<td>RIGID DATA MISMATCH</td>
<td>The specified distance was too short or too long in rigid tapping.</td>
</tr>
<tr>
<td>210</td>
<td>CAN NOT COMAND M198/M099</td>
<td>1 M198 and M199 are executed in the schedule operation. Or M198 is executed in the DNC operation. Modify the program.</td>
</tr>
<tr>
<td></td>
<td></td>
<td>2 In a multiple repetitive pocketing canned cycle, an interrupt macro was specified, and M99 was executed.</td>
</tr>
<tr>
<td>211</td>
<td>G31 (HIGH) NOT ALLOWED IN G99</td>
<td>G31 is commanded in the per revolution command when the high–speed skip option is provided. Modify the program.</td>
</tr>
<tr>
<td>212</td>
<td>ILLEGAL PLANE SELECT</td>
<td>The direct drawing dimensions programming is commanded for the plane other than the Z–X plane. Correct the program.</td>
</tr>
<tr>
<td>213</td>
<td>ILLEGAL COMMAND IN SYNCHRO–MODE</td>
<td>Movement is commanded for the axis to be synchronously controlled.</td>
</tr>
<tr>
<td>214</td>
<td>ILLEGAL COMMAND IN SYNCHRO–MODE</td>
<td>Coordinate system is set or tool compensation of the shift type is executed in the synchronous control. Correct the program.</td>
</tr>
<tr>
<td>217</td>
<td>DUPLICATE G251 (COMMANDS)</td>
<td>G51.2 or G251 is further commanded in the polygon machining mode. Modify the program.</td>
</tr>
<tr>
<td>218</td>
<td>NOT FOUND P/Q COMMAND IN G251</td>
<td>P or Q is not commanded in the G251 block, or the command value is out of the range. Modify the program.</td>
</tr>
<tr>
<td>Number</td>
<td>Message</td>
<td>Contents</td>
</tr>
<tr>
<td>--------</td>
<td>---------</td>
<td>----------</td>
</tr>
<tr>
<td>219</td>
<td>COMMAND INDEPENDENTLY G250/G251</td>
<td>G251 and G250 are not independent blocks.</td>
</tr>
<tr>
<td>220</td>
<td>ILLEGAL COMMAND IN SYNCHR–MODE</td>
<td>In the synchronous operation, movement is commanded by the NC program or PMC axis control interface for the synchronous axis.</td>
</tr>
<tr>
<td>221</td>
<td>ILLEGAL COMMAND IN SYNCHR–MODE</td>
<td>Polygon machining synchronous operation and Cs axis control are executed at a time. Modify the program.</td>
</tr>
<tr>
<td>224</td>
<td>RETURN TO REFERENCE POINT</td>
<td>Not returned to reference point before cycle start.</td>
</tr>
<tr>
<td>231</td>
<td>FORMAT ERROR IN G10 OR L50</td>
<td>Any of the following errors occurred in the specified format at the programmable–parameter input.</td>
</tr>
<tr>
<td></td>
<td></td>
<td>1 Address N or R was not entered.</td>
</tr>
<tr>
<td></td>
<td></td>
<td>2 A number not specified for a parameter was entered.</td>
</tr>
<tr>
<td></td>
<td></td>
<td>3 The axis number was too large.</td>
</tr>
<tr>
<td></td>
<td></td>
<td>4 An axis number was not specified in the axis–type parameter.</td>
</tr>
<tr>
<td></td>
<td></td>
<td>5 An axis number was specified in the parameter which is not an axis type.</td>
</tr>
<tr>
<td></td>
<td></td>
<td>6 An attempt was made to reset bit 4 of parameter 3202 (NE9) or change parameter 3210 (PSSWD) when they are protected by a password. Correct the program.</td>
</tr>
<tr>
<td>232</td>
<td>ILLEGAL AXIS COMMAND IN HELICAL</td>
<td>Three or more axes were specified as helical axes in the helical interpolation mode.</td>
</tr>
<tr>
<td>233</td>
<td>DEVICE BUSY</td>
<td>When an attempt was made to use a unit such as that connected via the RS–232–C interface, other users were using it.</td>
</tr>
<tr>
<td>239</td>
<td>BP/S ALARM</td>
<td>While punching was being performed with the function for controlling external I/O units, background editing was performed.</td>
</tr>
<tr>
<td>240</td>
<td>BP/S ALARM</td>
<td>Background editing was performed during MDI operation.</td>
</tr>
<tr>
<td>244</td>
<td>P/S ALARM</td>
<td>In the skip function activated by the torque limit signal, the number of accumulated erroneous pulses exceed 32767 before the signal was input. Therefore, the pulses cannot be corrected with one distribution. Change the conditions, such as federates along axes and torque limit, and try again.</td>
</tr>
<tr>
<td>245</td>
<td>T–CODE NOT ALLOWED IN THIS BLOCK</td>
<td>One of the G codes, G50, G10, and G04, which cannot be specified in the same block as a T code, was specified with a T code.</td>
</tr>
<tr>
<td>5010</td>
<td>END OF RECORD</td>
<td>The end of record (%) was specified.</td>
</tr>
<tr>
<td>5018</td>
<td>POLYGON AXIS SPPED ERROR</td>
<td>The rotating speed ratio of the command value cannot be maintained in the GS1.2 mode, because the speed of the spindle or the polygon turning synchronous axis exceeds the clamp value or it is too slow.</td>
</tr>
<tr>
<td>5020</td>
<td>PARAMETER OF RESTART ERROR</td>
<td>An erroneous parameter was specified for restarting a program.</td>
</tr>
<tr>
<td>5059</td>
<td>RADIUS IS OUT OF RANGE</td>
<td>During circular interpolation, the center of the arc specified with I, J, and K caused the radius to exceed nine digits.</td>
</tr>
<tr>
<td>5073</td>
<td>NO DECIMAL POINT</td>
<td>A decimal point is not specified for a command for which a decimal point must be specified.</td>
</tr>
<tr>
<td>5074</td>
<td>ADDRESS DUPLICATION ERROR</td>
<td>The same address appears more than once in a block. Alternatively, a block contains two or more G codes belonging to the same group.</td>
</tr>
<tr>
<td>5134</td>
<td>FSSB : OPEN READY TIME OUT</td>
<td>Initialization did not place FSSB in the open ready state.</td>
</tr>
<tr>
<td>5135</td>
<td>FSSB : ERROR MODE</td>
<td>FSSB has entered error mode.</td>
</tr>
<tr>
<td>5136</td>
<td>FSSB : NUMBER OF AMPS IS SMALL</td>
<td>In comparison with the number of controlled axes, the number of amplifiers recognized by FSSB is not enough.</td>
</tr>
<tr>
<td>5137</td>
<td>FSSB : CONFIGURATION ERROR</td>
<td>FSSB detected a configuration error.</td>
</tr>
<tr>
<td>5138</td>
<td>FSSB : AXIS SETTING NOT COMPLETE</td>
<td>In automatic setting mode, axis setting has not been made yet. Perform axis setting on the FSSB setting screen.</td>
</tr>
<tr>
<td>Number</td>
<td>Message</td>
<td>Contents</td>
</tr>
<tr>
<td>--------</td>
<td>---------</td>
<td>----------</td>
</tr>
<tr>
<td>5139</td>
<td>FSSB : ERROR</td>
<td>Servo initialization did not terminate normally. The optical cable may be defective, or there may be an error in connection to the amplifier or another module. Check the optical cable and the connection status.</td>
</tr>
<tr>
<td>5195</td>
<td>DIRECTION CAN NOT BE JUDGED</td>
<td>When the touch sensor with a single contact signal input is used in the direct input B function for tool offset measurement values, the stored pulse direction is not constant. One of the following conditions exists: · The stop state exists in offset write mode. · Servo off state · The direction varies. · Movement takes place simultaneously along two axes.</td>
</tr>
<tr>
<td>5197</td>
<td>FSSB : OPEN TIME OUT</td>
<td>The CNC permitted FSSB to open, but FSSB was not opened.</td>
</tr>
<tr>
<td>5198</td>
<td>FSSB : ID DATA NOT READ</td>
<td>Temporary assignment failed, so amplifier initial ID information could not be read.</td>
</tr>
<tr>
<td>5212</td>
<td>SCREEN COPY : PARAMETER ERROR</td>
<td>There is a parameter setting error. Check that 4 is set as the I/O channel (parameter No. 90020).</td>
</tr>
<tr>
<td>5213</td>
<td>SCREEN COPY : COMMUNICATION ERROR</td>
<td>The memory card cannot be used. Check the memory card. (Check whether the memory card is write–protected or defective.)</td>
</tr>
<tr>
<td>5214</td>
<td>SCREEN COPY : DATA TRANSFER ERROR</td>
<td>Data transfer to the memory card failed. Check whether the memory card space is insufficient and whether the memory card was removed during data transfer.</td>
</tr>
<tr>
<td>5220</td>
<td>REFERENCE POINT ADJUSTMENT MODE</td>
<td>A parameter for automatically set a reference position is set. (Bit 2 of parameter No. 1819 = 1) Perform automatic setting. (Position the machine at the reference position manually, then perform manual reference position return.) Supplementary: Automatic setting sets bit 2 of parameter No. 1819 to 0.</td>
</tr>
<tr>
<td>5222</td>
<td>SRAM CORRECTABLE ERROR</td>
<td>The SRAM correctable error cannot be corrected. Cause: A memory problem occurred during memory initialization. Action: Replace the master printed circuit board (SRAM module).</td>
</tr>
<tr>
<td>5227</td>
<td>FILE NOT FOUND</td>
<td>A specified file is not found during communication with the built–in Handy File.</td>
</tr>
<tr>
<td>5228</td>
<td>SAME NAME USED</td>
<td>There are duplicate file names in the built–in Handy File.</td>
</tr>
<tr>
<td>5229</td>
<td>WRITE PROTECTED</td>
<td>A floppy disk in the built–in Handy File is write protected.</td>
</tr>
<tr>
<td>5231</td>
<td>TOO MANY FILES</td>
<td>The number of files exceeds the limit during communication with the built–in Handy File.</td>
</tr>
<tr>
<td>5232</td>
<td>DATA OVER–FLOW</td>
<td>There is not enough floppy disk space in the built–in Handy File.</td>
</tr>
<tr>
<td>5235</td>
<td>COMMUNICATION ERROR</td>
<td>A communication error occurred during communication with the built–in Handy File.</td>
</tr>
<tr>
<td>5237</td>
<td>READ ERROR</td>
<td>A floppy disk in the built–in Handy File cannot be read from. The floppy disk may be defective, or the head may be dirty. Alternatively, the Handy File is defective.</td>
</tr>
<tr>
<td>5238</td>
<td>WRITE ERROR</td>
<td>A floppy disk in the built–in Handy File cannot be written to. The floppy disk may be defective, or the head may be dirty. Alternatively, the Handy File is defective.</td>
</tr>
<tr>
<td>5257</td>
<td>G41/G42 NOT ALLOWED IN MDI MODE</td>
<td>G41/G42 (cutter compensation C: M series, tool–nose radius compensation: T series) was specified in MDI mode. (Depending on the setting of bit 4 of parameter No. 5008)</td>
</tr>
</tbody>
</table>
## G. ALARM LIST

### 7) TOUCH PANEL ERROR

<table>
<thead>
<tr>
<th>Number</th>
<th>Message</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>5303</td>
<td>TOUCH PANEL ERROR</td>
<td>A touch panel error occurred. Cause: 1. The touch panel is kept pressed. 2. The touch panel was pressed when power was turned on. Remove the above causes, and turn on the power again.</td>
</tr>
</tbody>
</table>

### 8) MODE CHANGE ERROR

<table>
<thead>
<tr>
<th>Number</th>
<th>Message</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>5306</td>
<td>MODE CHANGE ERROR</td>
<td>In an one-touch macro call, the mode is not normally switched at the beginning.</td>
</tr>
</tbody>
</table>

### 9) FSSB : ILLEGAL CONNECTION

<table>
<thead>
<tr>
<th>Number</th>
<th>Message</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>5311</td>
<td>FSSB : ILLEGAL CONNECTION</td>
<td>1. This alarm is issued if, in a pair of axes in which one axis has an odd servo axis number (parameter No. 1023) and the other has an even servo axis number that is adjacent to the odd servo axis number, one of the axes is assigned to an amplifier connected to an FSSB in a system different from that for the other axis. 2. This alarm is issued if the system does not satisfy a constraint for performing high-speed HRV control, current control periods for two FSSBs are different, and it is specified that pulse modules connected to an FSSB in different paths are to be used.</td>
</tr>
</tbody>
</table>

### 2) Background edit alarm

<table>
<thead>
<tr>
<th>Number</th>
<th>Message</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>070 to 074</td>
<td>BP/S alarm</td>
<td>BP/S alarm occurs in the same number as the P/S alarm that occurs in ordinary program edit.</td>
</tr>
<tr>
<td>085 to 087</td>
<td>BP/S alarm</td>
<td>It was attempted to select or delete in the background a program being selected in the foreground. <strong>(Note)</strong> Use background editing correctly.</td>
</tr>
</tbody>
</table>

### NOTE

Alarm in background edit is displayed in the key input line of the background edit screen instead of the ordinary alarm screen and is resettable by any of the MDI key operation.

### 3) Absolute pulse coder (APC) alarm

<table>
<thead>
<tr>
<th>Number</th>
<th>Message</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>300</td>
<td>n AXIS NEED ZRN</td>
<td>Manual reference position return is required for the nth-axis (n=1 – 4).</td>
</tr>
<tr>
<td>301</td>
<td>APC ALARM:n AXIS COMMUNICATION</td>
<td>nth-axis (n=1 – 4) APC communication error. Failure in data transmission. Possible causes include a faulty APC, cable, or servo interface module.</td>
</tr>
<tr>
<td>302</td>
<td>APC ALARM:n AXIS OVER TIME</td>
<td>nth-axis (n=1 – 4) APC overtime error. Failure in data transmission. Possible causes include a faulty APC, cable, or servo interface module.</td>
</tr>
<tr>
<td>303</td>
<td>APC ALARM:n AXIS FRAMING</td>
<td>nth-axis (n=1 – 4) APC framing error. Failure in data transmission. Possible causes include a faulty APC, cable, or servo interface module.</td>
</tr>
<tr>
<td>304</td>
<td>APC ALARM:n AXIS PARITY</td>
<td>nth-axis (n=1 – 4) APC parity error. Failure in data transmission. Possible causes include a faulty APC, cable, or servo interface module.</td>
</tr>
<tr>
<td>305</td>
<td>APC ALARM:n AXIS PULSE MISS</td>
<td>nth-axis (n=1 – 4) APC pulse error alarm. APC alarm. APC or cable may be faulty.</td>
</tr>
<tr>
<td>306</td>
<td>APC ALARM:n AXIS BATTERY ZERO</td>
<td>nth-axis (n=1 – 4) APC battery voltage has decreased to a low level so that the data cannot be held. APC alarm. Battery or cable may be faulty.</td>
</tr>
<tr>
<td>307</td>
<td>APC ALARM:n AXIS BATTERY DOWN 1</td>
<td>nth-axis (n=1 – 4) axis APC battery voltage reaches a level where the battery must be renewed. APC alarm. Replace the battery.</td>
</tr>
</tbody>
</table>
### 4) Serial pulse coder (SPC) alarms

<table>
<thead>
<tr>
<th>No.</th>
<th>Message</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>360</td>
<td>n AXIS : ABNORMAL CHECKSUM (INT)</td>
<td>A checksum error occurred in the built-in pulse coder.</td>
</tr>
<tr>
<td>361</td>
<td>n AXIS : ABNORMAL PHASE DATA (INT)</td>
<td>A phase data error occurred in the built-in pulse coder.</td>
</tr>
<tr>
<td>362</td>
<td>n AXIS : ABNORMAL REV.DATA (INT)</td>
<td>A rotation speed count error occurred in the built-in pulse coder.</td>
</tr>
<tr>
<td>363</td>
<td>n AXIS : ABNORMAL CLOCK (INT)</td>
<td>A clock error occurred in the built-in pulse coder.</td>
</tr>
<tr>
<td>364</td>
<td>n AXIS : SOFT PHASE ALARM (INT)</td>
<td>The digital servo software detected invalid data in the built-in pulse coder.</td>
</tr>
<tr>
<td>365</td>
<td>n AXIS : BROKEN LED (INT)</td>
<td>An LED error occurred in the built-in pulse coder.</td>
</tr>
<tr>
<td>366</td>
<td>n AXIS : PULSE MISS (INT)</td>
<td>A pulse error occurred in the built-in pulse coder.</td>
</tr>
<tr>
<td>367</td>
<td>n AXIS : COUNT MISS (INT)</td>
<td>A count error occurred in the built-in pulse coder.</td>
</tr>
<tr>
<td>368</td>
<td>n AXIS : SERIAL DATA ERROR (INT)</td>
<td>Communication data from the built-in pulse coder cannot be received.</td>
</tr>
<tr>
<td>369</td>
<td>n AXIS : DATA TRANS. ERROR (INT)</td>
<td>A CRC or stop bit error occurred in the communication data being received from the built-in pulse coder.</td>
</tr>
<tr>
<td>380</td>
<td>n AXIS : BROKEN LED (EXT)</td>
<td>The separate detector is erroneous.</td>
</tr>
<tr>
<td>381</td>
<td>n AXIS : ABNORMAL PHASE (EXT LIN)</td>
<td>A phase data error occurred in the separate linear scale.</td>
</tr>
<tr>
<td>382</td>
<td>n AXIS : COUNT MISS (EXT)</td>
<td>A pulse error occurred in the separate detector.</td>
</tr>
<tr>
<td>383</td>
<td>n AXIS : PULSE MISS (EXT)</td>
<td>A count error occurred in the separate detector.</td>
</tr>
<tr>
<td>384</td>
<td>n AXIS : SOFT PHASE ALARM (EXT)</td>
<td>The digital servo software detected invalid data in the separate detector.</td>
</tr>
<tr>
<td>385</td>
<td>n AXIS : SERIAL DATA ERROR (EXT)</td>
<td>Communication data from the separate detector cannot be received.</td>
</tr>
<tr>
<td>386</td>
<td>n AXIS : DATA TRANS. ERROR (EXT)</td>
<td>A CRC or stop bit error occurred in the communication data being received from the separate detector.</td>
</tr>
<tr>
<td>387</td>
<td>n AXIS : ABNORMAL ENCODER (EXT)</td>
<td>An error occurs in the separate detector. For details, contact the manufacturer of the scale.</td>
</tr>
</tbody>
</table>
• The details of serial pulse coder alarm

<table>
<thead>
<tr>
<th>#</th>
<th>Message</th>
<th>Contents</th>
</tr>
</thead>
<tbody>
<tr>
<td>202</td>
<td>CSA</td>
<td>#6 (CSA): Check sum alarm has occurred.</td>
</tr>
<tr>
<td></td>
<td>BLA</td>
<td>#5 (BLA): Battery low alarm has occurred.</td>
</tr>
<tr>
<td></td>
<td>PHA</td>
<td>#4 (PHA): Phase data trouble alarm has occurred.</td>
</tr>
<tr>
<td></td>
<td>PCA</td>
<td>#3 (PCA): Speed count trouble alarm has occurred.</td>
</tr>
<tr>
<td></td>
<td>BZA</td>
<td>#2 (BZA): Battery zero alarm has occurred.</td>
</tr>
<tr>
<td></td>
<td>CKA</td>
<td>#1 (CKA): Clock alarm has occurred.</td>
</tr>
<tr>
<td></td>
<td>SPH</td>
<td>#0 (SPH): Soft phase data trouble alarm has occurred.</td>
</tr>
<tr>
<td>203</td>
<td>DTE</td>
<td>#7 (DTE): Data error has occurred.</td>
</tr>
<tr>
<td></td>
<td>CRC</td>
<td>#6 (CRC): CRC error has occurred.</td>
</tr>
<tr>
<td></td>
<td>STB</td>
<td>#5 (STB): Stop bit error has occurred.</td>
</tr>
<tr>
<td></td>
<td>PRM</td>
<td>#4 (PRM): Parameter error alarm has occurred.</td>
</tr>
<tr>
<td></td>
<td></td>
<td>In this case, a servo parameter error alarm (No. 417) is also output.</td>
</tr>
</tbody>
</table>

5) Servo alarms (1/2)

<table>
<thead>
<tr>
<th>Number</th>
<th>Message</th>
<th>Contents</th>
</tr>
</thead>
<tbody>
<tr>
<td>401</td>
<td>SERVO ALARM: n–TH AXIS VRDY OFF</td>
<td>The n–th axis (1–4) servo amplifier READY signal (DRDY) went off. Refer</td>
</tr>
<tr>
<td></td>
<td></td>
<td>to procedure of trouble shooting.</td>
</tr>
<tr>
<td>402</td>
<td>SERVO ALARM: SV CARD NOT EXIST</td>
<td>The axis control card is not provided.</td>
</tr>
<tr>
<td>403</td>
<td>SERVO ALARM: CARD/SOFT MISMATCH</td>
<td>The combination of the axis control card and servo software is illegal.</td>
</tr>
<tr>
<td></td>
<td></td>
<td>The possible causes are as follows:</td>
</tr>
<tr>
<td></td>
<td></td>
<td>· A correct axis control card is not provided.</td>
</tr>
<tr>
<td></td>
<td></td>
<td>· Correct servo software is not installed on flash memory.</td>
</tr>
<tr>
<td>404</td>
<td>SERVO ALARM: n–TH AXIS VRDY ON</td>
<td>Even though the n–th axis (axis 1–4) READY signal (MCON) went off,</td>
</tr>
<tr>
<td></td>
<td></td>
<td>the servo amplifier READY signal (DRDY) is still on. Or, when the power</td>
</tr>
<tr>
<td></td>
<td></td>
<td>was turned on, DRDY went on even though MCON was off. Check that the</td>
</tr>
<tr>
<td></td>
<td></td>
<td>servo interface module and servo amp are connected.</td>
</tr>
<tr>
<td>405</td>
<td>SERVO ALARM: (ZERO POINT RETURN FAULT)</td>
<td>Position control system fault. Due to an NC or servo system fault in the</td>
</tr>
<tr>
<td></td>
<td></td>
<td>reference position return, there is the possibility that reference position return could not be executed correctly. Try again from the manual reference position return.</td>
</tr>
<tr>
<td>409</td>
<td>SERVO ALARM: n AXIS TORQUE ALM</td>
<td>Abnormal servo motor load has been detected. Alternatively, abnormal</td>
</tr>
<tr>
<td></td>
<td></td>
<td>spindle motor load has been detected in Cs mode.</td>
</tr>
<tr>
<td>410</td>
<td>SERVO ALARM: n–TH AXIS – EXCESS ERROR</td>
<td>The position deviation value when the n–th axis (axis 1–4) stops is larger than the set value. Refer to procedure of trouble shooting.</td>
</tr>
<tr>
<td>411</td>
<td>SERVO ALARM: n–TH AXIS – EXCESS ERROR</td>
<td>The position deviation value when the n–th axis (axis 1–4) moves is larger than the set value. Refer to procedure of trouble shooting.</td>
</tr>
<tr>
<td>413</td>
<td>SERVO ALARM: n–th AXIS – LSI OVERFLOW</td>
<td>The contents of the error register for the n–th axis (axis 1–4) exceeded</td>
</tr>
<tr>
<td>Number</td>
<td>Message</td>
<td>Contents</td>
</tr>
<tr>
<td>--------</td>
<td>---------</td>
<td>----------</td>
</tr>
<tr>
<td>415</td>
<td>SERVO ALARM: n–TH AXIS – EXCESS SHIFT</td>
<td>A speed higher than 524288000 units/s was attempted to be set in the n–th axis (axis 1–4). This error occurs as the result of improperly set CMR.</td>
</tr>
</tbody>
</table>
| 417 | SERVO ALARM: n–TH AXIS – PARAMETER INCORRECT | This alarm occurs when the n–th axis (axis 1–4) is in one of the conditions listed below. (Digital servo system alarm)  
1) The value set in Parameter No. 2020 (motor form) is out of the specified limit.  
2) A proper value (111 or −111) is not set in parameter No. 2022 (motor revolution direction).  
3) Illegal data (a value below 0, etc.) was set in parameter No. 2023 (number of speed feedback pulses per motor revolution).  
4) Illegal data (a value below 0, etc.) was set in parameter No. 2024 (number of position feedback pulses per motor revolution).  
5) Parameters No. 2084 and No. 2085 (flexible field gear rate) have not been set.  
6) A value outside the limit of (1 to the number of control axes) or a non–continuous value (Parameter 1023 (servo axis number) contains a value out of the range from 1 to the number of axes, or an isolated value (for example, 4 not preceded by 3) was set in parameter No. 1023 (servo axis number). |
| 421 | SERVO ALARM: n AXIS EXCESS ER (D) | The difference between the errors in the semi–closed loop and closed loop has become excessive during dual position feedback. Check the values of the dual position conversion coefficients in parameters No. 2078 and 2079. |
| 422 | SERVO ALARM: n AXIS | In torque control of PMC axis control, a specified allowable speed has been exceeded. |
| 423 | SERVO ALARM: n AXIS | In torque control of PMC axis control, the parameter–set allowable cumulative travel distance has been exceeded. |
| 430 | n AXIS : SV. MOTOR OVERHEAT | A servo motor overheat occurred. |
| 431 | n AXIS : CNV. OVERLOAD | 1) PSM: Overheat occurred.  
2) β series SVU: Overheat occurred. |
| 432 | n AXIS : CNV. LOW VOLT CONTROL | 1) PSM: The control power supply voltage has dropped.  
2) α series SVU: The control power supply voltage has dropped. |
| 433 | n AXIS : CNV. LOW VOLT DC LINK | 1) PSM: The DC link voltage has dropped.  
2) PSMR: The DC link voltage has dropped.  
3) α series SVU: The DC link voltage has dropped.  
4) β series SVU: The DC link voltage has dropped. |
| 434 | n AXIS : INV. LOW VOLT CONTROL | SVM: The control power supply voltage has dropped. |
| 435 | n AXIS : INV. LOW VOLT DC LINK | SVM: The DC link voltage has dropped. |
| 436 | n AXIS : SOFTTHERMAL (OVC) | The digital servo software detected the soft thermal state (OVC). |
| 437 | n AXIS : CNV. OVERCURRENT POWER | PSM: Overcurrent flowed into the input circuit. |
| 438 | n AXIS : INV. ABNORMAL CURRENT | 1) SVM: The motor current is too high.  
2) α series SVU: The motor current is too high.  
3) β series SVU: The motor current is too high. |
| 439 | n AXIS : CNV. OVER VOLT DC LINK | 1) PSM: The DC link voltage is too high.  
2) PSMR: The DC link voltage is too high.  
3) α series SVU: The C link voltage is too high.  
4) β series SVU: The link voltage is too high. |
<table>
<thead>
<tr>
<th>Number</th>
<th>Message</th>
<th>Contents</th>
</tr>
</thead>
</table>
| 440 | n AXIS : CNV. EX DECELERATION POW. | 1) PSM: The regenerative discharge amount is too large.  
2) α series SVU: The regenerative discharge amount is too large. Alternatively, the regenerative discharge circuit is abnormal. |
| 441 | n AXIS : ABNORMAL CURRENT OFFSET | The digital servo software detected an abnormality in the motor current detection circuit. |
| 442 | n AXIS : CNV. CHARGE FAILURE | 1) PSM: The spare discharge circuit of the DC link is abnormal.  
2) PSMR: The spare discharge circuit of the DC link is abnormal. |
| 443 | n AXIS : CNV. COOLING FAN FAILURE | 1) PSM: The internal stirring fan failed.  
2) PSMR: The internal stirring fan failed.  
3) β series SVU: The internal stirring fan failed. |
| 444 | n AXIS : INV. COOLING FAN FAILURE | SVM: The internal stirring fan failed. |
| 445 | n AXIS : SOFT DISCONNECT ALARM | The digital servo software detected a broken wire in the pulse coder. |
| 446 | n AXIS : HARD DISCONNECT ALARM | A broken wire in the built-in pulse coder was detected by hardware. |
| 447 | n AXIS : HARD DISCONNECT (EXT) | A broken wire in the separate detector was detected by hardware. |
| 448 | n AXIS : UNMATCHED FEEDBACK ALARM | The sign of feedback data from the built-in pulse coder differs from that of feedback data from the separate detector. |
| 449 | n AXIS : INV. IPM_ALARM | 1) SVM: IPM (intelligent power module) detected an alarm.  
2) α series SVU: IPM (intelligent power module) detected an alarm. |
| 453 | n AXIS : SPC SOFT DISCONNECT ALARM | Software disconnection alarm of the α pulse coder. Turn off the power to the CNC, then remove and insert the pulse coder cable. If this alarm is issued again, replace the pulse coder. |
| 456 | n AXIS : ILLEGAL CURRENT LOOP | An illegal current control period was specified. The amplifier pulse module in use does not match high-speed HRV. Alternatively, the system does not satisfy a constraint for performing high-speed HRV control. |
| 457 | n AXIS : ILLEGAL HI HRV (250US) | It is specified that, when the current control period is 250 ms, high-speed HRV control is to be used. |
| 458 | n AXIS : CURRENT LOOP ERROR | The specified current control period does not match the actual current control period. |
| 459 | n AXIS : HI HRV SETTING ERROR | In a pair of axes in which one axis has an odd servo axis number (parameter No. 1023) and the other has an even servo axis number that is adjacent to the odd servo axis number, high-speed HRV control is supported for one of the axes and not supported for the other axis. |
| 460 | n AXIS : FSSB DISCONNECT | FSSB communication was disconnected suddenly. The possible causes are as follows:  
1) The FSSB communication cable was disconnected or broken.  
2) The power to the amplifier was turned off suddenly.  
3) A low-voltage alarm was issued by the amplifier. |
| 461 | n AXIS : ILLEGAL AMP INTERFACE | The axes of the 2-axis amplifier were assigned to the fast type interface. |
| 462 | n AXIS : SEND CNC DATA FAILED | Because of an FSSB communication error, a slave could not receive correct data. |
| 463 | n AXIS : SEND SLAVE DATA FAILED | Because of an FSSB communication error, the servo system could not receive correct data. |
| 464 | n AXIS : WRITE ID DATA FAILED | An attempt was made to write maintenance information on the amplifier maintenance screen, but it failed. |
| 465 | n AXIS : READ ID DATA FAILED | At power-up, amplifier initial ID information could not be read. |
The maximum current rating for the amplifier does not match that for the motor.

The servo function for the following has not been enabled when an axis occupying a single DSP (corresponding to two ordinary axes) is specified on the axis setting screen.
1. High-speed current loop (bit 0 of parameter No. 2004 = 1)
2. High-speed interface axis (bit 4 of parameter No. 2005 = 1)

This alarm is issued if it is specified that high-speed HRV control is to be used for a controlled axis connected to an amplifier for which high-speed HRV control cannot be used.

The details of servo alarm are displayed in the diagnosis display (No. 200 and No. 204) as shown below.

When OVL equal 1 in diagnostic data No. 200 (servo alarm No. 400 is being generated):

#7 (OVL) : Motor overheating
1 : Amplifier overheating

When FBAL equal 1 in diagnostic data No. 200 (servo alarm No. 416 is being generated):

<table>
<thead>
<tr>
<th>ALD</th>
<th>EXP</th>
<th>Alarm details</th>
</tr>
</thead>
<tbody>
<tr>
<td>0</td>
<td>0</td>
<td>Built-in pulse coder disconnection (hardware)</td>
</tr>
<tr>
<td>1</td>
<td>1</td>
<td>Separately installed pulse coder disconnection (hardware)</td>
</tr>
<tr>
<td>0</td>
<td>0</td>
<td>Pulse encoder is not connected due to software.</td>
</tr>
</tbody>
</table>

When OFS equal 1 in diagnostic data No. 204 (servo alarm No. 404 is being generated):

#6 (OFS) : A current conversion error has occurred in the digital servo.
#5 (MCC) : A magnetic contactor contact in the servo amplifier has welded.
#4 (LDA) : The LED indicates that serial pulse coder C is defective.
#3 (PMS) : A feedback pulse error has occurred because the feedback cable is defective.
## 6) Over travel alarms

<table>
<thead>
<tr>
<th>Number</th>
<th>Message</th>
<th>Contents</th>
</tr>
</thead>
<tbody>
<tr>
<td>500</td>
<td>OVER TRAVEL : +n</td>
<td>Exceeded the n–th axis + side stored stroke limit I. (Parameter No.1320 or 1326 Notes)</td>
</tr>
<tr>
<td>501</td>
<td>OVER TRAVEL : –n</td>
<td>Exceeded the n–th axis – side stored stroke limit I. (Parameter No.1321 or 1327 Notes)</td>
</tr>
<tr>
<td>502</td>
<td>OVER TRAVEL : +n</td>
<td>Exceeded the n–th axis + side stored stroke limit II. (Parameter No.1322 )</td>
</tr>
<tr>
<td>503</td>
<td>OVER TRAVEL : –n</td>
<td>Exceeded the n–th axis – side stored stroke limit II. (Parameter No.1323)</td>
</tr>
<tr>
<td>504</td>
<td>OVER TRAVEL : +n</td>
<td>Exceeded the n–th axis + side stored stroke limit III. (Parameter No.1324 )</td>
</tr>
<tr>
<td>505</td>
<td>OVER TRAVEL : –n</td>
<td>Exceeded the n–th axis – side stored stroke limit III. (Parameter No.1325 )</td>
</tr>
<tr>
<td>506</td>
<td>OVER TRAVEL : +n</td>
<td>Exceeded the n–th axis + side hardware OT.</td>
</tr>
<tr>
<td>507</td>
<td>OVER TRAVEL : –n</td>
<td>Exceeded the n–th axis – side hardware OT.</td>
</tr>
<tr>
<td>510</td>
<td>OVER TRAVEL : +n</td>
<td>A stroke limit check, made before starting movement, found that the end point of a block falls within the plus (+) side inhibited area along the n–axis defined by a stroke limit. Correct the program.</td>
</tr>
<tr>
<td>511</td>
<td>OVER TRAVEL : –n</td>
<td>A stroke limit check, made before starting movement, found that the end point of a block falls within the minus (–) side inhibited area along the N–axis defined by a stroke limit. Correct the program.</td>
</tr>
</tbody>
</table>

### NOTE

Over travel alarms No. 504 and No. 505 are provided only with the T series. Parameters 1326 and 1327 are effective when EXLM(stroke limit switch signal) is on.

## 7) Servo alarms

<table>
<thead>
<tr>
<th>Number</th>
<th>Message</th>
<th>Contents</th>
</tr>
</thead>
<tbody>
<tr>
<td>600</td>
<td>n AXIS : INV. DC LINK OVER CURRENT</td>
<td>SVM: The DC link current is too high. (\beta) SVU: The DC link current is too high.</td>
</tr>
<tr>
<td>601</td>
<td>n AXIS : INV. RADIATOR FAN FAILURE</td>
<td>SVM: The heat sink cooling fan is defective. (\beta) SVU: The heat sink cooling fan is defective.</td>
</tr>
<tr>
<td>602</td>
<td>n AXIS : INV. OVERHEAT</td>
<td>SVM: The servo amplifier is overheated.</td>
</tr>
<tr>
<td>603</td>
<td>n AXIS : INV. IPM ALARM (OH)</td>
<td>SVM: The IPM (intelligent power module) has detected an overheat alarm condition. (\beta) SVU: The IPM (intelligent power module) has detected an overheat alarm condition.</td>
</tr>
<tr>
<td>604</td>
<td>n AXIS : AMP. COMMUNICATION ERROR</td>
<td>Communication between the SVM and PSM is abnormal.</td>
</tr>
<tr>
<td>605</td>
<td>n AXIS : CNV. EX. DISCHARGE POWER.</td>
<td>PSMR: The motor regenerative power is too high.</td>
</tr>
<tr>
<td>606</td>
<td>n AXIS : CNV. RADIATOR FAN FAILURE</td>
<td>PSM: The fan for cooling the external heat sink is defective. PSMR: The fan for cooling the external heat sink is defective.</td>
</tr>
<tr>
<td>607</td>
<td>n AXIS : CNV. SINGLE PHASE FAILURE</td>
<td>PSM: One of the input power phases is abnormal. PSMR: One of the input power phases is abnormal.</td>
</tr>
<tr>
<td>Number</td>
<td>Message</td>
<td>Contents</td>
</tr>
<tr>
<td>--------</td>
<td>----------------------------------------------</td>
<td>------------------------------------------------------------------------------------------------------------------------------------------</td>
</tr>
</tbody>
</table>
| 700    | OVERHEAT: CONTROL UNIT                       | Control unit overheat  
Check that the fan motor operates normally, and clean the air filter.                                                              |
| 701    | OVERHEAT: FAN MOTOR                          | The fan motor on the top of the cabinet for the control unit is overheated. Check the operation of the fan motor and replace the motor if necessary. |
| 704    | OVERHEAT: SPINDLE                            | Spindle overheat in the spindle fluctuation detection  
(1) If the cutting load is heavy, relieve the cutting condition.  
(2) Check whether the cutting tool is share.  
(3) Another possible cause is a faulty spindle amp. |

8) Overheat alarms

<table>
<thead>
<tr>
<th>Number</th>
<th>Message</th>
<th>Contents</th>
</tr>
</thead>
<tbody>
<tr>
<td>740</td>
<td>RIGID TAP ALARM : EXCESS ERROR</td>
<td>During rigid tapping, the position deviation of the spindle in the stop state exceeded the setting.</td>
</tr>
<tr>
<td>741</td>
<td>RIGID TAP ALARM : EXCESS ERROR</td>
<td>During rigid tapping, the position deviation of the spindle in the stop state exceeded the setting.</td>
</tr>
<tr>
<td>742</td>
<td>RIGID TAP ALARM : LSI OVERFLOW</td>
<td>During rigid tapping, an LSI overflow occurred on the spindle side.</td>
</tr>
</tbody>
</table>

9) Rigid tapping alarm

<table>
<thead>
<tr>
<th>Number</th>
<th>Message</th>
<th>Contents</th>
</tr>
</thead>
</table>
| 749    | S–SPINDLE LSI ERROR                          | It is serial communication error while system is executing after power supply on. Following reasons can be considered.  
1) Optical cable connection is fault or cable is not connected or cable is cut.  
2) MAIN CPU board or option 2 board is fault.  
3) Spindle amp, printed board is fault.  
If this alarm occurs when CNC power supply is turned on or when this alarm can not be cleared even if CNC is reset, turn off the power supply also turn off the power supply in spindle side. |
| 750    | SPINDLE SERIAL LINK START FAULT              | This alarm is generated when the spindle control unit is not ready for starting correctly when the power is turned on in the system with the serial spindle.  
The four reasons can be considered as follows:  
1) An improperly connected optic cable, or the spindle control unit's power is OFF.  
2) When the NC power was turned on under alarm conditions other than SU–01 or AL–24 which are shown on the LED display of the spindle control unit.  
In this case, turn the spindle amplifier power off once and perform startup again.  
3) Other reasons (improper combination of hardware)  
This alarm does not occur after the system including the spindle control unit is activated.  
4) The second spindle (when SP2, bit 4 of parameter No. 3701, is 1) is in one of the above conditions 1) to 3).  
See diagnostic display No. 409 for details. |
| 752    | FIRST SPINDLE MODE CHANGE FAULT              | This alarm is generated if the system does not properly terminate a mode change. The modes include the Cs contouring, spindle positioning, rigid tapping, and spindle control modes. The alarm is activated if the spindle control unit does not respond correctly to the mode change command issued by the NC. |
| 754    | SPINDLE–1 ABNORMAL TORQUE ALM                | Abnormal first spindle motor load has been detected.                                                                                   |
### Appendix B

#### G. Alarm List

<table>
<thead>
<tr>
<th>Number</th>
<th>Message</th>
<th>Contents</th>
</tr>
</thead>
<tbody>
<tr>
<td>762</td>
<td>SECOND SPINDLE MODE CHANGE FAULT</td>
<td>Refer to alarm No. 752. (For 2nd axis)</td>
</tr>
<tr>
<td>764</td>
<td>SPINDLE–2 ABNORMAL TORQUE ALM</td>
<td>Same as alarm No. 754 (for the second spindle)</td>
</tr>
</tbody>
</table>

**The details of spindle alarm No.750**

The details of spindle alarm No. 750 are displayed in the diagnosis display (No. 409) as shown below.

<table>
<thead>
<tr>
<th>#7</th>
<th>#6</th>
<th>#5</th>
<th>#4</th>
<th>#3</th>
<th>#2</th>
<th>#1</th>
<th>#0</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td>SPE</td>
<td>S2E</td>
<td>S1E</td>
<td>SHE</td>
</tr>
</tbody>
</table>

- **#3 (SPE)** 0: In the spindle serial control, the serial spindle parameters fulfill the spindle unit startup conditions.
  1: In the spindle serial control, the serial spindle parameters do not fulfill the spindle unit startup conditions.
- **#2 (S2E)** 0: The second spindle is normal during the spindle serial control startup.
  1: The second spindle was detected to have a fault during the spindle serial control startup.
- **#1 (S1E)** 0: The first spindle is normal during the spindle serial control startup.
  1: The first spindle was detected to have a fault during the spindle axis serial control startup.
- **#0 (SHE)** 0: The serial communications module in the CNC is normal.
  1: The serial communications module in the CNC was detected to have a fault.

**Alarm List (Serial Spindle)**

When a serial spindle alarm occurs, the following number is displayed on the CNC.  \( n \) is a number corresponding to the spindle on which an alarm occurs.  \( n = 1: \) First spindle; \( n = 2: \) Second spindle; etc.

**Note**

Note that the meanings of the SPM indications differ depending on which LED, the red or yellow LED, is on. When the red LED is on, the SPM indicates a 2-digit alarm number. When the yellow LED is on, the SPM indicates an error number that designates a sequence problem (for example, when a rotation command is entered with the emergency stop state not released).

→ See “Error Codes (Serial Spindle).”
### Alarm Numbers and Alarms Displayed on the αi Series Spindle Amplifier

<table>
<thead>
<tr>
<th>No.</th>
<th>Message</th>
<th>SPM indication(*1)</th>
<th>Faulty location and remedy</th>
<th>Description</th>
</tr>
</thead>
</table>
| (750) | SPINDLE SERIAL LINK ERROR | A0 | 1 Replace the ROM on the SPM control printed circuit board.  
  2 Replace the SPM control printed circuit board. | The program does not start normally.  
  ROM series error or hardware abnormality on the SPM control printed circuit board |
| (749) | S-SPINDLE LSI ERROR | A1 | Replace the SPM control printed circuit board. | An abnormality was detected in the CPU peripheral circuit of the SPM control circuit. |
| 7n01 | SPN_n : MOTOR OVERHEAT | 01 | 1 Check and correct the peripheral temperature and load status.  
  2 If the cooling fan stops, replace it. | The internal temperature of the motor exceeds the specified level.  
  The motor is used in excess of the continuous rating, or the cooling component is abnormal. |
| 7n02 | SPN_n : EX SPEED ERROR | 02 | 1 Check and correct the cutting conditions to decrease the load.  
  2 Correct parameter No. 4082. | The motor speed cannot follow a specified speed.  
  An excessive motor load torque is detected.  
  The acceleration/deceleration time in parameter No. 4082 is insufficient. |
| 7n03 | SPN_n : FUSE ON DC LINK BLOWN | 03 | 1 Replace the SPM unit.  
  2 Check the motor insulation status. | The PSM becomes ready (0 is indicated), but the DC link voltage is too low in the SPM.  
  The fuse in the DC link section in the SPM is blown. (The power device is damaged or the motor is ground–fault.) |
| 7n04 | SPN_n : INPUT FUSE/POWER FAULT | 04 | Check the state of the input power supply to the PSM. | The PSM found a missing power supply phase. (PSM alarm E) |
| 7n06 | SPN_n : THERMAL SENSOR DISCONNECT | 06 | 1 Check and correct the parameter.  
  2 Replace the feedback cable. | The temperature sensor of the motor is disconnected. |
| 7n07 | SPN_n : OVERSPEED | 07 | Check for a sequence error. (For example, check whether spindle synchronization was specified when the spindle could not be turned.) | The motor speed has exceeded 115% of its rated speed.  
  When the spindle axis was in position control mode, positional deviations were accumulated excessively (SFR and SRV were turned off during spindle synchronization control.) |
| 7n09 | SPN_n : OVERHEAT MAIN CIRCUIT | 09 | 1 Improve the heat sink cooling status.  
  2 If the heat sink cooling fan stops, replace the SPM unit. | Abnormal temperature rise of the power transistor radiator |
| 7n11 | SPN_n : OVERVOLT POW CIRCUIT | 11 | 1 Check the selected PSM.  
  2 Check the input power voltage and change in power during motor deceleration. If the voltage exceeds 264 VAC (for the 200–V system) or 530 VAC (for the 400–V system), improve the power supply impedance. | Overvoltage of the DC link section of the PSM was detected. (PSM alarm indication: 7)  
  PSM selection error. (The maximum output specification of the PSM is exceeded.) |
<table>
<thead>
<tr>
<th>No.</th>
<th>Message</th>
<th>SPM indication(*)</th>
<th>Faulty location and remedy</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>7n12</td>
<td>SPN_n_ : OVERCURRENT POWER CIRCUIT</td>
<td>12</td>
<td>1. Check the motor insulation status. 2. Check the spindle parameters. 3. Replace the SPM unit.</td>
<td>The amplifier output current is abnormally high. A motor-specific parameter does not match the motor model. Poor motor insulation.</td>
</tr>
<tr>
<td>7n13</td>
<td></td>
<td></td>
<td>Replace the SPM control printed circuit board.</td>
<td>An abnormality was detected in the SPM control circuit. (SPM internal RAM request)</td>
</tr>
<tr>
<td>7n15</td>
<td>SPN_n_ : SP SWITCH CONTROL ALARM</td>
<td>15</td>
<td>1. Check and correct the ladder sequence. 2. Replace the switching MC.</td>
<td>The switch sequence in spindle switch/output switch operation is abnormal. The switching MC contact status check signal and command do not match.</td>
</tr>
<tr>
<td>7n18</td>
<td>SPN_n_ : SUMCHECK ERROR PGM DATA</td>
<td>18</td>
<td>Replace the SPM control printed circuit board.</td>
<td>Abnormality in an SPM control circuit component is detected. (Program ROM data is abnormal.)</td>
</tr>
<tr>
<td>7n19</td>
<td>SPN_n_ : EX OFFSET CURRENT U</td>
<td>19</td>
<td>Replace the SPM unit.</td>
<td>Abnormality in an SPM component is detected. (The initial value for the U phase current detection circuit is abnormal.)</td>
</tr>
<tr>
<td>7n20</td>
<td>SPN_n_ : EX OFFSET CURRENT V</td>
<td>20</td>
<td>Replace the SPM unit.</td>
<td>Abnormality in an SPM component is detected. (The initial value of the V phase current detection circuit is abnormal.)</td>
</tr>
<tr>
<td>7n21</td>
<td>SPN_n_ : POS SENSOR POLARITY ERROR</td>
<td>21</td>
<td>Check and correct the parameters. (No. 4000#0, 4001#4)</td>
<td>The polarity parameter setting of the position sensor is wrong.</td>
</tr>
<tr>
<td>7n24</td>
<td>SPN_n_ : SERIAL TRANSFER ERROR</td>
<td>24</td>
<td>1. Place the CNC–to–spindle cable away from the power cable. 2. Replace the cable.</td>
<td>The CNC power is turned off (normal power–off or broken cable). An error is detected in communication data transferred to the CNC.</td>
</tr>
<tr>
<td>7n27</td>
<td>SPN_n_ : DISCONNECT POS–CODER</td>
<td>27</td>
<td>Replace the cable.</td>
<td>The spindle position coder (connector JYA3) signal is abnormal.</td>
</tr>
<tr>
<td>7n29</td>
<td>SPN_n_ : SHORTTIME OVERLOAD</td>
<td>29</td>
<td>Check and correct the load status.</td>
<td>Excessive load has been applied continuously for a certain period of time. (This alarm is issued also when the motor shaft has been locked in the excitation state.)</td>
</tr>
<tr>
<td>7n30</td>
<td>SPN_n_ : OVERCURRENT POWER CIRCUIT</td>
<td>30</td>
<td>Check and correct the power supply voltage.</td>
<td>Overcurrent is detected in PSM main circuit input. (PSM alarm indication: 1) Unbalanced power supply. PSM selection error (The maximum PSM output specification is exceeded.)</td>
</tr>
<tr>
<td>7n31</td>
<td>SPN_n_ : MOTOR LOCK</td>
<td>31</td>
<td>Check and correct the load status.</td>
<td>The motor cannot rotate at a specified speed. (A level not exceeding the SST level for the rotation command has existed continuously.)</td>
</tr>
<tr>
<td>No.</td>
<td>Message</td>
<td>SPM indication(*1)</td>
<td>Faulty location and remedy</td>
<td>Description</td>
</tr>
<tr>
<td>-----</td>
<td>---------</td>
<td>--------------------</td>
<td>-----------------------------</td>
<td>-------------</td>
</tr>
<tr>
<td>7n32</td>
<td>SPN_n : RAM FAULT SERIAL LSI</td>
<td>32</td>
<td>Replace the SPM control printed circuit board.</td>
<td>Abnormality in an SPM control circuit component is detected. (The LSI device for serial transfer is abnormal.)</td>
</tr>
<tr>
<td>7n33</td>
<td>SPN_n : SHORTAGE POWER CHARGE</td>
<td>33</td>
<td>1 Check the number of connected SVM and SPM units. 2 Replace the PSM unit.</td>
<td>Charging the main circuit was not completed within a prescribed time period.</td>
</tr>
<tr>
<td>7n34</td>
<td>SPN_n : PARAMETER SETTING ERROR</td>
<td>34</td>
<td>Correct a parameter value according to the manual. If the parameter number is unknown, connect the spindle check board, and check the indicated parameter.</td>
<td>Parameter data exceeding the allowable limit is set.</td>
</tr>
<tr>
<td>7n36</td>
<td>SPN_n : OVERFLOW ERROR COUNTER</td>
<td>36</td>
<td>Check whether the position gain value is too large, and correct the value.</td>
<td>An error counter overflow occurred.</td>
</tr>
<tr>
<td>7n37</td>
<td>SPN_n : SPEED DETECT PAR. ERROR</td>
<td>37</td>
<td>Correct the value according to the parameter manual.</td>
<td>The setting of the parameter for the number of pulses in the speed detector is incorrect.</td>
</tr>
<tr>
<td>7n41</td>
<td>SPN_n : 1–ROT POS–CODER ERROR</td>
<td>41</td>
<td>1 Check and correct the parameter. 2 Replace the cable.</td>
<td>1 The 1–rotation signal of the spindle position coder (connector JYA3) is abnormal. 2 Parameter setting error</td>
</tr>
<tr>
<td>7n42</td>
<td>SPN_n : NO 1–ROT. POS–CODER DETECT</td>
<td>42</td>
<td>Replace the cable.</td>
<td>The 1–rotation signal of the spindle position coder (connector JYA3) is disconnected.</td>
</tr>
<tr>
<td>7n43</td>
<td>SPN_n : DISCON. PC FOR DIF. SP. MODE</td>
<td>43</td>
<td>Replace the cable.</td>
<td>The differential speed position coder signal is abnormal.</td>
</tr>
<tr>
<td>7n46</td>
<td>SPN_n : SCREW 1–ROT POS–COD. ALARM</td>
<td>46</td>
<td>1 Check and correct the parameter. 2 Replace the cable. 3 Re–adjust the BZi sensor signal.</td>
<td>An abnormality equivalent to alarm 41 was detected during thread cutting operation.</td>
</tr>
<tr>
<td>7n47</td>
<td>SPN_n : POS–CODER SIGNAL ABNORMAL</td>
<td>47</td>
<td>1 Replace the cable. 2 Correct the cable layout (vicinity of the power line).</td>
<td>1 The A/B phase signal of the spindle position coder (connector JYA3) is abnormal. 2 The relationship between the A/B phase and 1–rotation signal is incorrect (Pulse interval mismatch).</td>
</tr>
<tr>
<td>7n49</td>
<td>SPN_n : HIGH CONV. DIF. SPEED</td>
<td>49</td>
<td>Check whether the calculated differential speed value exceeds the maximum motor speed.</td>
<td>In differential speed mode, the speed of the other spindle converted to the speed of the local spindle has exceeded the allowable limit (the differential speed is calculated by multiplying the speed of the other spindle by the gear ratio).</td>
</tr>
<tr>
<td>7n50</td>
<td>SPN_n : SPNDL CONTROL OVERSPEED</td>
<td>50</td>
<td>Check whether the calculated value exceeds the maximum motor speed.</td>
<td>In spindle synchronization, the speed command calculation value exceeded the allowable limit (the motor speed is calculated by multiplying the specified spindle speed by the gear ratio).</td>
</tr>
<tr>
<td>No.</td>
<td>Message</td>
<td>SPM indication(*1)</td>
<td>Faulty location and remedy</td>
<td>Description</td>
</tr>
<tr>
<td>------</td>
<td>---------</td>
<td>--------------------</td>
<td>----------------------------</td>
<td>-------------</td>
</tr>
</tbody>
</table>
| 7n51 | SPN_n_ : LOW VOLT DC LINK | 51 | 1 Check and correct the power supply voltage.  
2 Replace the MC. | Input voltage drop was detected.  
(PSM alarm indication: 4)  
(Momentary power failure or poor MC contact) |
| 7n52 | SPN_n_ : ITP SIGNAL ABNORMAL I | 52 | 1 Replace the SPM control printed circuit board.  
2 Replace the spindle interface printed circuit board in the CNC. | NC interface abnormality was detected (the ITP signal stopped). |
| 7n53 | SPN_n_ : ITP SIGNAL ABNORMAL II | 53 | 1 Replace the SPM control printed circuit board.  
2 Replace the spindle interface printed circuit board in the CNC. | NC interface abnormality was detected (the ITP signal stopped). |
| 7n54 | SPN_n_ : OVERLOAD CURRENT | 54 | Review the load state. | An overload current was detected. |
| 7n55 | SPN_n_ : POWER LINE SWITCH ERROR | 55 | 1 Replace the magnetic contactor.  
2 Check and correct the sequence. | The power line state signal of the magnetic contactor for selecting a spindle or output is abnormal. |
| 7n56 | SPN_n_ : INNER COOLING FAN STOP | 56 | Replace the SPM unit. | The cooling fan in the SPM control circuit stopped. |
| 7n57 | SPN_n_ : EX DECELERATION POWER | 57 | 1 Decrease the acceleration/deceleration duty.  
2 Check the cooling condition (peripheral temperature).  
3 If the cooling fan stops, replace the resistor.  
4 If the resistance is abnormal, replace the resistor. | An overload was detected in the regenerative resistance.  
(PSMR alarm indication: H)  
Thermostat operation or short–time overload was detected.  
The regenerative resistor was disconnected, or an abnormal resistance was detected. |
| 7n58 | SPN_n_ : OVERLOAD IN PSM | 58 | 1 Check the PSM cooling status.  
2 Replace the PSM unit. | The temperature of the radiator of the PSM has increased abnormally.  
(PSM alarm indication: 3) |
| 7n59 | SPN_n_ : COOLING FAN STOP IN PSM | 59 | Replace the SPM unit. | The cooling fan in the PSM stopped.  
(PSM alarm indication: 2) |
| 7n61 | | 61 | Check the parameter settings. | An error between the semi–closed loop and full–closed loop is excessive during use of the dual position feedback function. |
| 7n65 | | 65 | 1 Check the parameter settings.  
2 Check the sensor connection and signal.  
3 Check the power line connection. | A travel distance is excessive during pole determination. |
| 7n73 | SPN_n_ : MOTOR SENSOR DISCONNECTED | 73 | 1 Replace the feedback cable.  
2 Check the shield processing.  
3 Check and correct the connection.  
4 Adjust the sensor. | The motor sensor feedback signal is not present. |
<p>| 7n74 | SPN_n_ : CPU TEST ERROR | 74 | Replace the SPM control printed circuit board. | An error was detected in a CPU test. |
| 7n75 | SPN_n_ : CRC ERROR | 75 | Replace the SPM control printed circuit board. | An error was detected in a CRC test. |</p>
<table>
<thead>
<tr>
<th>No.</th>
<th>Message</th>
<th>SPM indication(*1)</th>
<th>Faulty location and remedy</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>7n79</td>
<td>SPN_n_ : INITIAL TEST ERROR</td>
<td>79</td>
<td>Replace the SPM control printed–circuit board.</td>
<td>An error was detected in an initial test operation.</td>
</tr>
</tbody>
</table>
| 7n81| SPN_n_ : 1–ROT MOTOR SENSOR ERROR | 81                | 1. Check and correct the parameter.  
2. Replace the feedback cable.  
3. Adjust the sensor.                      | The one–rotation signal of the motor sensor cannot be correctly detected.                        |
| 7n82| SPN_n_ : NO 1–ROT MOTOR SENSOR | 82                | 1. Replace the feedback cable.  
2. Adjust the sensor.                         | The one–rotation signal of the motor sensor is not generated.                                   |
| 7n83| SPN_n_ : MOTOR SENSOR SIGNAL ERROR | 83                 | 1. Replace the feedback cable.  
2. Adjust the sensor.                         | An irregularity was detected in a motor sensor feedback signal.                                |
| 7n84| SPN_n_ : SPNDL SENSOR DISCONNECTED | 84                | 1. Replace the feedback cable.  
2. Check the shield processing.  
3. Check and correct the connection.  
4. Check and correct the parameter.  
5. Adjust the sensor.                      | The spindle sensor feedback signal is not present.                                              |
| 7n85| SPN_n_ : 1–ROT SPNDL SENSOR ERROR | 85                | 1. Check and correct the parameter.  
2. Replace the feedback cable.  
3. Adjust the sensor.                         | The one–rotation signal of the spindle sensor cannot be correctly detected.                    |
| 7n86| SPN_n_ : NO 1–ROT SPNDL SENSOR ERROR | 86                | 1. Replace the feedback cable.  
2. Adjust the sensor.                         | The one–rotation signal of the spindle sensor is not generated.                                |
| 7n87| SPN_n_ : SPNDL SENSOR SIGNAL ERROR | 87                | The one–rotation signal of the spindle sensor is not generated.  
| 7n88| SPN_n_ : COOLING RADIFAN FAILURE | 88                | Replace the SPM external cooling fan.                                                        | The external cooling fan stopped.                                                                |
| 7n89|                                |                    | 1. Check the connection in the SPM and sub–module SM.  
2. Replace the sub–module SM.  
3. Replace the SPM control printed circuit board.                     | The sub–module SM is abnormal.                                                                    |
<p>| 7n97| SPN_n_ : OTHER SPINDLE ALARM  | 97                 | Replace the SPM.                                                                           | Another irregularity was detected.                                                                |
| 7n98| SPN_n_ : OTHER CONVERTER ALARM | 98                | Check the PSM alarm display.                                                                | A PSM alarm was detected.                                                                         |</p>
<table>
<thead>
<tr>
<th>No.</th>
<th>Message</th>
<th>SPM indication(*1)</th>
<th>Faulty location and remedy</th>
<th>Description</th>
</tr>
</thead>
</table>
| 9001 | SPN_n_ : MOTOR OVERHEAT | 01 | 1 Check and correct the peripheral temperature and load status.  
2 If the cooling fan stops, replace it. | The internal temperature of the motor exceeds the specified level.  
The motor is used in excess of the continuous rating, or the cooling component is abnormal. |
| 9002 | SPN_n_ : EX SPEED ERROR | 02 | 1 Check and correct the cutting conditions to decrease the load.  
2 Correct parameter No. 4082. | The motor speed cannot follow a specified speed.  
An excessive motor load torque is detected.  
The acceleration/deceleration time in parameter No. 4082 is insufficient. |
| 9003 | SPN_n_ : FUSE ON DC LINK BLOWN | 03 | 1 Replace the SPM unit.  
2 Check the motor insulation status. | The PSM becomes ready (0 is indicated), but the DC link voltage is too low in the SPM.  
The fuse in the DC link section in the SPM is blown.  
(The power device is damaged or the motor is ground-fault.) |
| 9004 | SPN_n_ : INPUT FUSE/POWER FAULT | 04 | Check the state of the input power supply to the PSM. | The PSM found a missing power supply phase.  
(PSM alarm E) |
| 9006 | SPN_n_ : THERMAL SENSOR DISCONNECT | 06 | 1 Check and correct the parameter.  
2 Replace the feedback cable. | The temperature sensor of the motor is disconnected. |
| 9007 | SPN_n_ : OVERSPEED | 07 | Check for a sequence error.  
(For example, check whether spindle synchronization was specified when the spindle could not be turned.) | The motor speed has exceeded 115% of its rated speed.  
When the spindle axis was in position control mode, positional deviations were accumulated excessively (SFR and SRV were turned off during spindle synchronization control.) |
| 9009 | SPN_n_ : OVERHEAT MAIN CIRCUIT | 09 | 1 Improve the heat sink cooling status.  
2 If the heat sink cooling fan stops, replace the SPM unit. | Abnormal temperature rise of the power transistor radiator |
| 9011 | SPN_n_ : OVERVOLT POW CIRCUIT | 11 | 1 Check the selected PSM.  
2 Check the input power voltage and change in power during motor deceleration.  
If the voltage exceeds 264 VAC (for the 200–V system) or 530 VAC (for the 400–V system), improve the power supply impedance. | Overvoltage of the DC link section of the PSM was detected.  
(PSM alarm indication: 7)  
PSM selection error.  
(The maximum output specification of the PSM is exceeded.) |
| 9012 | SPN_n_ : OVERCURRENT POW CIRCUIT | 12 | 1 Check the motor insulation status.  
2 Check the spindle parameters.  
3 Replace the SPM unit. | The amplifier output current is abnormally high.  
A motor–specific parameter does not match the motor model.  
Poor motor insulation |
| 9013 | | 13 | Replace the SPM control printed circuit board. | An abnormality was detected in the SPM control circuit.  
(PSM internal RAM request) |
<table>
<thead>
<tr>
<th>No.</th>
<th>Message</th>
<th>SPM indication(*1)</th>
<th>Faulty location and remedy</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>9015</td>
<td>SPN_n_ : SP SWITCH CONTROL ALARM</td>
<td>15</td>
<td>1. Check and correct the ladder sequence.  2. Replace the switching MC.</td>
<td>The switch sequence in spindle switch/output switch operation is abnormal. The switching MC contact status check signal and command do not match.</td>
</tr>
<tr>
<td>9018</td>
<td>SPN_n_ : SUMCHECK ERROR PGM DATA</td>
<td>18</td>
<td>Replace the SPM control printed circuit board.</td>
<td>Abnormality in an SPM control circuit component is detected. (Program ROM data is abnormal.)</td>
</tr>
<tr>
<td>9019</td>
<td>SPN_n_ : EX OFFSET CURRENT U</td>
<td>19</td>
<td>Replace the SPM unit.</td>
<td>Abnormality in an SPM component is detected. (The initial value for the U phase current detection circuit is abnormal.)</td>
</tr>
<tr>
<td>9020</td>
<td>SPN_n_ : EX OFFSET CURRENT V</td>
<td>20</td>
<td>Replace the SPM unit.</td>
<td>Abnormality in an SPM component is detected. (The initial value of the V phase current detection circuit is abnormal.)</td>
</tr>
<tr>
<td>9021</td>
<td>SPN_n_ : POS SENSOR POLARITY ERROR</td>
<td>21</td>
<td>Check and correct the parameters. (No. 4000#0, 4001#4)</td>
<td>The polarity parameter setting of the position sensor is wrong.</td>
</tr>
<tr>
<td>9024</td>
<td>SPN_n_ : SERIAL TRANSFER ERROR</td>
<td>24</td>
<td>1. Place the CNC–to–spindle cable away from the power cable.  2. Replace the cable.</td>
<td>The CNC power is turned off (normal power–off or broken cable). An error is detected in communication data transferred to the CNC.</td>
</tr>
<tr>
<td>9027</td>
<td>SPN_n_ : DISCONNECT POS–CODER</td>
<td>27</td>
<td>Replace the cable.</td>
<td>The spindle position coder (connector JYA3) signal is abnormal.</td>
</tr>
<tr>
<td>9029</td>
<td>SPN_n_ : SHORTTIME OVERLOAD</td>
<td>29</td>
<td>Check and correct the load status.</td>
<td>Excessive load has been applied continuously for a certain period of time. (This alarm is issued also when the motor shaft has been locked in the excitation state.)</td>
</tr>
<tr>
<td>9030</td>
<td>SPN_n_ : OVERCURRENT POWER CIRCUIT</td>
<td>30</td>
<td>Check and correct the power supply voltage.</td>
<td>Overcurrent is detected in PSM main circuit input. (PSM alarm indication: 1) Unbalanced power supply. PSM selection error (The maximum PSM output specification is exceeded.)</td>
</tr>
<tr>
<td>9031</td>
<td>SPN_n_ : MOTOR LOCK</td>
<td>31</td>
<td>Check and correct the load status.</td>
<td>The motor cannot rotate at a specified speed. (A level not exceeding the SST level for the rotation command has existed continuously.)</td>
</tr>
<tr>
<td>9032</td>
<td>SPN_n_ : RAM FAULT SERIAL LSI</td>
<td>32</td>
<td>Replace the SPM control printed circuit board.</td>
<td>Abnormality in an SPM control circuit component is detected. (The LSI device for serial transfer is abnormal.)</td>
</tr>
<tr>
<td>9033</td>
<td>SPN_n_ : SHORTAGE POWER CHARGE</td>
<td>33</td>
<td>1. Check the number of connected SVM and SPM units.  2. Replace the PSM unit.</td>
<td>Charging the main circuit was not completed within a prescribed time period.</td>
</tr>
<tr>
<td>No.</td>
<td>Message</td>
<td>SPM indication(*1)</td>
<td>Faulty location and remedy</td>
<td>Description</td>
</tr>
<tr>
<td>-----</td>
<td>---------</td>
<td>------------------</td>
<td>---------------------------</td>
<td>-------------</td>
</tr>
<tr>
<td>9034</td>
<td>SPN_n_ : PARAMETER SETTING ERROR</td>
<td>34</td>
<td>Correct a parameter value according to the manual. If the parameter number is unknown, connect the spindle check board, and check the indicated parameter.</td>
<td>Parameter data exceeding the allowable limit is set.</td>
</tr>
<tr>
<td>9036</td>
<td>SPN_n_ : OVERFLOW ERROR COUNTER</td>
<td>36</td>
<td>Check whether the position gain value is too large, and correct the value.</td>
<td>An error counter overflow occurred.</td>
</tr>
<tr>
<td>9037</td>
<td>SPN_n_ : SPEED DETECT PAR. ERROR</td>
<td>37</td>
<td>Correct the value according to the parameter manual.</td>
<td>The setting of the parameter for the number of pulses in the speed detector is incorrect.</td>
</tr>
<tr>
<td>9041</td>
<td>SPN_n_ : 1–ROT POS–CODER ERROR</td>
<td>41</td>
<td>1 Check and correct the parameter. 2 Replace the cable.</td>
<td>1 The 1–rotation signal of the spindle position coder (connector JYA3) is abnormal. 2 Parameter setting error</td>
</tr>
<tr>
<td>9042</td>
<td>SPN_n_ : NO 1–ROT. POS–CODER DETECT</td>
<td>42</td>
<td>Replace the cable.</td>
<td>The 1–rotation signal of the spindle position coder (connector JYA3) is disconnected.</td>
</tr>
<tr>
<td>9043</td>
<td>SPN_n_ : DISCON. PC FOR DIF. SP. MODE</td>
<td>43</td>
<td>Replace the cable.</td>
<td>The differential speed position coder signal is abnormal.</td>
</tr>
<tr>
<td>9046</td>
<td>SPN_n_ : SCREW 1–ROT POS–COD. ALARM</td>
<td>46</td>
<td>1 Check and correct the parameter. 2 Replace the cable. 3 Re–adjust the BZ sensor signal.</td>
<td>An abnormality equivalent to alarm 41 was detected during thread cutting operation.</td>
</tr>
<tr>
<td>9047</td>
<td>SPN_n_ : POS–CODER SIGNAL ABNORMAL</td>
<td>47</td>
<td>1 Replace the cable. 2 Correct the cable layout (vicinity of the power line).</td>
<td>1 The A/B phase signal of the spindle position coder (connector JYA3) is abnormal. 2 The relationship between the A/B phase and 1–rotation signal is incorrect (Pulse interval mismatch).</td>
</tr>
<tr>
<td>9049</td>
<td>SPN_n_ : HIGH CONV. DIF. SPEED</td>
<td>49</td>
<td>Check whether the calculated differential speed value exceeds the maximum motor speed.</td>
<td>In differential speed mode, the speed of the other spindle converted to the speed of the local spindle has exceeded the allowable limit (the differential speed is calculated by multiplying the speed of the other spindle by the gear ratio).</td>
</tr>
<tr>
<td>9050</td>
<td>SPN_n_ : SPNDL CONTROL OVERSPEED</td>
<td>50</td>
<td>Check whether the calculated value exceeds the maximum motor speed.</td>
<td>In spindle synchronization, the speed command calculation value exceeded the allowable limit (the motor speed is calculated by multiplying the specified spindle speed by the gear ratio).</td>
</tr>
<tr>
<td>9051</td>
<td>SPN_n_ : LOW VOLT DC LINK</td>
<td>51</td>
<td>1 Check and correct the power supply voltage. 2 Replace the MC.</td>
<td>Input voltage drop was detected. (PSM alarm indication: 4) (Momentary power failure or poor MC contact)</td>
</tr>
<tr>
<td>No.</td>
<td>Message</td>
<td>SPM indication(*1)</td>
<td>Faulty location and remedy</td>
<td>Description</td>
</tr>
<tr>
<td>-----</td>
<td>---------</td>
<td>-------------------</td>
<td>-----------------------------</td>
<td>-------------</td>
</tr>
</tbody>
</table>
| 9052 | SPN_n_ : ITP SIGNAL ABNORMAL I | 52 | 1 Replace the SPM control printed circuit board.  
2 Replace the spindle interface printed circuit board in the CNC. | NC interface abnormality was detected (the ITP signal stopped). |
| 9053 | SPN_n_ : ITP SIGNAL ABNORMAL II | 53 | 1 Replace the SPM control printed circuit board.  
2 Replace the spindle interface printed circuit board in the CNC. | NC interface abnormality was detected (the ITP signal stopped). |
| 9054 | SPN_n_ : OVERLOAD CURRENT | 54 | Review the load state. | An overload current was detected. |
| 9055 | SPN_n_ : POWER LINE SWITCH ERROR | 55 | 1 Replace the magnetic contactor.  
2 Check and correct the sequence. | The power line state signal of the magnetic contactor for selecting a spindle or output is abnormal. |
| 9056 | SPN_n_ : INNER COOLING FAN STOP | 56 | Replace the SPM unit. | The cooling fan in the SPM control circuit stopped. |
| 9057 | SPN_n_ : EX DECELERATION POWER | 57 | 1 Decrease the acceleration/deceleration duty.  
2 Check the cooling condition (peripheral temperature).  
3 If the cooling fan stops, replace the resistor.  
4 If the resistance is abnormal, replace the resistor. | An overload was detected in the regenerative resistance. (PSMR alarm indication: H) Thermostat operation or short-time overload was detected. The regenerative resistor was disconnected, or an abnormal resistance was detected. |
| 9058 | SPN_n_ : OVERLOAD IN PSM | 58 | 1 Check the PSM cooling status.  
2 Replace the PSM unit. | The temperature of the radiator of the PSM has increased abnormally. (PSM alarm indication: 3) |
| 9059 | SPN_n_ : COOLING FAN STOP IN PSM | 59 | Replace the SPM unit. | The cooling fan in the PSM stopped. (PSM alarm indication: 2) |
| 9061 | | | Check the parameter settings. | An error between the semi-closed loop and full-closed loop is excessive during use of the dual position feedback function. |
| 9065 | | | Check the parameter settings.  
2 Check the sensor connection and signal.  
3 Check the power line connection. | A travel distance is excessive during pole determination. |
| 9073 | SPN_n_ : MOTOR SENSOR DISCONNECTED | 73 | 1 Replace the feedback cable.  
2 Check the shield processing.  
3 Check and correct the connection.  
4 Adjust the sensor. | The motor sensor feedback signal is not present. |
<p>| 9074 | SPN_n_ : CPU TEST ERROR | 74 | Replace the SPM control printed–circuit board. | An error was detected in a CPU test. |
| 9075 | SPN_n_ : CRC ERROR | 75 | Replace the SPM control printed–circuit board. | An error was detected in a CRC test. |
| 9079 | SPN_n_ : INITIAL TEST ERROR | 79 | Replace the SPM control printed–circuit board. | An error was detected in an initial test operation. |</p>
<table>
<thead>
<tr>
<th>No.</th>
<th>Message</th>
<th>SPM indication (*1)</th>
<th>Faulty location and remedy</th>
<th>Description</th>
</tr>
</thead>
</table>
| 9081 | SPN_n_ : 1–ROT MOTOR SENSOR ERROR | 81 | 1 Check and correct the parameter.  
2 Replace the feedback cable.  
3 Adjust the sensor. | The one–rotation signal of the motor sensor cannot be correctly detected. |
| 9082 | SPN_n_ : NO 1–ROT MOTOR SENSOR | 82 | 1 Replace the feedback cable.  
2 Adjust the sensor. | The one–rotation signal of the motor sensor is not generated. |
| 9083 | SPN_n_ : MOTOR SENSOR SIGNAL ERROR | 83 | 1 Replace the feedback cable.  
2 Adjust the sensor. | An irregularity was detected in a motor sensor feedback signal. |
| 9084 | SPN_n_ : SPNDL SENSOR DISCONNECTED | 84 | 1 Replace the feedback cable.  
2 Check the shield processing.  
3 Check and correct the connection.  
4 Check and correct the parameter.  
5 Adjust the sensor. | The spindle sensor feedback signal is not present. |
| 9085 | SPN_n_ : 1–ROT SPNDL SENSOR ERROR | 85 | 1 Check and correct the parameter.  
2 Replace the feedback cable.  
3 Adjust the sensor. | The one–rotation signal of the spindle sensor cannot be correctly detected. |
| 9086 | SPN_n_ : NO 1–ROT SPNDL SENSOR ERROR | 86 | 1 Replace the feedback cable.  
2 Adjust the sensor. | The one–rotation signal of the spindle sensor cannot be correctly detected. |
| 9087 | SPN_n_ : SPNDL SENSOR SIGNAL ERROR | 87 | The one–rotation signal of the spindle sensor is not generated. | An irregularity was detected in a spindle sensor feedback signal. |
| 9088 | SPN_n_ : COOLING RADIFAN FAILURE | 88 | Replace the SPM external cooling fan. | The external cooling fan stopped. |
| 9111 | | "b1" | Replace the SVPM control printed circuit board. | The voltage of the converter control power supply is low. |
| 9120 | | "C0" | 1 Replace the communication cables between the CNC and SPM.  
2 Replace the SPM control printed circuit board.  
3 Replace the spindle interface printed circuit board in the CNC. | Communication data alarm |
| 9121 | | "C1" | 1 Replace the communication cables between the CNC and SPM.  
2 Replace the SPM control printed circuit board.  
3 Replace the spindle interface printed circuit board in the CNC. | Communication data alarm |
| 9122 | | "C2" | 1 Replace the communication cables between the CNC and SPM.  
2 Replace the SPM control printed circuit board.  
3 Replace the spindle interface printed circuit board in the CNC. | Communication data alarm |
ERROR CODES (SERIAL SPINDLE)

NOTE*1
The SVPM indicates an error code as a 2–digit number in STATUS1 when the yellow LED is on. Error codes appear in CNC diagnostic data No. 712. When the red LED is on, the SVPM indicates the number of an alarm generated by the serial spindle, providing a different meaning from when the yellow LED is on.

→ See "Alarms (Serial Spindle)."

<table>
<thead>
<tr>
<th>SVPM STATUS1 Indication(*1)</th>
<th>Description</th>
<th>Faulty location and remedy</th>
</tr>
</thead>
<tbody>
<tr>
<td>01</td>
<td>When neither *ESP (emergency stop signal; there are two types of signals: input signal and SVPM contact signal(*2)) nor MRDY (machine ready signal) is input, SFR (forward rotation command), SRV (reverse rotation command), or ORCM (orientation command) is input.</td>
<td>Check the *ESP and MRDY sequences. For MRDY, pay attention to the parameter setting (bit 0 of parameter No. 4001) regarding the use of the MRDY signal.</td>
</tr>
<tr>
<td>03</td>
<td>When the parameter settings are made not to use the position sensor, meaning that position control is not performed (bits 3, 2, 1, 0 of parameter No. 4002 = 0, 0, 0, 0), a Cs contour control command is input. In this case, the motor is not excited.</td>
<td>Check the parameter settings.</td>
</tr>
<tr>
<td>04</td>
<td>When the parameter settings are made not to use the position sensor, meaning that position control is not performed (bits 3, 2, 1, 0 of parameter No. 4002 = 0, 0, 0, 0), a servo mode (such as rigid tapping or spindle positioning) command or spindle synchronization control command is input. In this case, the motor is not excited.</td>
<td>Check the parameter settings.</td>
</tr>
<tr>
<td>05</td>
<td>When an option parameter is not set for the orientation function, ORCM (orientation command) is input.</td>
<td>Check the parameter settings for the orientation function.</td>
</tr>
<tr>
<td>06</td>
<td>When the output switching control function is not used, the low–speed winding is selected (RCH = 1).</td>
<td>Check the power line status signal (RCH).</td>
</tr>
<tr>
<td>07</td>
<td>When a Cs contour control command is input, SFR (forward rotation command) or SRV (reverse rotation command) is not input.</td>
<td>Check the sequence.</td>
</tr>
<tr>
<td>08</td>
<td>When a servo mode (such as rigid tapping or spindle positioning) control command is input, SFR (forward rotation command) or SRV (reverse rotation command) is not input.</td>
<td>Check the sequence.</td>
</tr>
<tr>
<td>09</td>
<td>When a spindle synchronization control command is input, SFR (forward rotation command) or SRV (reverse rotation command) is not input.</td>
<td>Check the sequence.</td>
</tr>
<tr>
<td>10</td>
<td>When a Cs contour control command is input, another mode (servo mode, spindle synchronization control, or orientation) is specified.</td>
<td>During execution of a Cs contour control command, do not specify another mode. Before entering another mode, cancel the Cs contour control command.</td>
</tr>
<tr>
<td>11</td>
<td>When a servo mode (such as rigid tapping or spindle positioning) command is input, another mode (Cs contour control, spindle synchronization control, or orientation) is specified.</td>
<td>During execution of a servo mode command, do not specify another mode. Before entering another mode, cancel the servo mode command.</td>
</tr>
</tbody>
</table>
### G. ALARM LIST

<table>
<thead>
<tr>
<th>SVPM STATUS1 indication(*1)</th>
<th>Description</th>
<th>Faulty location and remedy</th>
</tr>
</thead>
<tbody>
<tr>
<td>12</td>
<td>When a spindle synchronization control command is input, another mode (Cs contour control, servo mode, or orientation) is specified.</td>
<td>During execution of a spindle synchronization control command, do not specify another mode. Before entering another mode, cancel the spindle synchronization control command.</td>
</tr>
<tr>
<td>14</td>
<td>SFR (forward rotation command) and SRV (reverse rotation command) are input at the same time.</td>
<td>Input either of the commands.</td>
</tr>
<tr>
<td>17</td>
<td>The speed detector parameter settings (bits 2, 1, 0 of parameter No. 4011) are invalid. No speed detector corresponds to the settings.</td>
<td>Check the parameter settings.</td>
</tr>
<tr>
<td>18</td>
<td>When the parameter settings are made not to use the position, meaning that position control is not performed (bits 3, 2, 1, 0 of parameter No. 4002 = 0, 0, 0, 0), orientation by a position coder is specified.</td>
<td>Check the parameter settings and input signal.</td>
</tr>
<tr>
<td>24</td>
<td>For continuous indexing in orientation by a position coder, an incremental operation (INCMD = 1) is first performed, and an absolute position command (INCMD = 0) is then input.</td>
<td>Check INCMD (incremental command). Before absolute position commands are executed successively, absolute position command orientation must be performed first.</td>
</tr>
<tr>
<td>29</td>
<td>The parameter settings are made to use the shortest time orientation function (bit 6 of parameter No. 4018 = 0, parameters No. 4320 to 4323 (0).</td>
<td>The shortest time orientation function cannot be used. Use orientation by a normal method.</td>
</tr>
<tr>
<td>31</td>
<td>This hardware configuration does not allow the spindle FAD function to be used. In this case, the motor is not excited.</td>
<td>Check the CNC model.</td>
</tr>
<tr>
<td>33</td>
<td>This hardware configuration does not allow the spindle EGB function to be used. In this case, the motor is not excited.</td>
<td>Check the CNC model.</td>
</tr>
<tr>
<td>34</td>
<td>The spindle FAD function and spindle EGB function are both enabled. In this case, the motor is not excited.</td>
<td>These two functions cannot be used at the same time. Enable only either of them.</td>
</tr>
</tbody>
</table>

### NOTE*2
SVPM contact signal
Between ESP and +24V on JX4

<table>
<thead>
<tr>
<th>Number</th>
<th>Alarm type</th>
</tr>
</thead>
<tbody>
<tr>
<td>000 to 299</td>
<td>Program or setting alarm</td>
</tr>
<tr>
<td>300 to 399, 401</td>
<td>Pulse coder alarm</td>
</tr>
<tr>
<td>400 to 499 (except 401)</td>
<td>Servo alarm</td>
</tr>
<tr>
<td>500 to 599</td>
<td>Overtravel alarm</td>
</tr>
<tr>
<td>—</td>
<td>System alarm or I/O Link alarm</td>
</tr>
</tbody>
</table>

11) ALARM FOR FANUC SERVO MOTOR β series I/O Link Option

Alarm for FANUC SERVO MOTOR β series I/O Link Option can be confirmed by Power Mate CNC Manager function.
### ERROR CODES (SERIAL SPINDLE)

<table>
<thead>
<tr>
<th>No.</th>
<th>LED display</th>
<th>Description</th>
<th>Countermeasure</th>
</tr>
</thead>
<tbody>
<tr>
<td>000</td>
<td></td>
<td>A parameter that requires power–down has been specified.</td>
<td>Turn the power off, then back on.</td>
</tr>
<tr>
<td>011</td>
<td></td>
<td>The specified feedrate is zero.</td>
<td>Check the feedrate parameter specified with a function code.</td>
</tr>
<tr>
<td>013</td>
<td></td>
<td>The specified feedrate (maximum feedrate) is zero.</td>
<td>Check the value of parameter No.043, which indicates the maximum feedrate that can be specified.</td>
</tr>
<tr>
<td>070</td>
<td></td>
<td>More than 32 blocks have been registered for a buffering operation.</td>
<td>Reduce the number of registered blocks to 32.</td>
</tr>
<tr>
<td>090</td>
<td></td>
<td>Reference position setting cannot be executed normally.</td>
<td>Move the tool in the direction of reference position return in jog mode at a speed that causes the servo position error to exceed 128. Then, specify another reference position setting.</td>
</tr>
<tr>
<td>093</td>
<td></td>
<td>A first to third reference position return cannot be executed because the reference position has not yet been established.</td>
<td>Set the reference position.</td>
</tr>
<tr>
<td>224</td>
<td></td>
<td>The reference position has not yet been established. This occurs only when the ZRTN bit of parameter No.001 is set to 0.</td>
<td>Set the reference position.</td>
</tr>
<tr>
<td>250</td>
<td></td>
<td>Input data 1 is invalid.</td>
<td>Check input data 1, specified with a function code.</td>
</tr>
<tr>
<td>251</td>
<td></td>
<td>Input data 2 is invalid.</td>
<td>Check input data 2, specified with a function code.</td>
</tr>
<tr>
<td>254</td>
<td></td>
<td>A function code or mode is invalid.</td>
<td>Check the command code, specified with a function code. Check the mode.</td>
</tr>
<tr>
<td>255</td>
<td></td>
<td>Operation cannot be activated because an invalid mode is specified or because block execution is in progress.</td>
<td>Check the mode. Check whether a block is being executed.</td>
</tr>
<tr>
<td>290</td>
<td></td>
<td>The interface switch signal (DRC) was switched during block execution.</td>
<td>Switch the signal after block execution stops.</td>
</tr>
<tr>
<td>291</td>
<td></td>
<td>The speed of an axial movement specified by an external pulse has exceeded the upper limit. This occurs only when the EPEXA bit of parameter No.001 is set to 1.</td>
<td>Check the speed specified by the external pulse. Check the magnification of the external pulse (parameters No.062 and 063).</td>
</tr>
<tr>
<td>292</td>
<td></td>
<td>A checksum error for the non–volatile memory was detected.</td>
<td>Parameters are cleared. Set the parameters again. If this alarm subsequently recurs, replace the unit.</td>
</tr>
</tbody>
</table>
## Pulse coder alarms

<table>
<thead>
<tr>
<th>No.</th>
<th>LED display</th>
<th>Description</th>
<th>Countermeasure</th>
</tr>
</thead>
<tbody>
<tr>
<td>300</td>
<td></td>
<td>A communication error (DTER) for the serial pulse coder was detected.</td>
<td>Check the connection of the signal cable. If the cable is normal, the pulse coder may be defective. Turn the power off. If the alarm recurs when the power is reapplied, replace the serial pulse coder, together with the motor.</td>
</tr>
<tr>
<td>301</td>
<td></td>
<td>A communication error (CRCER) for the serial pulse coder was detected.</td>
<td>Check the connection of the signal cable. If the cable is normal, the pulse coder or servo amplifier unit may be defective. This error can also be caused by external noise.</td>
</tr>
<tr>
<td>302</td>
<td></td>
<td>A communication error (STBER) for the serial pulse coder was detected.</td>
<td>Check the connection of the signal cable. If the cable is normal, the pulse coder or servo amplifier unit may be defective. This error can also be caused by external noise.</td>
</tr>
<tr>
<td>303</td>
<td></td>
<td>An LED disconnection (LDAL) was detected in the serial pulse coder.</td>
<td>Turn the power off. If this alarm recurs when the power is reapplied, replace the motor.</td>
</tr>
<tr>
<td>304</td>
<td></td>
<td>A mispulse alarm (PMAL) for the serial pulse coder was detected.</td>
<td>Turn the power off. If this alarm recurs when the power is reapplied, replace the motor.</td>
</tr>
<tr>
<td>305</td>
<td></td>
<td>A miscount alarm (CMAL) for the serial pulse coder was detected.</td>
<td>Turn the power off. If the alarm recurs when the power is reapplied, replace the motor. If the alarm does not recur, restart the operation from reference position return.</td>
</tr>
<tr>
<td>306</td>
<td></td>
<td>The motor has overheated (OHAL).</td>
<td>This alarm is issued when the motor has overheated, causing the thermostat to trip. Possible causes include an excessively high ambient temperature and excessively strict operating conditions. Check the actual cause. If it occurs again when the motor is cooled, the motor or servo amplifier may have failed. Replace the faulty motor or servo amplifier.</td>
</tr>
<tr>
<td>308</td>
<td></td>
<td>A soft phase alarm (SPHAL) was detected.</td>
<td>Turn the power off. This alarm may be caused by noise.</td>
</tr>
<tr>
<td>319</td>
<td></td>
<td>When the absolute pulse coder is used, the motor has not yet rotated through more than one turn after the first power–up.</td>
<td>Rotate the motor through more than one turn in jog feed mode, then turn the power off then back on.</td>
</tr>
<tr>
<td>350</td>
<td></td>
<td>The battery voltage of the absolute pulse coder is low.</td>
<td>Replace the battery. Restart the operation from reference position return.</td>
</tr>
<tr>
<td>351</td>
<td></td>
<td>The battery voltage of the absolute pulse coder is low. (warning)</td>
<td>Replace the battery.</td>
</tr>
<tr>
<td>401</td>
<td></td>
<td>A communication error was detected in the serial pulse coder.</td>
<td>Check the connection of the pulse coder signal cable. If the cable is normal, the pulse coder or servo amplifier unit may be defective. This error can also be caused by external noise.</td>
</tr>
</tbody>
</table>
### Servo alarms

<table>
<thead>
<tr>
<th>No.</th>
<th>LED display</th>
<th>Description</th>
<th>Countermeasure</th>
</tr>
</thead>
<tbody>
<tr>
<td>400</td>
<td><img src="image1" alt="LED" /></td>
<td>The servo motor has overheated (estimated value).</td>
<td>The motor operation condition may be too severe. Check the operation condition.</td>
</tr>
<tr>
<td>403</td>
<td><img src="image2" alt="LED" /></td>
<td>SVU–12 SVU–20 The cooling fins have overheated. (hardware detection)</td>
<td>The load on the motor may be too high. Re-examine the load conditions.</td>
</tr>
<tr>
<td></td>
<td></td>
<td>SVU–40 SVU–80 This alarm will not be issued.</td>
<td></td>
</tr>
<tr>
<td></td>
<td><img src="image3" alt="LED" /></td>
<td>The regenerative discharge unit has overheated.</td>
<td>This alarm is issued when the average regenerative discharge energy is too high (when the acceleration/deceleration frequency is too high, for example).</td>
</tr>
<tr>
<td></td>
<td><img src="image4" alt="LED" /></td>
<td>(1) When the separate regenerative discharge resistor is not used: For the SVU–12 and the SVU–20, check whether the CX11–6 connector is short-circuited with a dummy connector; for the SVU–40 and the SVU–80, check whether the CX20 and CX23 connectors are short-circuited with a dummy connector.</td>
<td></td>
</tr>
<tr>
<td></td>
<td><img src="image5" alt="LED" /></td>
<td>(2) The average regenerative discharge energy may be too high. Decrease the acceleration/deceleration frequency.</td>
<td></td>
</tr>
<tr>
<td></td>
<td><img src="image6" alt="LED" /></td>
<td>(3) The separate regenerative discharge unit may not be connected properly. Check the connection.</td>
<td></td>
</tr>
<tr>
<td></td>
<td><img src="image7" alt="LED" /></td>
<td>(4) The thermostat of the separate regenerative discharge unit may be defective. Disconnect the separate regenerative discharge unit, then check the thermostat. If the thermostat is open even through the separate regenerative discharge unit is cool, replace the separate regenerative discharge unit.</td>
<td></td>
</tr>
<tr>
<td></td>
<td><img src="image8" alt="LED" /></td>
<td>(5) The resistor of the separate regenerative discharge unit may be defective. Disconnect the separate regenerative discharge unit, then check the resistance. If it does not fall in the range of the predetermined resistance (20%), replace the separate regenerative discharge unit.</td>
<td></td>
</tr>
<tr>
<td></td>
<td><img src="image9" alt="LED" /></td>
<td>(6) If (1) to (5) are not the cause of the alarm, replace the servo amplifier unit.</td>
<td></td>
</tr>
<tr>
<td>405</td>
<td><img src="image10" alt="LED" /></td>
<td>Reference position return could not be executed correctly.</td>
<td>Re-execute reference position return.</td>
</tr>
<tr>
<td></td>
<td><img src="image11" alt="LED" /></td>
<td>If a value in the range of 4 to 96 is set for parameter No. 032 (CMR), an alarm may be issued. In this case, prevent an alarm from being issued by setting N405 (bit 4 of parameter No. 001) to “1”.</td>
<td></td>
</tr>
<tr>
<td>410</td>
<td><img src="image12" alt="LED" /></td>
<td>The servo position error in the stop state is larger than the value specified in parameter No.110.</td>
<td>Determine the mechanical cause of the large position error. If no mechanical cause is found, specify a larger value for the parameter.</td>
</tr>
<tr>
<td>411</td>
<td><img src="image13" alt="LED" /></td>
<td>The servo position error during movement is larger than the value specified in parameter No.182.</td>
<td>Determine the mechanical cause of the large position error. If no mechanical cause is found, apply any of the following countermeasures:</td>
</tr>
<tr>
<td></td>
<td><img src="image14" alt="LED" /></td>
<td>• Specify a larger value for the parameter.</td>
<td></td>
</tr>
<tr>
<td></td>
<td><img src="image15" alt="LED" /></td>
<td>• Specify a lower feedrate.</td>
<td></td>
</tr>
<tr>
<td></td>
<td><img src="image16" alt="LED" /></td>
<td>• Increase the time constants.</td>
<td></td>
</tr>
<tr>
<td>No.</td>
<td>LED display</td>
<td>Description</td>
<td>Countermeasure</td>
</tr>
<tr>
<td>-----</td>
<td>-------------</td>
<td>-------------</td>
<td>---------------</td>
</tr>
<tr>
<td>412</td>
<td>![LED icon]</td>
<td>[SVU–12, SVU–20] An overcurrent alarm is issued.</td>
<td>This alarm is issued when an excessively large current flows in the main circuit.</td>
</tr>
</tbody>
</table>

(1) Check whether a valid motor number is specified in parameter No.30.

(2) Check whether the standard values are specified in the current control parameters for servo control.

Correct current control is possible only when the standard values are specified for the following parameters:

No.70, 71, 72, 79, 84, 85, 86, 87, 88, 89, 90

(3) Disconnect the power line from the servo amplifier unit connector. Then, release the emergency stop state.

- If the overcurrent alarm continues to be issued, replace the servo amplifier unit.
- If no overcurrent alarm is issued, go to (4).

(4) Check the insulation between the ground and each of U, V, and W. If the insulation is satisfactory, go to (5).

- If a short–circuit is detected, disconnect the power line from the motor connector. Then, check the insulation between the ground and each of U, V, and W of the motor.
- If a short–circuit is found between the ground and U, V, or W of the motor, replace the motor.
- If the insulation is satisfactory, replace the power line.

(5) Connect the power line. Observe the waveform of the motor current (IR, IS) while the motor is accelerating or decelerating.

- If the motor current (IR, IS) does not show a normal sine wave, replace the servo amplifier unit.

(6) Check if the motor current (IR, IS) waveforms include noise.

- When noise is included, take an action such as making a connection to shield ground.
- When noise is not included, replace the servo amplifier unit.

(7) If (1) to (4) above are not the cause of the alarm, the pulse coder, command cable, or internal hardware of the CNC may be defective.
<table>
<thead>
<tr>
<th>No.</th>
<th>LED display</th>
<th>Description</th>
<th>Countermeasure</th>
</tr>
</thead>
</table>
| 412 | [SVU–40, SVU–80] An overcurrent alarm or IPM alarm is issued. | This alarm is issued in the following cases:  
  • This alarm is issued when an excessively large current flows in the main circuit.  
  • This alarm is issued when an error (overcurrent, overheat, low IPM control power supply voltage) is detected in the IPM (semiconductor driving the motor). | (1) Check whether a valid motor number is specified in parameter No.30.  
(2) Check whether the standard values are specified in the current control parameters for servo control.  
Correct current control is possible only when the standard values are specified for the following parameters:  
No.70, 71, 72, 78, 79, 84, 85, 86, 87, 88, 89, 90  
(3) Turn off the servo amplifier unit for about ten minutes, then release the emergency stop state.  
  If no overcurrent alarm is issued, the IPM protection function (against overheat) may be operating. Possible causes of overheat include a high ambient temperature and a too severe motor operating condition. Check the cause.  
  • If an overcurrent alarm is issued, go to (4).  
(4) Disconnect the power line from the servo amplifier unit connector. Then, release the emergency stop state.  
  • If an overcurrent alarm is issued, the IPM protection function (against overcurrent, low control power supply voltage, overheat) may be operating or defective. Replace the IPM or servo amplifier unit.  
  • If no overcurrent alarm is issued, go to (5).  
(5) Disconnect the power line from the amplifier connector. Check the insulation between the ground and each of U, V, and W.  
  • If a short-circuit is found between the ground and U, V, or W of the motor, replace the motor.  
  • If the insulation is satisfactory, replace the power line.  
(6) Connect the power line. Observe the waveform of the motor current (IR, IS) while the motor is accelerating or decelerating.  
  • If the motor current (IR, IS) does not show a normal sine wave, replace the servo amplifier unit.  
(7) Check whether the waveform of the motor current (IR, IS) contains noise.  
  • If it contains noise, take appropriate measures against noise, such as grounding the shield.  
  • If it does not contain noise, replace the servo amplifier unit.  
(8) If (1) to (7) above are not the cause of the alarm, the pulse coder, command cable, or internal hardware of the CNC may be defective. |
<table>
<thead>
<tr>
<th>No.</th>
<th>LED display</th>
<th>Description</th>
<th>Countermeasure</th>
</tr>
</thead>
<tbody>
<tr>
<td>413</td>
<td></td>
<td>A DC link overvoltage alarm is issued.</td>
<td>This alarm is issued when the DC voltage of the main circuit power is too high.</td>
</tr>
<tr>
<td></td>
<td></td>
<td>(1) When SVU–12 or SVU–20 is used, and a separate regenerative discharge unit is not used, check the specification to see if regenerative energy per one time does not exceed the allowable regenerative energy of the servo amplifier unit.</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>(2) For the SVU–40 and the SVU–80, when the separate regenerative discharge resistor is not used, check whether the CX23 connector is short-circuited with a dummy connector.</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>(3) The supply voltage for dynamic power may exceed the rated value. Check the voltage. If the voltage is too high, reduce the voltage to an appropriate level.</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>(4) The regenerative discharge unit may not be properly connected. Check the connection.</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>(5) The resistance of the separate regenerative discharge unit may be abnormal. Disconnect the separate regenerative discharge unit, then check the resistance. If the resistance is not within (20% of the predetermined resistance, replace the separate regenerative discharge unit.</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>(6) If (1) to (5) are not the cause of the alarm, replace the servo amplifier unit.</td>
<td></td>
</tr>
<tr>
<td>414</td>
<td></td>
<td>A DC link low voltage alarm is issued.</td>
<td>This alarm is issued when the DC voltage of the main circuit power is too low.</td>
</tr>
<tr>
<td></td>
<td></td>
<td>(1) 190 ms or longer may pass from the time when both the *ESP of the built-in DI and the *ESP of the I/O link interface signal are canceled until the external magnetic contactor inserted into the input for motive power turns on (including the operating time of the magnetic contactor). The magnetic contactor must turn on within 100 ms.</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>(2) The external circuit breaker may be turned off. Check the circuit breaker.</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>(3) The supply voltage for dynamic power is lower than the rated value. Check the voltage. If the voltage is too low, increase it to an appropriate level.</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>(4) The external magnetic contactor may not be connected properly. Check the connection. If (1) to (4) are not the cause of the alarm, replace the servo amplifier unit.</td>
<td></td>
</tr>
<tr>
<td>417</td>
<td></td>
<td>A parameter has been specified incorrectly.</td>
<td>Check the following parameters: No.30: Is the specified motor type correct? No.31: Is the specified direction of rotation of the motor correct? No.106: Is the denominator of the number of pulses per single revolution of the motor 0? No.180: Is the specified reference counter capacity 0 or a negative value?</td>
</tr>
<tr>
<td>418</td>
<td></td>
<td>A DO alarm is issued.</td>
<td>Replace the servo amplifier unit.</td>
</tr>
<tr>
<td>423</td>
<td></td>
<td>The specified speed exceeds 32767000 detection units per second.</td>
<td>Re-examine the CMR and speed settings.</td>
</tr>
<tr>
<td>425</td>
<td></td>
<td>The cooling fan has stopped.</td>
<td>This alarm is issued when the fan motor built into the servo amplifier unit has failed. The fan motor is consumable.</td>
</tr>
<tr>
<td></td>
<td></td>
<td>(1) Check that the fan is not clogged with something.</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>(2) Check that the power connector of the fan is connected properly.</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>(3) Replace the fan or servo amplifier unit.</td>
<td></td>
</tr>
<tr>
<td>446</td>
<td></td>
<td>The external pulse input line is disconnected.</td>
<td>Connect the external pulse input signal correctly.</td>
</tr>
<tr>
<td>447</td>
<td></td>
<td>The velocity deviation is too high (velocity control)</td>
<td>Check the actual velocity. See the settings of parameter No. 136.</td>
</tr>
</tbody>
</table>
### Overtravel alarms

<table>
<thead>
<tr>
<th>No.</th>
<th>LED display</th>
<th>Description</th>
<th>Countermeasure</th>
</tr>
</thead>
<tbody>
<tr>
<td>500</td>
<td></td>
<td>The positive stroke limit has been exceeded.</td>
<td>Check whether &quot;+OT and &quot;−OT are connected correctly. Check whether a correct move command is specified. Move the tool in the opposite direction in jog mode, then perform a reset.</td>
</tr>
<tr>
<td>501</td>
<td></td>
<td>The negative stroke limit has been exceeded.</td>
<td></td>
</tr>
<tr>
<td>510</td>
<td></td>
<td>The positive soft stroke limit has been exceeded.</td>
<td>Check whether appropriate values have been specified for parameters No.142 and 143. Check whether a valid move command is specified. Move the tool in the opposite direction in jog mode, then perform a reset.</td>
</tr>
<tr>
<td>511</td>
<td></td>
<td>The negative soft stroke limit has been exceeded.</td>
<td></td>
</tr>
</tbody>
</table>

### System alarms

<table>
<thead>
<tr>
<th>No.</th>
<th>LED display</th>
<th>Description</th>
<th>Countermeasure</th>
</tr>
</thead>
<tbody>
<tr>
<td>–</td>
<td>C</td>
<td>An error was detected in the RAM write/read test at power-up.</td>
<td>Replace the servo amplifier unit.</td>
</tr>
<tr>
<td>–</td>
<td>8</td>
<td>An error was detected in the data collation check for the non–volatile memory.</td>
<td>Turn the power off then back on. Then, re–enter the parameters. If this alarm recurs, replace the servo amplifier unit.</td>
</tr>
<tr>
<td>–</td>
<td>8</td>
<td>A data transfer alarm for the non–volatile memory has been issued.</td>
<td>Replace the servo amplifier unit.</td>
</tr>
<tr>
<td>–</td>
<td>8</td>
<td>A watchdog alarm was issued.</td>
<td>Turn the power off then back on. If this alarm recurs, replace the servo amplifier unit.</td>
</tr>
<tr>
<td>–</td>
<td>8</td>
<td>A checksum alarm for the control software ROM is issued.</td>
<td>Replace the servo amplifier unit.</td>
</tr>
<tr>
<td>–</td>
<td>8</td>
<td>A checksum alarm for the ROM that is built into the CPU is issued.</td>
<td>Replace the servo amplifier unit.</td>
</tr>
<tr>
<td>–</td>
<td></td>
<td>An error was detected in the control circuit.</td>
<td>Replace the servo amplifier unit.</td>
</tr>
</tbody>
</table>

### I/O link alarm

<table>
<thead>
<tr>
<th>No.</th>
<th>LED display</th>
<th>Description</th>
<th>Countermeasure</th>
</tr>
</thead>
<tbody>
<tr>
<td>–</td>
<td></td>
<td>A FANUC I/O Link error occurred. Any unit connected to the line was turned off.</td>
<td>Turn off the power to all units connected to the line. Then, turn on the slave devices, followed by the master device.</td>
</tr>
</tbody>
</table>

### No LED display

<table>
<thead>
<tr>
<th>No.</th>
<th>LED display</th>
<th>Description</th>
<th>Countermeasure</th>
</tr>
</thead>
<tbody>
<tr>
<td>–</td>
<td>No indicators lit</td>
<td>The control circuit is not operating normally.</td>
<td>(1) Check the 24–VDC control supply voltage. If the voltage is low, increase the voltage to an appropriate level.</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>(2) Check whether a fuse in the servo amplifier unit has blown. If a blown fuse is found, replace it. If (1) and (2) are not the cause, replace the servo amplifier.</td>
</tr>
</tbody>
</table>
### System Alarms

(These alarms cannot be reset with reset key.)

<table>
<thead>
<tr>
<th>Number</th>
<th>Message</th>
<th>Contents</th>
</tr>
</thead>
<tbody>
<tr>
<td>900</td>
<td>ROM PARITY</td>
<td>ROM parity error (CNC/OMM/Servo) &lt;br&gt;Replace the number of ROM.</td>
</tr>
<tr>
<td>910</td>
<td>SRAM PARITY : (BYTE 0)</td>
<td>RAM parity error in the tape memory RAM module. &lt;br&gt;Clear the memory or replace the module.</td>
</tr>
<tr>
<td>911</td>
<td>SRAM PARITY: (BYTE 1)</td>
<td>After this operation, reset all data including the parameters.</td>
</tr>
<tr>
<td>912</td>
<td>DRAM PARITY : (BYTE 0)</td>
<td>RAM parity error in the DRAM module. &lt;br&gt;Replace the DRAM module.</td>
</tr>
<tr>
<td>913</td>
<td>DRAM PARITY : (BYTE 1)</td>
<td></td>
</tr>
<tr>
<td>914</td>
<td>DRAM PARITY : (BYTE 2)</td>
<td></td>
</tr>
<tr>
<td>915</td>
<td>DRAM PARITY : (BYTE 3)</td>
<td></td>
</tr>
<tr>
<td>916</td>
<td>DRAM PARITY : (BYTE 4)</td>
<td></td>
</tr>
<tr>
<td>917</td>
<td>DRAM PARITY : (BYTE 5)</td>
<td></td>
</tr>
<tr>
<td>918</td>
<td>DRAM PARITY : (BYTE 6)</td>
<td></td>
</tr>
<tr>
<td>919</td>
<td>DRAM PARITY : (BYTE 7)</td>
<td></td>
</tr>
<tr>
<td>920</td>
<td>SERVO ALARM (1 to 4 AXIS)</td>
<td>Servo alarm (1st to 4th axis). &lt;br&gt;A watchdog alarm or a RAM parity error in the servo module occurred. &lt;br&gt;Replace the servo control module on the main CPU board.</td>
</tr>
<tr>
<td>926</td>
<td>FSSB ALARM</td>
<td>FSSB alarm. &lt;br&gt;Replace the servo control module on the main CPU board.</td>
</tr>
<tr>
<td>930</td>
<td>CPU INTERRUPT</td>
<td>CPU error (abnormal interrupt) &lt;br&gt;The main CPU board is faulty.</td>
</tr>
<tr>
<td>935</td>
<td>SRAM ECC ERROR</td>
<td>An error occurred in RAM for part program storage. &lt;br&gt;Action: &lt;br&gt;Replace the master printed circuit board (SRAM module), perform all-clear operation, and set all parameter and other data again.</td>
</tr>
<tr>
<td>950</td>
<td>PMC SYSTEM ALARM</td>
<td>Fault occurred in the PMC. &lt;br&gt;The PMC control module on the main CPU board or option board may be faulty.</td>
</tr>
<tr>
<td>951</td>
<td>PMC–RC WATCH DOG ALARM</td>
<td>Fault occurred in the PMC–RC (watchdog alarm). Option board may be faulty.</td>
</tr>
<tr>
<td>970</td>
<td>NMI OCCURRED IN PMCLS</td>
<td>With the PMC–SA1, an error occurred in the PMC control LSI device on the motherboard. (I/O RAM parity) &lt;br&gt;Replace the motherboard.</td>
</tr>
<tr>
<td>971</td>
<td>NMI OCCURRED IN SLC</td>
<td>With the PMC–SA1, an I/O Link disconnection was detected. &lt;br&gt;Check the I/O Link.</td>
</tr>
<tr>
<td>972</td>
<td>NMI OCCURRED IN OTHER MODULE</td>
<td>NMI occurred in a board other than the main CPU board.</td>
</tr>
<tr>
<td>973</td>
<td>NON MASK INTERRUPT</td>
<td>NMI occurred for an unknown reason.</td>
</tr>
<tr>
<td>974</td>
<td>F–BUS ERROR</td>
<td>BUS error of FANUC BUS. &lt;br&gt;The main CPU board or option boards may be faulty.</td>
</tr>
<tr>
<td>975</td>
<td>BUS ERROR (MAIN)</td>
<td>Main CPU board bus error. &lt;br&gt;The main CPU board may be faulty.</td>
</tr>
<tr>
<td>976</td>
<td>L–BUS ERROR</td>
<td>Bus error of Local Bus. &lt;br&gt;The main CPU board may be faulty.</td>
</tr>
</tbody>
</table>
Index

[Numbers]
7.2” Monochrome/8.4” Color LCD/MDI Unit (Horizontal Type), 371
7.2” Monochrome/8.4” Color LCD/MDI Unit (Vertical Type), 372

[A]
Absolute and Incremental Programming (G90, G91), 91
Actual Feedrate Display, 595
Address and Specifiable Value Range for Series 10/11 Tape Format, 311
Advance Preview Control (G08), 322
Alarm and Self–Diagnosis Functions, 479
Alarm Display, 366, 480
Alarm History Display, 482
Alarm List, 776
Alarms, 739
Altering a Word, 548
Angular axis Control / Arbitrary Axis Control, 337
Arithmetic and Logic Operation, 266
Automatic Erase Screen Display, 654
Automatic Inserting of Sequence Numbers, 572
Automatic Operation, 357
Automatic operation, 417
Automatic Tool Offset (G36, G37), 251
Auxiliary Function, 114
Auxiliary Function (M Function), 115
Axis Control Function, 327

[B]
Background Editing, 567
Battery for Absolute Pulse Coder Built into the Motor (6VDC), 749
Battery for Memory Backup (3VDC), 744
Battery for Separate Absolute Pulse Coders (6VDC), 748
Branch and Repetition, 272

[C]
Canceled Spindle Positioning, 106
Canned Cycle, 314

Canned Cycle (G90, G92, G94), 133
Canned Cycle for Drilling (G80 – G89), 159
Canned Cycle for Drilling Cancel (G80), 169
Canned Cycle Machining, 687
Canned Drilling Cycle Formats, 317
Canned Grinding Cycle (for Grinding Machine), 171
Cautions on Reading this Manual, 8
Cautions on Various Kinds of Data, 8
Chamfering and Corner R, 175
Changing of Tool Offset Value, 250
Changing Workpiece Coordinate System, 82
Character–to–Codes Correspondence Table, 775
Characters and Codes to be Used for the Pattern Data Input Function, 348
Check by Running the Machine, 359
Checked by Self–Diagnostic Screen, 483
Chuck and Tailstock Barriers, 469
Circular Interpolation (G02, G03), 41
Clearing the Screen, 653
Command for Machine Operations – Miscellaneous Function, 22
Compensation Function, 26, 188
Conditional Branch (IF Statement), 273
Constant Lead Threading (G32), 54
Constant Surface Speed Control (G96, G97), 97
Continuous Thread Cutting, 59
Contour Programming, 697
Controlled Axes, 28, 29
Conversational programming with graphic function, 577
Coordinate System, 77
Coordinate System on Part Drawing and Coordinate System Specified by CNC – Coordinate System, 16
Coordinate Value and Dimension, 90
Copying an Entire Program, 558
Copying Part of a Program, 559
Correction in Chamfering and Corner Arcs, 236
Counter Input of Offset value, 619
Counting a Tool Life, 112
Creating a New Part Program, 678
Creating Programs, 570
Creating Programs in Teach in Mode (Playback), 574
Creating Programs Using the MDI Panel, 571
Current Block Display Screen, 601
Current Position Display, 366
Custom Macro, 254
Cutting Feed, 70
Cutting Speed — Spindle Speed Function, 21
Cylindrical Interpolation (G07.1), 50

[D]
Data for Each Canned Cycle, 690
Data Input/Output, 486
Data Input/Output on the ALL IO Screen, 514
Data Input/Output Using a Memory Card, 530
Data Output, 368
Decimal Point Programming, 93
Deleting a Block, 550
Deleting a Word, 549
Deleting All Programs, 555
Deleting Blocks, 550
Deleting Files, 511
Deleting More Than One Program by Specifying a Range, 556
Deleting Multiple Blocks, 551
Deleting One Program, 555
Deleting Programs, 555
Detail of Contour Calculation, 709
Detail of Contour Figure Data, 707
Details of Auxiliary Calculation, 720
Details of Functions, 300
Details of Tool Nose Radius Compensation, 210
 Diameter and Radius Programming, 94
Direct Drawing Dimensions Programming, 179
Direct Input of Measured Workpiece Origin Offsets, 632
Direct Input of Tool Offset Measured B, 617
Direct Input of Tool Offset Value, 615
Direction of Imaginary Tool Nose, 199
Display, 365
Display of Run Time and Parts Count, 597
Displaying a Program List for a Specified Group, 608
Displaying and Entering Setting Data, 625
Displaying and Setting Custom Macro Common Variables, 634
Displaying and Setting Data, 362
Displaying and Setting Parameters, 643
Displaying and Setting Pitch Error Compensation Data, 645
Displaying and Setting Run Time, Parts Count, and Time, 629
Displaying and Setting the Software Operator’s Panel, 637
Displaying and Setting the Workpiece Origin Offset Value, 631
Displaying and Setting Tool Life Management Data, 639
Displaying Directory of Floppy Disk, 505
Displaying Memory Used and a List of Programs, 605
Displaying Pattern Data and Pattern Menu, 635
Displaying the Directory, 506
Displaying the Pattern Menu, 340
Displaying the Program Number and Sequence Number, 648
Displaying the Program Number, Sequence Number, and Status, and Warning Messages for Data Setting or Input/Output Operation, 648
Displaying the Status and Warning for Data Setting or Input/Output Operation, 649
DNC Operation, 424, 449
DNC Operation with Memory Card, 448
Dry Run, 458
Dwell (G04), 72
Dynamic Graphic, 661

[E]
Editing a Part Program, 361
Editing of Custom Macros, 566
Editing Programs, 542
Emergency Stop, 463
End Face Peck Drilling Cycle (G74), 152
End Face Turning Cycle (G94), 138
Equal–Lead Threading, 312
Erase CRT Screen Display, 653
Explanation of the Keyboard, 375
Extended Part Program Editing Function, 557
External I/O Devices, 397
External Operator Message History Display, 651
External Output Commands, 294

[F]
FANUC Handy File, 399
Feed Functions, 67
Feed–Feed Function, 14
Index

Feedrate Override, 456
File Deletion, 491
File Search, 489
Files, 487
Finishing Cycle (G70), 149
Front Boring Cycle (G85) / Side Boring Cycle (G89), 168
Front Drilling Cycle (G83) / Side Drilling Cycle (G87), 163
Front Face Rigid Tapping Cycle (G84) / Side Face Rigid Tapping Cycle (G88), 185
Front Tapping Cycle (G84) / Side Tapping Cycle (G88), 166
Function Keys, 378
Function Keys and Soft Keys, 377
Function to Simplify Programming, 132
Functions for High Speed Cutting, 321

[G]

G–code Assistance, 682
G53, G28, and G30 Commands in Tool–tip Radius Compensation Mode, 240
G53, G28, and G30 Commands When Tool Position Offset is Applied, 194
General Flow of Operation of CNC Machine Tool, 6
General Precautions for Offset Operations, 239
General Screen Operations, 377
Graphic Display (See Section III–12), 367
Graphics Display, 656
Graphics Function, 655

[H]

Heading a Program, 546
Helical Interpolation (G02, G03), 45
Help Function, 662
How to Indicate Command Dimensions for Moving the Tool – Absolute, Incremental Commands, 19
How to Use Canned Cycles (G90, G92, G94), 141
How to View the Position Display Change without Running the Machine, 360

[I]

Imaginary Tool Nose, 197

[J]

Jog Feed, 406

[K]

Key Input and Input Buffer, 395
Key Location of MDI (Horizontal Type LCD/MDI Unit), 373
Key Location of MDI (Vertical Type LCD/MDI Unit), 374

[L]

Limitation and Notes, 451
Limitations, 293
Linear Interpolation (G01), 40
List of Functions and Tape Format, 756
Local Coordinate System, 87

[M]

M–code Assistance, 685
Machine Coordinate System, 78
Machine Lock and Auxiliary Function Lock, 454
Macro Call, 277
Macro Call Using an M Code, 285
Macro Call Using G Code, 284
Macro Statements and NC Statements, 271
Manual Absolute On and Off, 412
Manual Guide 0, 673
Manual Handle Feed, 409
Manual Handle Interruption, 441
Manual Intervention and Return, 446
Manual Operation, 354, 403
Manual Reference Position Return, 404
Maximum Strokes, 31
MDI Operation, 421
Memory Operation, 418
Memory Operation by Series 10/11 Tape Format, 310
Merging a Program, 561
Method of Replacing Battery, 743
Mirror Image, 444
Mirror Image for Double Turret (G68, G69), 178
Modal Call (G66), 282
Moving Part of a Program, 560
Multiple M Commands in a Single Block, 116
Multiple Repetitive Canned Turning Cycle, 315
Multiple Repetitive Cycle (G70 – G76), 143
Multiple Thread Cutting Cycle (G76), 154
Multiple–Thread Cutting, 60
Multistage Skip, 64

Offset Number and Offset Value, 200
Offset Data Input and Output, 497
Offset Number, 190

Name of Axes, 29
Next Block Display Screen, 602
Nomographs, 764
Notes on Multiple Repetitive Cycle (G70 – G76), 158
Notes on Tool Nose Radius Compensation, 207

Parameter, 451, 732
Part Drawing and Tool Movement, 15
Parts Count Display, Run Time Display, 367
Password Function, 568
Pattern Data Display, 344
Pattern Data Input Function, 339
Pattern Repeating (G73), 148
Plane Selection, 89
Polar Coordinate Interpolation (G12.1, G13.1), 46
Polygonal Turning, 328
Position Display in the Relative Coordinate System, 591
Position Display in the Workpiece Coordinate System, 590
Positioning (G00), 38
Power Disconnection, 402
Power On/Off, 400
Precautions to be Taken by Operator, 170
Preparatory Function (G Function), 32
Presetting the Workpiece Coordinate System, 594
Procedure for Fixing the Memory Card, 451
Process Assistance, 680
Processing Macro Statements, 290
Program Check Screen, 603
Program Components Other than Program Sections, 120
Program Configuration, 23, 118
Program Contents Display, 600
Program Creating Operations, 676
Program Display, 365
Program Input/Output, 492
Program Number Search, 552
Program of Tool Life Data, 109
Program Restart, 426
Program Screen for MDI Operation, 604
Program Section Configuration, 123
Programmable Parameter Entry (G10), 307

[R]
Radius Direction Error at Circle Cutting, 772
Range of Command Value, 761
Rapid Traverse, 69
Rapid Traverse Override, 457
Reading Files, 509
Reference Position, 73
Reference Position (Machine–Specific Position), 15
Reference Position Return, 74
Registering Custom Macro Programs, 292
Repetition (WHILE statement), 274
Replacement of Words and Addresses, 564
Rigid Tapping, 184
Rigid Tapping Cancel (G80), 187
Rotary Axis Roll–Over, 333

[S]
Safety Functions, 462
Sample Program, 288
Scheduling Function, 434
Screen Displayed at Power–on, 401
Screen Hardcopy, 667
Screens Displayed by Function Key  
Screens Displayed by Function Key  
Screens Displayed by Function Key (In Memory Mode or MDI Mode), 600
Screens Displayed by Function Key (In the EDIT Mode), 605
Screens Displayed by Function Key  
Selecting a Workpiece Coordinate System, 81
Selection of Tool Used for Various Machining – Tool Function, 22
Sequence Number Comparison and Stop, 627
Sequence Number Search, 553
Setting a Workpiece Coordinate System, 79
Setting and Display Units, 370
Setting and Displaying Data, 581
Setting and Displaying the Tool Offset Value, 612
Setting Input/Output–Related Parameters, 515
Setting the Workpiece Coordinate System Shifting Amount, 620
Simple Calculation of Incorrect Thread Length, 767
Simple Call (G65), 278
Simple Synchronization Control, 334
Single Block, 459
Skip Function (G31), 62
Soft Keys, 379
Specification, 448
Specification Method, 299
Specifying a Tool Group in a Machining Program, 113
Specifying the Spindle Speed Value Directly (S5–Digit Command), 96
Specifying the Spindle Speed with A Code, 96
Spindle Orientation, 104
Spindle Positioning, 104
Spindle Positioning Function, 104
Spindle Speed Fluctuation Detection Function (G25, G26), 101
Spindle Speed Function, 95
Start up, 676, 677
Status when Turning Power On, when Clear and when Reset, 773
Stock Removal in Facing (G72), 147
Stock Removal in Turning (G71), 143
Stored Stroke Check, 465
Stroke Limit Check Prior to Performing Movement, 476
Subprogram (M98, M99), 129
Subprogram Call (M198), 450
Subprogram Call Function (M198), 439
Subprogram Call Using an M Code, 286
Subprogram Calling, 313
Subprogram Calls Using a T Code, 287
Supplementary Explanation for Copying, Moving and Merging, 562
System Variables, 259

[T]
T Code for Tool Offset, 190
Tandem Control, 336
Tape Code List, 753
Test Operation, 453
Testing a Program, 359
The Second Auxiliary Functions (B Codes), 117
Thread Cutting Cycle (G92), 135
Tool Compensation and Number of Tool Compensation, 249
Tool Compensation Values, Number of Compensation Value, and Entering Values from the Program (G10), 249
Tool Function (T Function), 107
Tool Geometry Offset and Tool Wear Offset, 189
Tool Life Management, 109
Tool Movement Along Workpiece Parts Figure–Interpolation, 12
Tool Movement by Programming – Automatic Operation, 356
Tool Movement in Offset Mode, 214
Tool Movement in Offset Mode Cancel, 227
Tool Movement in Start-up, 212
Tool Movement Range – Stroke, 27
Tool Offset, 189
Tool Path at Corner, 769
Tool Selection, 108, 190
Torque Limit Skip (G31 P99), 65
Traverse Direct Fixed–dimension Grinding Cycle (G72), 172
Traverse Grinding Cycle (G71), 171
Turning on the Power, 400

[U]
Unconditional Branch (GOTO Statement), 272

[V]
Variable–Lead Thread Cutting (G34), 58
Variables, 255

[W]
Warning Messages, 396
Word Search, 544
Work Position and Move Command, 202
Workpiece Coordinate System, 79
Workpiece Coordinate System Preset (G92.1), 84
Workpiece Coordinate System Shift, 86

[Y]
Y Axis Offset, 622
## Revision Record

**FANUC Series 0i–TC OPERATOR’S MANUAL (B–64114EN)**

<table>
<thead>
<tr>
<th>Edition</th>
<th>Date</th>
<th>Contents</th>
</tr>
</thead>
<tbody>
<tr>
<td>01</td>
<td>Jun., 2004</td>
<td></td>
</tr>
</tbody>
</table>
• No part of this manual may be reproduced in any form.

• All specifications and designs are subject to change without notice.